Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Key role of Rho GTPases in motor disorders associated with neurodevelopmental pathologies

A Correction to this article was published on 26 October 2022

This article has been updated

Abstract

Growing evidence suggests that Rho GTPases and molecules involved in their signaling pathways play a major role in the development of the central nervous system (CNS). Whole exome sequencing (WES) and de novo examination of mutations, including SNP (Single Nucleotide Polymorphism) in genes coding for the molecules of their signaling cascade, has allowed the recent discovery of dominant autosomic mutations and duplication or deletion of candidates in the field of neurodevelopmental diseases (NDD). Epidemiological studies show that the co-occurrence of several of these neurological pathologies may indeed be the rule. The regulators of Rho GTPases have often been considered for cognitive diseases such as intellectual disability (ID) and autism. But, in a remarkable way, mild to severe motor symptoms are now reported in autism and other cognitive NDD. Although a more abundant litterature reports the involvement of Rho GTPases and signaling partners in cognitive development, molecular investigations on their roles in central nervous system (CNS) development or degenerative CNS pathologies also reveal their role in embryonic and perinatal motor wiring through axon guidance and later in synaptic plasticity. Thus, Rho family small GTPases have been revealed to play a key role in brain functions including learning and memory but their precise role in motor development and associated symptoms in NDD has been poorly scoped so far, despite increasing clinical data highlighting the links between cognition and motor development. Indeed, early impairements in fine or gross motor performance is often an associated feature of NDDs, which then impact social communication, cognition, emotion, and behavior. We review here recent insights derived from clinical developmental neurobiology in the field of Rho GTPases and NDD (autism spectrum related disorder (ASD), ID, schizophrenia, hypotonia, spastic paraplegia, bipolar disorder and dyslexia), with a specific focus on genetic alterations affecting Rho GTPases that are involved in motor circuit development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Change history

References

  1. Takai Y, Sasaki T, Matozaki T. Small GTP-binding proteins. Physiol Rev. 2001;81:153–208.

    CAS  Google Scholar 

  2. Jiménez-Sánchez A. Coevolution of RAC small GTPases and their regulators GEF proteins. Evol Bioinform Online. 2016;12:121–31.

    Google Scholar 

  3. Boyer NP, Gupton SL. Revisiting Netrin-1: one who guides (Axons). Front Cell Neurosci. 2018;12:221.

    Google Scholar 

  4. Bai Y, Xiang X, Liang C, Shi L. Regulating Rac in the nervous system: molecular function and disease implication of Rac GEFs and GAPs. Biomed Res Int. 2015;2015:632450.

    Google Scholar 

  5. Chang L, Yang J, Jo CH, Boland A, Zhang Z, McLaughlin SH, et al. Structure of the DOCK2-ELMO1 complex provides insights into regulation of the auto-inhibited state. Nat Commun. 2020;11:3464.

    CAS  Google Scholar 

  6. Zegers MM, Friedl P. Rho GTPases in collective cell migration. Small GTPases. 2014;5:e28997.

    Google Scholar 

  7. Arrazola Sastre A, Luque Montoro M, Gálvez-Martín P, Lacerda HM, Lucia AM, Llavero F, et al. Small GTPases of the Ras and Rho families switch on/off signaling pathways in neurodegenerative diseases. Int J Mol Sci. 2020;21:6312.

  8. Clayton NS, Ridley AJ. Targeting Rho GTPase signaling networks in cancer. Front Cell Dev Biol. 2020;8:222.

    Google Scholar 

  9. Zamboni V, Jones R, Umbach A, Ammoni A, Passafaro M, Hirsch E, et al. Rho GTPases in intellectual disability: from genetics to therapeutic opportunities. Int J Mol Sci. 2018;19:1821.

  10. Reichova A, Zatkova M, Bacova Z, Bakos J. Abnormalities in interactions of Rho GTPases with scaffolding proteins contribute to neurodevelopmental disorders. J Neurosci Res. 2018;96:781–8.

    CAS  Google Scholar 

  11. Luo L, Jan L, Jan YN. Small GTPases in axon outgrowth. Perspect Dev Neurobiol. 1996;4:199–204.

    CAS  Google Scholar 

  12. Chen F, Ma L, Parrini MC, Mao X, Lopez M, Wu C, et al. Cdc42 is required for PIP(2)-induced actin polymerization and early development but not for cell viability. Curr Biol. 2000;10:758–65.

    CAS  Google Scholar 

  13. Pierrat V, Marchand-Martin L, Marret S, Arnaud C, Benhammou V, Cambonie G, et al. Neurodevelopmental outcomes at age 5 among children born preterm: EPIPAGE-2 cohort study. Bmj. 2021;373:n741.

