Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Celsr2 regulates NMDA receptors and dendritic homeostasis in dorsal CA1 to enable social memory

Abstract

Social recognition and memory are critical for survival. The hippocampus serves as a central neural substrate underlying the dynamic coding and transmission of social information. Yet the molecular mechanisms regulating social memory integrity in hippocampus remain unelucidated. Here we report unexpected roles of Celsr2, an atypical cadherin, in regulating hippocampal synaptic plasticity and social memory in mice. Celsr2-deficient mice exhibited defective social memory, with rather intact levels of sociability. In vivo fiber photometry recordings disclosed decreased neural activity of dorsal CA1 pyramidal neuron in Celsr2 mutants performing social memory task. Celsr2 deficiency led to selective impairment in NMDAR but not AMPAR-mediated synaptic transmission, and to neuronal hypoactivity in dorsal CA1. Those activity changes were accompanied with exuberant apical dendrites and immaturity of spines of CA1 pyramidal neurons. Strikingly, knockdown of Celsr2 in adult hippocampus recapitulated the behavioral and cellular changes observed in knockout mice. Restoring NMDAR transmission or CA1 neuronal activities rescued social memory deficits. Collectively, these results show a critical role of Celsr2 in orchestrating dorsal hippocampal NMDAR function, dendritic and spine homeostasis, and social memory in adulthood.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Celsr2 deficiency impairs social memory.
Fig. 2: Celsr2 deficiency results in reduced CA1 pyramidal neuron activity during social tasks.
Fig. 3: Celsr2 deficiency induces the dysfunction of NMDAR and impairment of synaptic plasticity in dCA1.
Fig. 4: Celsr2 deficiency leads to exuberant dendrite formation in vivo.
Fig. 5: Celsr2 knockdown in adulthood recapitulates social memory and spine deficits.
Fig. 6: Rescuing social deficits in Celsr2 KO mice by enhancing NMDAR function or CA1 neuron activity.

Similar content being viewed by others

References

  1. Tanimizu T, Kenney JW, Okano E, Kadoma K, Frankland PW, Kida S. Functional connectivity of multiple brain regions required for the consolidation of social recognition memory. J Neurosci. 2017;37:4103–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Guo B, Chen J, Chen Q, Ren K, Feng D, Mao H, et al. Anterior cingulate cortex dysfunction underlies social deficits in Shank3 mutant mice. Nat Neurosci. 2019;22:1223–34.

    Article  PubMed  CAS  Google Scholar 

  3. Okuyama T, Kitamura T, Roy DS, Itohara S, Tonegawa S. Ventral CA1 neurons store social memory. Science. 2016;353:1536–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Chai AP, Chen XF, Xu XS, Zhang N, Li M, Li JN, et al. A temporal activity of CA1 neurons underlying short-term memory for social recognition altered in PTEN mouse models of autism spectrum disorder. Front Cell Neurosci. 2021;15:699315.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Sellami A, Al Abed AS, Brayda-Bruno L, Etchamendy N, Valerio S, Oule M, et al. Temporal binding function of dorsal CA1 is critical for declarative memory formation. Proc Natl Acad Sci USA 2017;114:10262–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Hitti FL, Siegelbaum SA. The hippocampal CA2 region is essential for social memory. Nature. 2014;508:88–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Watarai A, Tao K, Wang MY, Okuyama T. Distinct functions of ventral CA1 and dorsal CA2 in social memory. Curr Opin Neurobiol. 2021;68:29–35.

    Article  PubMed  CAS  Google Scholar 

  8. Yang J, Ma Q, Dincheva I, Giza J, Jing D, Marinic T, et al. SorCS2 is required for social memory and trafficking of the NMDA receptor. Mol Psychiatry. 2021;26:927–40.

    Article  PubMed  CAS  Google Scholar 

  9. Tissir F, Goffinet AM. Shaping the nervous system: role of the core planar cell polarity genes. Nat Rev Neurosci. 2013;14:525–35.

