Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

Points of divergence on a bumpy road: early development of brain and immune threat processing systems following postnatal adversity

Abstract

Lifelong indices of maladaptive behavior or illness often stem from early physiological aberrations during periods of dynamic development. This is especially true when dysfunction is attributable to early life adversity (ELA), when the environment itself is unsuitable to support development of healthy behavior. Exposure to ELA is strongly associated with atypical sensitivity and responsivity to potential threats—a characteristic that could be adaptive in situations where early adversity prepares individuals for lifelong danger, but which often manifests in difficulties with emotion regulation and social relationships. By synthesizing findings from animal research, this review will consider threat sensitivity through the lenses of associated corticolimbic brain circuitry and immune mechanisms, both of which are immature early in life to maximize adaptation for protection against environmental challenges to an individual’s well-being. The forces that drive differential development of corticolimbic circuits include caretaking stimuli, physiological and psychological stressors, and sex, which influences developmental trajectories. These same forces direct developmental processes of the immune system, which bidirectionally communicates with sensory systems and emotion regulation circuits within the brain. Inflammatory signals offer a further force influencing the timing and nature of corticolimbic plasticity, while also regulating sensitivity to future threats from the environment (i.e., injury or pathogens). The early development of these systems programs threat sensitivity through juvenility and adolescence, carving paths for probable function throughout adulthood. To strategize prevention or management of maladaptive threat sensitivity in ELA-exposed populations, it is necessary to fully understand these early points of divergence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neural and immune influences on early life development of threat processing in males and females, conceptualized from the canalization perspective (inspired by Waddington [165], Gottleib [184], Blair and Raver [185], and McCarthy [186]).

Similar content being viewed by others

References

  1. Bath KG, Manzano-Nieves G, Goodwill H. Early life stress accelerates behavioral and neural maturation of the hippocampus in male mice. Hormones Behav. 2016;82:64–71.

    CAS  Google Scholar 

  2. Pollak SD, Tolley-Schell SA. Selective attention to facial emotion in physically abused children. J Abnorm Psychol. 2003;112:323–38.

    Google Scholar 

  3. Edmiston EK, Blackford JU. Childhood maltreatment and response to novel face stimuli presented during functional magnetic resonance imaging in adults. Psychiatry Res. 2013;212:36–42.

    Google Scholar 

  4. Pollak SD, Cicchetti D, Hornung K, Reed A. Recognizing emotion in faces: developmental effects of child abuse and neglect. Dev Psychol. 2000;36:679–88.

    Google Scholar 

  5. Sandre A, Ethridge P, Kim I, Weinberg A. Childhood maltreatment is associated with increased neural response to ambiguous threatening facial expressions in adulthood: evidence from the late positive potential. Cogn Affect Behav Neurosci. 2018;18:143–54.

    Google Scholar 

  6. Gerhard DM, Meyer HC, Lee FS. An adolescent sensitive period for threat responding: impacts of stress and sex. Biol Psychiatry. 2021;89:651–8.

    Google Scholar 

  7. Nusslock R, Miller GE. Early-life adversity and physical and emotional health across the lifespan: a neuroimmune network hypothesis. Biol Psychiatry. 2016;80:23–32.

    Google Scholar 

  8. Kessler RC, Angermeyer M, Anthony JC, De Graaf R, Demyttenaere K, Gasquet I, et al. Lifetime prevalence and age-of-onset distributions of mental disorders in the World Health Organization’s World Mental Health Survey Initiative. World Psychiatry. 2007;6:168–76.

    Google Scholar 

  9. Gee DG, Humphreys KL, Flannery J, Goff B, Telzer EH, Shapiro M, et al. A developmental shift from positive to negative connectivity in human amygdala-prefrontal circuitry. J Neurosci. 2013;33:4584–93.

    CAS  Google Scholar 

  10. Zhang Y, Padmanabhan A, Gross JJ, Menon V. Development of human emotion circuits investigated using a big-data analytic approach: stability, reliability, and robustness. J Neurosci. 2019;39:7155–72.

    CAS  Google Scholar 

  11. Pollak SD, Sinha P. Effects of early experience on children’s recognition of facial displays of emotion. Dev Psychol. 2002;38:784–91.

    Google Scholar 

  12. Guadagno A, Belliveau C, Mechawar N, Walker CD. Effects of early life stress on the developing basolateral amygdala-prefrontal cortex circuit: the emerging role of local inhibition and perineuronal nets. Front Hum Neurosci. 2021;15:669120.

    CAS  Google Scholar 

  13. Brenhouse HC, Danese A, Grassi-Oliveira R. Neuroimmune impacts of early-life stress on development and psychopathology. Curr Top Behav Neurosci. 2018;43:423–47.

  14. Danese A, Stephanie JL. Psychoneuroimmunology of early-life stress: the hidden wounds of childhood trauma? Neuropsychopharmacology. 2017;42:99–114.