    Google Scholar 

  14. Allain AE, Cazenave W, Delpy A, Exertier P, Barthe C, Meyrand P, et al. Nonsynaptic glycine release is involved in the early KCC2 expression. Dev Neurobiol. 2016;76:764–79.

    CAS  Google Scholar 

  15. Hanson MG, Landmesser LT. Normal patterns of spontaneous activity are required for correct motor axon guidance and the expression of specific guidance molecules. Neuron. 2004;43:687–701.

    CAS  Google Scholar 

  16. Gonzalez-Islas C, Garcia-Bereguiain MA, O’Flaherty B, Wenner P. Tonic nicotinic transmission enhances spinal GABAergic presynaptic release and the frequency of spontaneous network activity. Dev Neurobiol. 2016;76:298–312.

    CAS  Google Scholar 

  17. Zuo J, Liu Z, Ouyang X, Liu H, Hao Y, Xu L, et al. Distinct neurobehavioral consequences of prenatal exposure to sulpiride (SUL) and risperidone (RIS) in rats. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:387–97.

    CAS  Google Scholar 

  18. Katz LC, Shatz CJ. Synaptic activity and the construction of cortical circuits. Science. 1996;274:1133–8.

    CAS  Google Scholar 

  19. Carrasco MM, Razak KA, Pallas SL. Visual experience is necessary for maintenance but not development of receptive fields in superior colliculus. J Neurophysiol. 2005;94:1962–70.

    CAS  Google Scholar 

  20. Mudd DB, Balmer TS, Kim SY, Machhour N, Pallas SL. TrkB activation during a critical period mimics the protective effects of early visual experience on perception and the stability of receptive fields in adult superior colliculus. J Neurosci. 2019;39:4475–88.

    Google Scholar 

  21. Degotardi PJ, Klass ES, Rosenberg BS, Fox DG, Gallelli KA, Gottlieb BS. Development and evaluation of a cognitive-behavioral intervention for juvenile fibromyalgia. J Pediatr Psychol. 2006;31:714–23.

    Google Scholar 

  22. Karni A, Meyer G, Rey-Hipolito C, Jezzard P, Adams MM, Turner R, et al. The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proc Natl Acad Sci USA. 1998;95:861–8.

    CAS  Google Scholar 

  23. Kleim JA, Barbay S, Nudo RJ. Functional reorganization of the rat motor cortex following motor skill learning. J Neurophysiol. 1998;80:3321–5.

    CAS  Google Scholar 

  24. Herholz SC, Halpern AR, Zatorre RJ. Neuronal correlates of perception, imagery, and memory for familiar tunes. J Cogn Neurosci. 2012;24:1382–97.

    Google Scholar 

  25. Ferchmin PA, Bennett EL. Direct contact with enriched environment is required to alter cerebral weights in rats. J Comp Physiol Psychol. 1975;88:360–7.

    CAS  Google Scholar 

  26. Greenough WT, Black JE, Wallace CS. Experience and brain development. Child Dev. 1987;58:539–59.

    CAS  Google Scholar 

  27. Markham JA, Greenough WT. Experience-driven brain plasticity: beyond the synapse. Neuron Glia Biol. 2004;1:351–63.

    Google Scholar 

  28. Vazquez-Sanroman D, Sanchis-Segura C, Toledo R, Hernandez ME, Manzo J, Miquel M. The effects of enriched environment on BDNF expression in the mouse cerebellum depending on the length of exposure. Behav Brain Res. 2013;243:118–28.

    CAS  Google Scholar 

  29. Bell MA, Fox NA. Crawling experience is related to changes in cortical organization during infancy: evidence from EEG coherence. Dev Psychobiol. 1996;29:551–61.

    CAS  Google Scholar 

  30. Xiao R, Qi X, Patino A, Fagg AH, Kolobe THA, Miller DP, et al. Characterization of infant mu rhythm immediately before crawling: a high-resolution EEG study. Neuroimage. 2017;146:47–57.

    Google Scholar 

  31. Anderson DI, Campos JJ, Witherington DC, Dahl A, Rivera M, He M, et al. The role of locomotion in psychological development. Front Psychol. 2013;4:440.

    Google Scholar 

  32. Campos JJ, Anderson DI, Barbu-Roth MA, Hubbard EM, Hertenstein MJ, Witherington D. Travel broadens the mind. infancy : the official journal of the International Society on Infant. Studies. 2000;1:149–219.