    Article  PubMed  CAS  Google Scholar 

  10. Tissir F, Qu Y, Montcouquiol M, Zhou L, Komatsu K, Shi D, et al. Lack of cadherins Celsr2 and Celsr3 impairs ependymal ciliogenesis, leading to fatal hydrocephalus. Nat Neurosci. 2010;13:700–7.

    Article  PubMed  CAS  Google Scholar 

  11. Qu Y, Glasco DM, Zhou L, Sawant A, Ravni A, Fritzsch B, et al. Atypical cadherins Celsr1-3 differentially regulate migration of facial branchiomotor neurons in mice. J Neurosci. 2010;30:9392–401.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Qu Y, Huang Y, Feng J, Alvarez-Bolado G, Grove EA, Yang Y, et al. Genetic evidence that Celsr3 and Celsr2, together with Fzd3, regulate forebrain wiring in a Vangl-independent manner. Proc Natl Acad Sci USA 2014;111:E2996–3004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Shima Y, Kengaku M, Hirano T, Takeichi M, Uemura T. Regulation of dendritic maintenance and growth by a mammalian 7-pass transmembrane cadherin. Dev Cell. 2004;7:205–16.

    Article  PubMed  CAS  Google Scholar 

  14. Shima Y, Kawaguchi SY, Kosaka K, Nakayama M, Hoshino M, Nabeshima Y, et al. Opposing roles in neurite growth control by two seven-pass transmembrane cadherins. Nat Neurosci. 2007;10:963–9.

    Article  PubMed  CAS  Google Scholar 

  15. Schafer ST, Han J, Pena M, von Bohlen Und Halbach O, Peters J, Gage FH. The Wnt adaptor protein ATP6AP2 regulates multiple stages of adult hippocampal neurogenesis. J Neurosci. 2015;35:4983–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Tissir F, De-Backer O, Goffinet AM, Lambert, de Rouvroit C. Developmental expression profiles of Celsr (Flamingo) genes in the mouse. Mech Dev. 2002;112:157–60.

    Article  PubMed  CAS  Google Scholar 

  17. Wen Q, Weng H, Liu T, Yu L, Zhao T, Qin J, et al. Inactivating Celsr2 promotes motor axon fasciculation and regeneration in mouse and human. Brain. 2022;145:670–83.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Takata A, Ionita-Laza I, Gogos Joseph A, Xu B, Karayiorgou M. De Novo Synonymous Mutations in Regulatory Elements Contribute to the Genetic Etiology of Autism and Schizophrenia. Neuron. 2016;89:940–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Gulsuner S, Walsh T, Watts AC, Lee MK, Thornton AM, Casadei S, et al. Spatial and temporal mapping of de novo mutations in schizophrenia to a fetal prefrontal cortical network. Cell. 2013;154:518–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Bacchelli E, Loi E, Cameli C, Moi L, Vega-Benedetti AF, Blois S, et al. Analysis of a Sardinian multiplex family with autism spectrum disorder points to post-synaptic density gene variants and identifies CAPG as a functionally relevant candidate gene. J Clin Med. 2019;8:212.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Al-Mubarak B, Abouelhoda M, Omar A, AlDhalaan H, Aldosari M, Nester M, et al. Whole exome sequencing reveals inherited and de novo variants in autism spectrum disorder: a trio study from Saudi families. Sci Rep. 2017;7:5679.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Vilboux T, Malicdan MC, Roney JC, Cullinane AR, Stephen J, Yildirimli D, et al. CELSR2, encoding a planar cell polarity protein, is a putative gene in Joubert syndrome with cortical heterotopia, microophthalmia, and growth hormone deficiency. Am J Med Genet A. 2017;173:661–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron. 2000;28:41–51.

    Article  PubMed  CAS  Google Scholar 

  24. Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci. 2010;13:133–40.