    CAS  Google Scholar 

  15. Opendak M, Gould E, Sullivan R. Early life adversity during the infant sensitive period for attachment: Programming of behavioral neurobiology of threat processing and social behavior. Dev Cogn Neurosci. 2017;25:145–59.

    Google Scholar 

  16. Heim C, Nemeroff CB. The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol Psychiatry. 2001;49:1023–39.

    CAS  Google Scholar 

  17. Gunn BG, Baram TZ. Stress and seizures: space, time and hippocampal circuits. Trends Neurosci. 2017;40:667–79.

    CAS  Google Scholar 

  18. Clancy B, Finlay BL, Darlington RB, Anand KJ. Extrapolating brain development from experimental species to humans. Neurotoxicology. 2007;28:931–7.

    Google Scholar 

  19. Hennessy MB, Schiml PA, Berberich K, Beasley NL, Deak T. Early attachment disruption, inflammation, and vulnerability for depression in rodent and primate models. Front Behav Neurosci. 2018;12:314.

    CAS  Google Scholar 

  20. Clancy B, Darlington RB, Finlay BL. Translating developmental time across mammalian species. Neuroscience. 2001;105:7–17.

    CAS  Google Scholar 

  21. Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol. 2013;0:1–16.

    Google Scholar 

  22. Meyer HC, Sangha S, Radley JJ, LaLumiere RT, Baratta MV. Environmental certainty influences the neural systems regulating responses to threat and stress. Neurosci Biobehav Rev. 2021;131:1037–55.

    Google Scholar 

  23. Nelson CA III, Gabard-Durnam LJ. Early adversity and critical periods: neurodevelopmental consequences of violating the expectable environment. Trends Neurosci. 2020;43:133–43.

    CAS  Google Scholar 

  24. McLaughlin KA, Sheridan MA, Nelson CA. Neglect as a violation of species-expectant experience: neurodevelopmental consequences. Biol Psychiatry. 2017;82:462–71.

    Google Scholar 

  25. Greenough WT, Black JE, Wallace CS. Experience and brain development. Child Dev. 1987;58:539–59.

    CAS  Google Scholar 

  26. Bick J, Nelson CA. Early adverse experiences and the developing brain. Neuropsychopharmacology. 2016;41:177–96.

    CAS  Google Scholar 

  27. Rice CJ, Sandman CA, Lenjavi MR, Baram TZ. A novel mouse model for acute and long-lasting consequences of early life stress. Endocrinology. 2008;149:4892–900.

    CAS  Google Scholar 

  28. Raineki C, Moriceau S, Sullivan RM. Developing a neurobehavioral animal model of infant attachment to an abusive caregiver. Biol Psychiatry. 2010;67:1137–45.

    Google Scholar 

  29. Moriceau S, Shionoya K, Jakubs K, Sullivan RM. Early-life stress disrupts attachment learning: the role of amygdala corticosterone, locus ceruleus corticotropin releasing hormone, and olfactory bulb norepinephrine. J Neurosci. 2009;29:15745–55.

    CAS  Google Scholar 

  30. Gallo M, Shleifer DG, Godoy LD, Ofray D, Olaniyan A, Campbell T, et al. Limited bedding and nesting induces maternal behavior resembling both hypervigilance and abuse. Front Behav Neurosci. 2019;13:167.

    CAS  Google Scholar 

  31. Roth TL, Sullivan RM. Memory of early maltreatment: neonatal behavioral and neural correlates of maternal maltreatment within the context of classical conditioning. Biol Psychiatry. 2005;57:823–31.

    Google Scholar 

  32. Levine S. Maternal and environmental influences on the adrenocortical response to stress in weanling rats. Science. 1967;156:258–60.

    CAS  Google Scholar 

  33. Suchecki D. Maternal regulation of the infant’s hypothalamic-pituitary-adrenal axis stress response: Seymour ‘Gig’ Levine’s legacy to neuroendocrinology. J Neuroendocrinol. 2018;30:e12610.

    CAS  Google Scholar 

  34. Karabel M, Tan S, Tatli MM, Yilmaz AE, Tonbul A, Karadag A. Separation anxiety disorder increases among neonatal intensive care unit graduates. J Matern-Fetal Neonatal Med. 2012;25:783–8.

    Google Scholar 

  35. Cohen P, Velez CN, Brook J, Smith J. Mechanisms of the relation between perinatal problems, early childhood illness, and psychopathology in late childhood and adolescence. Child Dev. 1989;60:701–9.

    CAS  Google Scholar 

  36. McLaughlin KA, Sheridan MA, Lambert HK. Childhood adversity and neural development: deprivation and threat as distinct dimensions of early experience. Neurosci Biobehav Rev. 2014;47:578–91.