    Google Scholar 

  33. Walle EA, Campos JJ. Infant language development is related to the acquisition of walking. Developmental Psychol. 2014;50:336–48.

    Google Scholar 

  34. Dahl A, Campos JJ, Anderson DI, Uchiyama I, Witherington DC, Ueno M, et al. The epigenesis of wariness of heights. Psychological Sci. 2013;24:1361–7.

    Google Scholar 

  35. Uchiyama I, Anderson DI, Campos JJ, Witherington D, Frankel CB, Lejeune L, et al. Locomotor experience affects self and emotion. Dev psychol. 2008;44:1225–31.

  36. Bornstein MH, Hahn CS, Suwalsky JT. Physically developed and exploratory young infants contribute to their own long-term academic achievement. Psychological Sci. 2013;24:1906–17.

    Google Scholar 

  37. Iverson JM. Developmental variability and developmental cascades: lessons from motor and language development in infancy. Curr directions psychological Sci. 2021;30:228–35.

    Google Scholar 

  38. Babik I, Galloway JC, Lobo MA. Early exploration of one’s own body, exploration of objects, and motor, language, and cognitive development relate dynamically across the first two years of life. Developmental Psychol. 2022;58:222–35.

    Google Scholar 

  39. Schwarzer G. How motor and visual experiences shape infants’ visual processing of objects and faces. Child Dev Perspect. 2014;8:213–7.

    Google Scholar 

  40. Yang TX, Allen RJ, Holmes J, Chan RC. Impaired memory for instructions in children with attention-deficit hyperactivity disorder is improved by action at presentation and recall. Front Psychol. 2017;8:39.

    CAS  Google Scholar 

  41. Raw RK, Wilkie RM, Allen RJ, Warburton M, Leonetti M, Williams JHG, et al. Skill acquisition as a function of age, hand and task difficulty: Interactions between cognition and action. PLoS One. 2019;14:e0211706.

    CAS  Google Scholar 

  42. Reijnders MRF, Ansor NM, Kousi M, Yue WW, Tan PL, Clarkson K, et al. RAC1 missense mutations in developmental disorders with diverse phenotypes. Am J Hum Genet. 2017;101:466–77.

    CAS  Google Scholar 

  43. Helbig KL, Mroske C, Moorthy D, Sajan SA, Velinov M. Biallelic loss-of-function variants in DOCK3 cause muscle hypotonia, ataxia, and intellectual disability. Clin Genet. 2017;92:430–3.

    CAS  Google Scholar 

  44. Iwata-Otsubo A, Ritter AL, Weckselbatt B, Ryan NR, Burgess D, Conlin LK, et al. DOCK3-related neurodevelopmental syndrome: Biallelic intragenic deletion of DOCK3 in a boy with developmental delay and hypotonia. Am J Med Genet A. 2018;176:241–5.

    CAS  Google Scholar 

  45. Ravindran E, Hu H, Yuzwa SA, Hernandez-Miranda LR, Kraemer N, Ninnemann O, et al. Homozygous ARHGEF2 mutation causes intellectual disability and midbrain-hindbrain malformation. PLoS Genet. 2017;13:e1006746.

    Google Scholar 

  46. Billuart P, Bienvenu T, Ronce N, des Portes V, Vinet MC, Zemni R, et al. Oligophrenin-1 encodes a rhoGAP protein involved in X-linked mental retardation. Nature. 1998;392:923–6.

    CAS  Google Scholar 

  47. Tentler D, Gustavsson P, Leisti J, Schueler M, Chelly J, Timonen E, et al. Deletion including the oligophrenin-1 gene associated with enlarged cerebral ventricles, cerebellar hypoplasia, seizures and ataxia. Eur J Hum Genet. 1999;7:541–8.

    CAS  Google Scholar 

  48. Zanni G, Saillour Y, Nagara M, Billuart P, Castelnau L, Moraine C, et al. Oligophrenin 1 mutations frequently cause X-linked mental retardation with cerebellar hypoplasia. Neurology. 2005;65:1364–9.

    CAS  Google Scholar 

  49. Pirozzi F, Di Raimo FR, Zanni G, Bertini E, Billuart P, Tartaglione T, et al. Insertion of 16 amino acids in the BAR domain of the oligophrenin 1 protein causes mental retardation and cerebellar hypoplasia in an Italian family. Hum Mutat. 2011;32:E2294–307.

    CAS  Google Scholar 

  50. Wang M, Gallo NB, Tai Y, Li B, Van Aelst L. Oligophrenin-1 moderates behavioral responses to stress by regulating parvalbumin interneuron activity in the medial prefrontal cortex. Neuron. 2021;109:1636–56.e8.