    Article  PubMed  CAS  Google Scholar 

  25. Lagace DC, Whitman MC, Noonan MA, Ables JL, DeCarolis NA, Arguello AA, et al. Dynamic contribution of nestin-expressing stem cells to adult neurogenesis. J Neurosci. 2007;27:12623–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Tripodi M, Evers JF, Mauss A, Bate M, Landgraf M. Structural homeostasis: compensatory adjustments of dendritic arbor geometry in response to variations of synaptic input. PLoS Biol. 2008;6:e260.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tavosanis G. Dendritic structural plasticity. Dev Neurobiol. 2012;72:73–86.

    Article  PubMed  Google Scholar 

  28. Lüthi A, Schwyzer L, Mateos JM, Gähwiler BH, McKinney RA. NMDA receptor activation limits the number of synaptic connections during hippocampal development. Nat Neurosci. 2001;4:1102–7.

    Article  PubMed  Google Scholar 

  29. Liu XD, Ai PH, Zhu XN, Pan YB, Halford MM, Henkemeyer M, et al. Hippocampal Lnx1-NMDAR multiprotein complex mediates initial social memory. Mol Psychiatry. 2021;26:3956–69.

    Article  PubMed  Google Scholar 

  30. Zoicas I, Kornhuber J. The role of the N-Methyl-D-Aspartate receptors in social behavior in rodents. Int J Mol Sci. 2019;20:5599.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Duffney LJ, Zhong P, Wei J, Matas E, Cheng J, Qin L, et al. Autism-like deficits in Shank3-deficient mice are rescued by targeting actin regulators. Cell Rep. 2015;11:1400–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Guo D, Peng Y, Wang L, Sun X, Wang X, Liang C, et al. Autism-like social deficit generated by Dock4 deficiency is rescued by restoration of Rac1 activity and NMDA receptor function. Mol Psychiatry. 2021;26:1505–19.

    Article  PubMed  CAS  Google Scholar 

  33. Gao FB, Kohwi M, Brenman JE, Jan LY, Jan YN. Control of dendritic field formation in Drosophila: the roles of flamingo and competition between homologous neurons. Neuron. 2000;28:91–101.

    Article  PubMed  CAS  Google Scholar 

  34. Kremer MC, Christiansen F, Leiss F, Paehler M, Knapek S, Andlauer TF, et al. Structural long-term changes at mushroom body input synapses. Curr Biol. 2010;20:1938–44.

    Article  PubMed  CAS  Google Scholar 

  35. Cline H, Haas K. The regulation of dendritic arbor development and plasticity by glutamatergic synaptic input: a review of the synaptotrophic hypothesis. J Physiol. 2008;586:1509–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Lee LJ, Lo FS, Erzurumlu RS. NMDA receptor-dependent regulation of axonal and dendritic branching. J Neurosci. 2005;25:2304–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Singh AP, VijayRaghavan K, Rodrigues V. Dendritic refinement of an identified neuron in the Drosophila CNS is regulated by neuronal activity and Wnt signaling. Development. 2010;137:1351–60.

    Article  PubMed  CAS  Google Scholar 

  38. Zou DJ, Cline HT. Postsynaptic calcium/calmodulin-dependent protein kinase II is required to limit elaboration of presynaptic and postsynaptic neuronal arbors. J Neurosci. 1999;19:8909–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Rocha M, Sur M. Rapid acquisition of dendritic spines by visual thalamic neurons after blockade of N-methyl-D-aspartate receptors. Proc Natl Acad Sci USA 1995;92:8026–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Goffinet AM, Tissir F. Seven pass Cadherins CELSR1-3. Semin Cell Dev Biol. 2017;69:102–10.

    Article  PubMed  CAS  Google Scholar 

  41. Nagaoka T, Ohashi R, Inutsuka A, Sakai S, Fujisawa N, Yokoyama M, et al. The Wnt/planar cell polarity pathway component Vangl2 induces synapse formation through direct control of N-cadherin. Cell Rep. 2014;6:916–27.