    Google Scholar 

  37. MacRae M, Kenkel WM, Kentner AC. Social rejection following neonatal inflammation is mediated by olfactory scent cues. Brain Behav Immun. 2015;49:43–48.

    CAS  Google Scholar 

  38. McLaughlin KA, Sheridan MA, Humphreys KL, Belsky J, Ellis BJ. The value of dimensional models of early experience: thinking clearly about concepts and categories. Perspect Psychol Sci. 2021;16:1463–472.

  39. Nelson BD, Hodges A, Hajcak G, Shankman SA. Anxiety sensitivity and the anticipation of predictable and unpredictable threat: evidence from the startle response and event-related potentials. J Anxiety Disord. 2015;33:62–71.

    Google Scholar 

  40. Meyer HC, Sangha S, Radley JJ, LaLumiere RT, Baratta MV. Environmental certainty influences the neural systems regulating responses to threat and stress. Neurosci Biobehav Rev. 2021;131:1037–55.

  41. Weems CF, Zakem AH, Costa NM, Cannon MF, Watts SE. Physiological response and childhood anxiety: association with symptoms of anxiety disorders and cognitive bias. J Clin Child Adolesc Psychol. 2005;34:712–23.

    Google Scholar 

  42. Granger DA, Weisz JR, Kauneckis D. Neuroendocrine reactivity, internalizing behavior problems, and control-related cognitions in clinic-referred children and adolescents. J Abnorm Psychol. 1994;103:267–76.

    CAS  Google Scholar 

  43. Shanks N, Lightman SL. The maternal-neonatal neuro-immune interface: are there long-term implications for inflammatory or stress-related disease? J Clin Investig. 2001;108:1567–73.

    CAS  Google Scholar 

  44. Danese A, Caspi A, Williams B, Ambler A, Sugden K, Mika J, et al. Biological embedding of stress through inflammation processes in childhood. Mol Psychiatry. 2011;16:244–6.

    CAS  Google Scholar 

  45. Viveros MP, Llorente R, Lopez-Gallardo M, Suarez J, Bermudez-Silva F, De la Fuente M, et al. Sex-dependent alterations in response to maternal deprivation in rats. Psychoneuroendocrinology. 2009;34:S217–26.

    CAS  Google Scholar 

  46. Avitsur R, Sheridan JF. Neonatal stress modulates sickness behavior. Brain Behav Immun. 2009;23:977–85.

    CAS  Google Scholar 

  47. Ganguly P, Brenhouse HC. Broken or maladaptive? Altered trajectories in neuroinflammation and behavior after early life adversity. Dev Cogn Neurosci. 2015;11:18–30.

    Google Scholar 

  48. Dutcher EG, Pama EAC, Lynall ME, Khan S, Clatworthy MR, Robbins TW, et al. Early-life stress and inflammation: a systematic review of a key experimental approach in rodents. Brain Neurosci Adv. 2020;4:2398212820978049.

    Google Scholar 

  49. Hartung HP, Heininger K, Schafer B, Fierz W, Toyka KV. Immune mechanisms in inflammatory polyneuropathy. Ann N Y Acad Sci. 1988;540:122–61.

    CAS  Google Scholar 

  50. Inagaki TK, Muscatell KA, Irwin MR, Cole SW, Eisenberger NI. Inflammation selectively enhances amygdala activity to socially threatening images. NeuroImage. 2012;59:3222–6.

    Google Scholar 

  51. Slopen N, Kubzansky LD, McLaughlin KA, Koenen KC. Childhood adversity and inflammatory processes in youth: a prospective study. Psychoneuroendocrinology. 2013;38:188–200.

    Google Scholar 

  52. Miller GE, Chen E. The biological residue of childhood poverty. Child Dev Perspect. 2013;7:67–73.

    Google Scholar 

  53. Engel ML, Coe CL, Reid BM, Donzella B, Gunnar MR. Selective inflammatory propensities in adopted adolescents institutionalized as infants. Psychoneuroendocrinology. 2021;124:105065.

    CAS  Google Scholar 

  54. Chiang JJ, Bower JE, Irwin MR, Taylor SE, Fuligni AJ. Adiposity moderates links from early adversity and depressive symptoms to inflammatory reactivity to acute stress during late adolescence. Brain Behav Immun. 2017;66:146–55.

    CAS  Google Scholar 

  55. Ehrlich KB, Ross KM, Chen E, Miller GE. Testing the biological embedding hypothesis: Is early life adversity associated with a later proinflammatory phenotype? Dev Psychopathol. 2016;28:1273–83.

    Google Scholar 

  56. Peña CJ, Kronman HG, Walker DM, Cates HM, Bagot RC, Purushothaman I, et al. Early life stress confers lifelong stress susceptibility in mice via ventral tegmental area OTX2. Science. 2017;356:1185–8.