    CAS  Google Scholar 

  51. Buckner RL. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron. 2013;80:807–15.

    CAS  Google Scholar 

  52. Diamond A. Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Dev. 2000;71:44–56.

    CAS  Google Scholar 

  53. Koziol LF, Budding DE, Chidekel D. From movement to thought: executive function, embodied cognition, and the cerebellum. Cerebellum (Lond, Engl). 2012;11:505–25.

    Google Scholar 

  54. Moreno-Rius J. The cerebellum under stress. Front Neuroendocrinol. 2019;54:100774.

    CAS  Google Scholar 

  55. Rejeb I, Saillour Y, Castelnau L, Julien C, Bienvenu T, Taga P, et al. A novel splice mutation in PAK3 gene underlying mental retardation with neuropsychiatric features. Eur J Hum Genet. 2008;16:1358–63.

    CAS  Google Scholar 

  56. Magini P, Pippucci T, Tsai IC, Coppola S, Stellacci E, Bartoletti-Stella A, et al. A mutation in PAK3 with a dual molecular effect deregulates the RAS/MAPK pathway and drives an X-linked syndromic phenotype. Hum Mol Genet. 2014;23:3607–17.

    CAS  Google Scholar 

  57. Qian Y, Wu B, Lu Y, Zhou W, Wang S, Wang H. Novel PAK3 gene missense variant associated with two Chinese siblings with intellectual disability: a case report. BMC Med Genet. 2020;21:31.

    CAS  Google Scholar 

  58. Castillon C, Gonzalez L, Domenichini F, Guyon S, Da Silva K, Durand C, et al. The intellectual disability PAK3 R67C mutation impacts cognitive functions and adult hippocampal neurogenesis. Hum Mol Genet. 2020;29:1950–68.

  59. McMichael G, Bainbridge MN, Haan E, Corbett M, Gardner A, Thompson S, et al. Whole-exome sequencing points to considerable genetic heterogeneity of cerebral palsy. Mol Psychiatry. 2015;20:176–82.

    CAS  Google Scholar 

  60. Castillo-Lluva S, Tan CT, Daugaard M, Sorensen PH, Malliri A. The tumour suppressor HACE1 controls cell migration by regulating Rac1 degradation. Oncogene. 2013;32:1735–42.

    CAS  Google Scholar 

  61. Lachance V, Degrandmaison J, Marois S, Robitaille M, Génier S, Nadeau S, et al. Ubiquitylation and activation of a Rab GTPase is promoted by a β2AR-HACE1 complex. J cell Sci. 2014;127:111–23.

    CAS  Google Scholar 

  62. Andrio E, Lotte R, Hamaoui D, Cherfils J, Doye A, Daugaard M, et al. Identification of cancer-associated missense mutations in hace1 that impair cell growth control and Rac1 ubiquitylation. Sci Rep. 2017;7:44779.

    CAS  Google Scholar 

  63. Acosta MI, Urbach S, Doye A, Ng YW, Boudeau J, Mettouchi A, et al. Group-I PAKs-mediated phosphorylation of HACE1 at serine 385 regulates its oligomerization state and Rac1 ubiquitination. Sci Rep. 2018;8:1410.

    Google Scholar 

  64. Hollstein R, Parry DA, Nalbach L, Logan CV, Strom TM, Hartill VL, et al. HACE1 deficiency causes an autosomal recessive neurodevelopmental syndrome. J Med Genet. 2015;52:797–803.

    CAS  Google Scholar 

  65. Nagy V, Hollstein R, Pai TP, Herde MK, Buphamalai P, Moeseneder P, et al. HACE1 deficiency leads to structural and functional neurodevelopmental defects. Neurol Genet. 2019;5:e330.

    CAS  Google Scholar 

  66. Akawi N, McRae J, Ansari M, Balasubramanian M, Blyth M, Brady AF, et al. Discovery of four recessive developmental disorders using probabilistic genotype and phenotype matching among 4,125 families. Nat Genet. 2015;47:1363–9.

    CAS  Google Scholar 

  67. Ansel A, Rosenzweig JP, Zisman PD, Melamed M, Gesundheit B. Variation in gene expression in autism spectrum disorders: an extensive review of transcriptomic studies. Front Neurosci. 2016;10:601.

    Google Scholar 

  68. Mahony C, O’Ryan C. Convergent canonical pathways in autism spectrum disorder from proteomic, transcriptomic and DNA methylation data. Int J Mol Sci. 2021;22:10757.