    Article  PubMed  CAS  Google Scholar 

  42. Nagaoka T, Kishi M. The planar cell polarity protein Vangl2 is involved in postsynaptic compartmentalization. Neurosci Lett. 2016;612:251–5.

    Article  PubMed  CAS  Google Scholar 

  43. Okerlund ND, Stanley RE, Cheyette BN. The planar cell polarity transmembrane protein Vangl2 promotes dendrite, spine and glutamatergic synapse formation in the mammalian forebrain. Mol Neuropsychiatry. 2016;2:107–14.

    PubMed  PubMed Central  Google Scholar 

  44. Dos-Santos Carvalho S, Moreau MM, Hien YE, Garcia M, Aubailly N, Henderson DJ, et al. Vangl2 acts at the interface between actin and N-cadherin to modulate mammalian neuronal outgrowth. Elife. 2020;9:e51822.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hida Y, Fukaya M, Hagiwara A, Deguchi-Tawarada M, Yoshioka T, Kitajima I, et al. Prickle2 is localized in the postsynaptic density and interacts with PSD-95 and NMDA receptors in the brain. J Biochem. 2011;149:693–700.

    Article  PubMed  CAS  Google Scholar 

  46. Sowers LP, Loo L, Wu Y, Campbell E, Ulrich JD, Wu S, et al. Disruption of the non-canonical Wnt gene PRICKLE2 leads to autism-like behaviors with evidence for hippocampal synaptic dysfunction. Mol Psychiatry. 2013;18:1077–89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Thakar S, Wang L, Yu T, Ye M, Onishi K, Scott J, et al. Evidence for opposing roles of Celsr3 and Vangl2 in glutamatergic synapse formation. Proc Natl Acad Sci USA 2017;114:E610–E8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Feng B, Freitas AE, Gorodetski L, Wang J, Tian R, Lee YR, et al. Planar cell polarity signaling components are a direct target of β-amyloid-associated degeneration of glutamatergic synapses. Sci Adv. 2021;7:eabh2307.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Yuying Li for technical assistance with WB experiments.

Funding

This work was supported by National Science and Technology Innovation 2030 Major Project of China (2021ZD0203900). This study was also supported by National Natural Science Foundation of China (82071261, 31671067 and U1801287 to Y.Q.), Key-Area Research and Development Program of Guangdong Province (2018B030340001) to YQ, Guangdong Natural Science Funds for Distinguished Young Scholars (2016A030306001) to YQ, and Guangdong Province Special Support Program (2015TQ01R837) to YQ, National Natural Science Foundation of China (81870869,41030830 to BJ), Guangdong Key Project in “Development of new tools for diagnosis and treatment of Autism” (2018B030335001) to BJ, Research and Development Plan of Key Areas of Guangzhou Science and Technology Bureau (2020070030001) to BJ, and Open Research Funds of State Key Laboratory of Ophthalmology (2020KF08) to BJ.

Author information

Authors and Affiliations

Authors

Contributions

BC, KZ, HC, and WN performed mice crossing, behavioral tests, and histological studies. LW and BJ performed the electrophysiological studies. XL performed primary neuron culture experiments. ZS performed molecular assays. BC, JW, and CL carried out in vivo imaging and stereotaxic injection and analyzed data. JD, DW, and CP assisted in the behavioral tests. LZ assisted in the design and analysis of calcium recording assay. YQ, BJ, TY, KS, and LBZ designed and supervised the project. The manuscript was prepared by YQ, TY, BJ, and BC with input from all authors.

Corresponding authors

Correspondence to Bin Jiang, Ti-Fei Yuan or Yibo Qu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Wang, L., Li, X. et al. Celsr2 regulates NMDA receptors and dendritic homeostasis in dorsal CA1 to enable social memory. Mol Psychiatry 29, 1583–1594 (2024). https://doi.org/10.1038/s41380-022-01664-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01664-x

Search

Quick links