  69. Bacchelli E, Blasi F, Biondolillo M, Lamb JA, Bonora E, Barnby G, et al. Screening of nine candidate genes for autism on chromosome 2q reveals rare nonsynonymous variants in the cAMP-GEFII gene. Mol Psychiatry. 2003;8:916–24.

    CAS  Google Scholar 

  70. Asante CO, Chu A, Fisher M, Benson L, Beg A, Scheiffele P, et al. Cortical control of adaptive locomotion in wild-type mice and mutant mice lacking the ephrin-Eph effector protein alpha2-chimaerin. J Neurophysiol. 2010;104:3189–202.

    CAS  Google Scholar 

  71. Whitman MC, Engle EC. Ocular congenital cranial dysinnervation disorders (CCDDs): insights into axon growth and guidance. Hum Mol Genet. 2017;26:R37–44.

    CAS  Google Scholar 

  72. Mehra C, Sil A, Hedderly T, Kyriakopoulos M, Lim M, Turnbull J, et al. Childhood disintegrative disorder and autism spectrum disorder: a systematic review. Dev Med Child Neurol. 2019;61:523–34.

    Google Scholar 

  73. Jin SC, Lewis SA, Bakhtiari S, Zeng X, Sierant MC, Shetty S, et al. Mutations disrupting neuritogenesis genes confer risk for cerebral palsy. Nat Genet. 2020;52:1046–56.

    CAS  Google Scholar 

  74. Hori K, Nagai T, Shan W, Sakamoto A, Taya S, Hashimoto R, et al. Cytoskeletal regulation by AUTS2 in neuronal migration and neuritogenesis. Cell Rep. 2014;9:2166–79.

    CAS  Google Scholar 

  75. Sultana R, Yu CE, Yu J, Munson J, Chen D, Hua W, et al. Identification of a novel gene on chromosome 7q11.2 interrupted by a translocation breakpoint in a pair of autistic twins. Genomics. 2002;80:129–34.

    CAS  Google Scholar 

  76. Kalscheuer VM, FitzPatrick D, Tommerup N, Bugge M, Niebuhr E, Neumann LM, et al. Mutations in autism susceptibility candidate 2 (AUTS2) in patients with mental retardation. Hum Genet. 2007;121:501–9.

    Google Scholar 

  77. Sanchez-Jimeno C, Blanco-Kelly F, López-Grondona F, Losada-Del Pozo R, Moreno B, Rodrigo-Moreno M, et al. Attention Deficit Hyperactivity and Autism Spectrum Disorders as the Core Symptoms of AUTS2 Syndrome: Description of Five New Patients and Update of the Frequency of Manifestations and Genotype-Phenotype Correlation. Genes (Basel) 2021;12.

  78. Girirajan S, Brkanac Z, Coe BP, Baker C, Vives L, Vu TH, et al. Relative burden of large CNVs on a range of neurodevelopmental phenotypes. PLoS Genet. 2011;7:e1002334.

    CAS  Google Scholar 

  79. Talkowski ME, Rosenfeld JA, Blumenthal I, Pillalamarri V, Chiang C, Heilbut A, et al. Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell. 2012;149:525–37.

    CAS  Google Scholar 

  80. Pagnamenta AT, Bacchelli E, de Jonge MV, Mirza G, Scerri TS, Minopoli F, et al. Characterization of a family with rare deletions in CNTNAP5 and DOCK4 suggests novel risk loci for autism and dyslexia. Biol Psychiatry. 2010;68:320–8.

    CAS  Google Scholar 

  81. Varvagiannis K, Vissers L, Baralle D, de Vries BBA. TRIO-Related Intellectual Disability. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al., editors. GeneReviews(®). Seattle (WA): University of Washington, SeattleCopyright © 1993-2021, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved.; 1993.

  82. Debant A, Serra-Pagès C, Seipel K, O’Brien S, Tang M, Park SH, et al. The multidomain protein Trio binds the LAR transmembrane tyrosine phosphatase, contains a protein kinase domain, and has separate rac-specific and rho-specific guanine nucleotide exchange factor domains. Proc Natl Acad Sci USA. 1996;93:5466–71.

    CAS  Google Scholar 

  83. Backer S, Lokmane L, Landragin C, Deck M, Garel S, Bloch-Gallego E. et al. mediates RhoA activation downstream of Slit2 and coordinates telencephalic wiring. Development. 2018;145:dev153692.

  84. de Ligt J, Willemsen MH, van Bon BW, Kleefstra T, Yntema HG, Kroes T, et al. Diagnostic exome sequencing in persons with severe intellectual disability. N. Engl J Med. 2012;367:1921–9.

    Google Scholar 

  85. Vulto-van Silfhout AT, Hehir-Kwa JY, van Bon BW, Schuurs-Hoeijmakers JH, Meader S, Hellebrekers CJ, et al. Clinical significance of de novo and inherited copy-number variation. Hum Mutat. 2013;34:1679–87.

    CAS  Google Scholar 

  86. Ba W, Yan Y, Reijnders MR, Schuurs-Hoeijmakers JH, Feenstra I, Bongers EM, et al. TRIO loss of function is associated with mild intellectual disability and affects dendritic branching and synapse function. Hum Mol Genet. 2016;25:892–902.

    CAS  Google Scholar 

  87. Pengelly RJ, Greville-Heygate S, Schmidt S, Seaby EG, Jabalameli MR, Mehta SG, et al. Mutations specific to the Rac-GEF domain of TRIO cause intellectual disability and microcephaly. J Med Genet. 2016;53:735–42.

    CAS  Google Scholar 

  88. Katrancha SM, Wu Y, Zhu M, Eipper BA, Koleske AJ, Mains RE. Neurodevelopmental disease-associated de novo mutations and rare sequence variants affect TRIO GDP/GTP exchange factor activity. Hum Mol Genet. 2017;26:4728–40.

    CAS  Google Scholar 

  89. Sadybekov A, Tian C, Arnesano C, Katritch V, Herring BE. An autism spectrum disorder-related de novo mutation hotspot discovered in the GEF1 domain of Trio. Nat Commun. 2017;8:601.

    Google Scholar 

  90. Tian C, Paskus JD, Fingleton E, Roche KW, Herring BE. Autism spectrum disorder/intellectual disability-associated mutations in trio disrupt neuroligin 1-mediated synaptogenesis. J Neurosci. 2021;41:7768–78.

    CAS  Google Scholar 

  91. Barbosa S, Greville-Heygate S, Bonnet M, Godwin A, Fagotto-Kaufmann C, Kajava AV, et al. Opposite modulation of RAC1 by mutations in TRIO is associated with distinct, domain-specific neurodevelopmental disorders. Am J Hum Genet. 2020;106:338–55.

    CAS  Google Scholar 

  92. McKenna MC, Corcia P, Couratier P, Siah WF, Pradat PF, Bede P. Frontotemporal pathology in motor neuron disease phenotypes: insights from neuroimaging. Front Neurol. 2021;12:723450.

    Google Scholar 

  93. Ghasemi M, Brown RH, Jr. Genetics of amyotrophic lateral sclerosis. Cold Spring Harb Perspect Med. 2018;8:a024125.

  94. Iyer S, Acharya KR, Subramanian V. A comparative bioinformatic analysis of C9orf72. PeerJ. 2018;6:e4391.

    Google Scholar 

  95. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72:245–56.

    CAS  Google Scholar 

  96. Kim KY, Kim YR, Choi KW, Lee M, Lee S, Im W, et al. Downregulated miR-18b-5p triggers apoptosis by inhibition of calcium signaling and neuronal cell differentiation in transgenic SOD1 (G93A) mice and SOD1 (G17S and G86S) ALS patients. Transl Neurodegener. 2020;9:23.

    CAS  Google Scholar 

  97. Høyer H, Braathen GJ, Busk ØL, Holla ØL, Svendsen M, Hilmarsen HT, et al. Genetic diagnosis of Charcot-Marie-Tooth disease in a population by next-generation sequencing. Biomed Res Int. 2014;2014:210401.

    Google Scholar 

  98. Aoki T, Ueda S, Kataoka T, Satoh T. Regulation of mitotic spindle formation by the RhoA guanine nucleotide exchange factor ARHGEF10. BMC Cell Biol. 2009;10:56.

    Google Scholar 

  99. Matsushita T, Ashikawa K, Yonemoto K, Hirakawa Y, Hata J, Amitani H, et al. Functional SNP of ARHGEF10 confers risk of atherothrombotic stroke. Hum Mol Genet. 2010;19:1137–46.

    CAS  Google Scholar 

  100. Khan A, Ni W, Lopez-Giraldez F, Kluger MS, Pober JS, Pierce RW. Tumor necrosis factor-induced ArhGEF10 selectively activates RhoB contributing to human microvascular endothelial cell tight junction disruption. Faseb j. 2021;35:e21627.

    CAS  Google Scholar 

  101. Shibata S, Kawanai T, Hara T, Yamamoto A, Chaya T, Tokuhara Y, et al. ARHGEF10 directs the localization of Rab8 to Rab6-positive executive vesicles. J cell Sci. 2016;129:3620–34.

    CAS  Google Scholar 

  102. Ekenstedt KJ, Becker D, Minor KM, Shelton GD, Patterson EE, Bley T, et al. An ARHGEF10 deletion is highly associated with a juvenile-onset inherited polyneuropathy in Leonberger and Saint Bernard dogs. PLoS Genet. 2014;10:e1004635.

    Google Scholar 

  103. Verhoeven K, De Jonghe P, Van de Putte T, Nelis E, Zwijsen A, Verpoorten N, et al. Slowed conduction and thin myelination of peripheral nerves associated with mutant rho Guanine-nucleotide exchange factor 10. Am J Hum Genet. 2003;73:926–32.

    CAS  Google Scholar 

  104. Jungerius BJ, Hoogendoorn ML, Bakker SC, Van’t Slot R, Bardoel AF, Ophoff RA, et al. An association screen of myelin-related genes implicates the chromosome 22q11 PIK4CA gene in schizophrenia. Mol Psychiatry. 2008;13:1060–8.

    CAS  Google Scholar 

  105. Topp JD, Gray NW, Gerard RD, Horazdovsky BF. Alsin is a Rab5 and Rac1 guanine nucleotide exchange factor. J Biol Chem. 2004;279:24612–23.

    CAS  Google Scholar 

  106. Wakil SM, Ramzan K, Abuthuraya R, Hagos S, Al-Dossari H, Al-Omar R, et al. Infantile-onset ascending hereditary spastic paraplegia with bulbar involvement due to the novel ALS2 mutation c.2761C>T. Gene. 2014;536:217–20.

    CAS  Google Scholar 

  107. Devon RS, Helm JR, Rouleau GA, Leitner Y, Lerman-Sagie T, Lev D, et al. The first nonsense mutation in alsin results in a homogeneous phenotype of infantile-onset ascending spastic paralysis with bulbar involvement in two siblings. Clin Genet. 2003;64:210–5.

    CAS  Google Scholar 

  108. Eymard-Pierre E, Lesca G, Dollet S, Santorelli FM, di Capua M, Bertini E, et al. Infantile-onset ascending hereditary spastic paralysis is associated with mutations in the alsin gene. Am J Hum Genet. 2002;71:518–27.

    CAS  Google Scholar 

  109. Hand CK, Devon RS, Gros-Louis F, Rochefort D, Khoris J, Meininger V, et al. Mutation screening of the ALS2 gene in sporadic and familial amyotrophic lateral sclerosis. Arch Neurol. 2003;60:1768–71.

    Google Scholar 

  110. Helal M, Mazaheri N, Shalbafan B, Malamiri RA, Dilaver N, Buchert R, et al. Clinical presentation and natural history of infantile-onset ascending spastic paralysis from three families with an ALS2 founder variant. Neurol Sci. 2018;39:1917–25.

    Google Scholar 

  111. Liu YL, Fann CS, Liu CM, Chen WJ, Wu JY, Hung SI, et al. RASD2, MYH9, and CACNG2 genes at chromosome 22q12 associated with the subgroup of schizophrenia with non-deficit in sustained attention and executive function. Biol Psychiatry. 2008;64:789–96.

    CAS  Google Scholar 

  112. Merico D, Zarrei M, Costain G, Ogura L, Alipanahi B, Gazzellone MJ, et al. Whole-genome sequencing suggests schizophrenia risk mechanisms in humans with 22q11.2 deletion syndrome. G3 (Bethesda). 2015;5:2453–61.

    CAS  Google Scholar 

  113. Zhao B, Qi Z, Li Y, Wang C, Fu W, Chen YG. The non-muscle-myosin-II heavy chain Myh9 mediates colitis-induced epithelium injury by restricting Lgr5+ stem cells. Nat Commun. 2015;6:7166.

    CAS  Google Scholar 

  114. Fan X, Yang H, Kumar S, Tumelty KE, Pisarek-Horowitz A, Rasouly HM, et al. SLIT2/ROBO2 signaling pathway inhibits nonmuscle myosin IIA activity and destabilizes kidney podocyte adhesion. JCI Insight. 2016;1:e86934.

    Google Scholar 

  115. Priya R, Liang X, Teo JL, Duszyc K, Yap AS, Gomez GA. ROCK1 but not ROCK2 contributes to RhoA signaling and NMIIA-mediated contractility at the epithelial zonula adherens. Mol Biol Cell. 2017;28:12–20.

    CAS  Google Scholar 

  116. Yang B, Wu A, Hu Y, Tao C, Wang JM, Lu Y, et al. Mucin 17 inhibits the progression of human gastric cancer by limiting inflammatory responses through a MYH9-p53-RhoA regulatory feedback loop. J Exp Clin Cancer Res. 2019;38:283.

    Google Scholar 

  117. Yaron A, Zheng B. Navigating their way to the clinic: emerging roles for axon guidance molecules in neurological disorders and injury. Dev Neurobiol. 2007;67:1216–31.

    CAS  Google Scholar 

  118. Lin L, Lesnick TG, Maraganore DM, Isacson O. Axon guidance and synaptic maintenance: preclinical markers for neurodegenerative disease and therapeutics. Trends Neurosci. 2009;32:142–9.

    CAS  Google Scholar 

  119. Van Battum EY, Brignani S, Pasterkamp RJ. Axon guidance proteins in neurological disorders. Lancet Neurol. 2015;14:532–46.

    Google Scholar 

  120. Niftullayev S, Lamarche-Vane N. Regulators of Rho GTPases in the nervous system: molecular implication in axon guidance and neurological disorders. Int J Mol Sci 2019;20:1497.

  121. Amiel-Tison C. Update of the Amiel-Tison neurologic assessment for the term neonate or at 40 weeks corrected age. Pediatr Neurol. 2002;27:196–212.

    Google Scholar 

  122. Zhang Y, Wu S. Effects of fasudil on pulmonary hypertension in clinical practice. Pulm Pharm Ther. 2017;46:54–63.

    CAS  Google Scholar 

  123. Takata M, Tanaka H, Kimura M, Nagahara Y, Tanaka K, Kawasaki K, et al. Fasudil, a rho kinase inhibitor, limits motor neuron loss in experimental models of amyotrophic lateral sclerosis. Br J Pharm. 2013;170:341–51.

    CAS  Google Scholar 

  124. Villar-Cheda B, Dominguez-Meijide A, Joglar B, Rodriguez-Perez AI, Guerra MJ, Labandeira-Garcia JL. Involvement of microglial RhoA/Rho-kinase pathway activation in the dopaminergic neuron death. Role of angiotensin via angiotensin type 1 receptors. Neurobiol Dis. 2012;47:268–79.

    CAS  Google Scholar 

  125. Tatenhorst L, Tönges L, Saal KA, Koch JC, Szegő ÉM, Bähr M, et al. Rho kinase inhibition by fasudil in the striatal 6-hydroxydopamine lesion mouse model of Parkinson disease. J Neuropathol Exp Neurol. 2014;73:770–9.

    CAS  Google Scholar 

  126. Koch JC, Tatenhorst L, Roser AE, Saal KA, Tönges L, Lingor P. ROCK inhibition in models of neurodegeneration and its potential for clinical translation. Pharm Ther. 2018;189:1–21.

    CAS  Google Scholar 

  127. Budzyn K, Marley PD, Sobey CG. Targeting Rho and Rho-kinase in the treatment of cardiovascular disease. Trends Pharm Sci. 2006;27:97–104.

    CAS  Google Scholar 

  128. Guiler W, Koehler A, Boykin C, Lu Q. Pharmacological modulators of small GTPases of Rho family in neurodegenerative diseases. Front Cell Neurosci. 2021;15:661612.

    CAS  Google Scholar 

  129. Zang CX, Wang L, Yang HY, Shang JM, Liu H, Zhang ZH, et al. HACE1 negatively regulates neuroinflammation through ubiquitylating and degrading Rac1 in Parkinson’s disease models. Acta pharmacologica Sin. 2022;43:285–94.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by INSERM and Idex UP AAP Emergence. We are grateful to Marianne Barbu-Roth, Evelyne Soyez for helpful discussions, and to Jérôme Delon, Valérie Doye, Pierre Billuart and Sabine Le Gouvello for critical reading of the manuscript. EBG is a member of the GIS autism scientific interest group.

Author information

Authors and Affiliations

Authors

Contributions

DA contributed to the sections describing the effects of locomotion on child development and motor disorders. EBG conceived the idea for the manuscript and wrote the initial draft. DA and EBG revised the initial draft and finalized the manuscript for publication.

Corresponding author

Correspondence to Evelyne Bloch-Gallego.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Due to a change in the order of authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bloch-Gallego, E., Anderson, D.I. Key role of Rho GTPases in motor disorders associated with neurodevelopmental pathologies. Mol Psychiatry 28, 118–126 (2023). https://doi.org/10.1038/s41380-022-01702-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01702-8

Search

Quick links