    Google Scholar 

  57. Rudolph KD, Flynn M. Childhood adversity and youth depression: influence of gender and pubertal status. Dev Psychopathol. 2007;19:497–521.

    Google Scholar 

  58. Gassen J, White JD, Peterman JL, Mengelkoch S, Proffitt Leyva RP, Prokosch ML, et al. Sex differences in the impact of childhood socioeconomic status on immune function. Sci Rep. 2021;11:9827.

    CAS  Google Scholar 

  59. Danese A, Moffitt TE, Harrington H, Milne BJ, Polanczyk G, Pariante CM, et al. Adverse childhood experiences and adult risk factors for age-related disease: depression, inflammation, and clustering of metabolic risk markers. Arch Pediatr Adolesc Med. 2009;163:1135–43.

    Google Scholar 

  60. Fagundes CP, Way B. Early-life stress and adult inflammation. Curr Directions Psychological Sci. 2014;23:277–83.

    Google Scholar 

  61. Hennessy MB, Paik KD, Caraway JD, Schiml PA, Deak T. Proinflammatory activity and the sensitization of depressive-like behavior during maternal separation. Behav Neurosci. 2011;125:426–33.

    Google Scholar 

  62. Grassi-Oliveira R, Honeycutt JA, Holland FH, Ganguly P, Brenhouse HC. Cognitive impairment effects of early life stress in adolescents can be predicted with early biomarkers: impacts of sex, experience, and cytokines. Psychoneuroendocrinology. 2016;71:19–30.

    CAS  Google Scholar 

  63. Park HJ, Kim SA, Kang WS, Kim JW. Early-life stress modulates gut microbiota and peripheral and central inflammation in a sex-dependent manner. Int J Mol Sci. 2021;22:1899.

  64. File SE, Zangrossi H Jr., Sanders FL, Mabbutt PS. Raised corticosterone in the rat after exposure to the elevated plus-maze. Psychopharmacology. 1994;113:543–6.

    CAS  Google Scholar 

  65. Molet J, Heins K, Zhuo X, Mei YT, Regev L, Baram TZ, et al. Fragmentation and high entropy of neonatal experience predict adolescent emotional outcome. Transl Psychiatry. 2016;6:e702.

    CAS  Google Scholar 

  66. Brenhouse HC, Bath KG. Bundling the haystack to find the needle: challenges and opportunities in modeling risk and resilience following early life stress. Front Neuroendocrinol. 2019;54:100768.

    Google Scholar 

  67. Chen Y, Baram TZ. Toward understanding how early-life stress reprograms cognitive and emotional brain networks. Neuropsychopharmacology. 2016;41:197–206.

    Google Scholar 

  68. McEwen BS, Biron CA, Brunson KW, Bulloch K, Chambers WH, Dhabhar FS, et al. The role of adrenocorticoids as modulators of immune function in health and disease: neural, endocrine and immune interactions. Brain Res Brain Res Rev. 1997;23:79–133.

    CAS  Google Scholar 

  69. Mondelli V, Vernon AC. From early adversities to immune activation in psychiatric disorders: the role of the sympathetic nervous system. Clin Exp Immunol. 2019;197:319–28.

    CAS  Google Scholar 

  70. Rinaman L, Banihashemi L, Koehnle TJ. Early life experience shapes the functional organization of stress-responsive visceral circuits. Physiol Behav. 2011;104:632–40.

    CAS  Google Scholar 

  71. Card JP, Levitt P, Gluhovsky M, Rinaman L. Early experience modifies the postnatal assembly of autonomic emotional motor circuits in rats. J Neurosci. 2005;25:9102–11.

    CAS  Google Scholar 

  72. Rinaman L, Levitt P, Card JP. Progressive postnatal assembly of limbic-autonomic circuits revealed by central transneuronal transport of pseudorabies virus. J Neurosci. 2000;20:2731–41.

    CAS  Google Scholar 

  73. Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science. 2016;352:539–44.

    CAS  Google Scholar 

  74. Brenhouse HC, Schwarz JM. Immunoadolescence: neuroimmune development and adolescent behavior. Neurosci Biobehav Rev. 2016;70:288–99.

    Google Scholar 

  75. Bilbo SD, Schwarz JM. Early-life programming of later-life brain and behavior: a critical role for the immune system. Front Behav Neurosci. 2009;3:14.

    Google Scholar 

  76. Weinhard L, di Bartolomei G, Bolasco G, Machado P, Schieber NL, Neniskyte U, et al. Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nat Commun. 2018;9:1228.

    Google Scholar 

  77. Lim TK, Ruthazer ES. Microglial trogocytosis and the complement system regulate axonal pruning in vivo. Elife. 2021;10:e62167.

  78. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012;74:691–705.

    CAS  Google Scholar 

  79. Cheadle L, Rivera SA, Phelps JS, Ennis KA, Stevens B, Burkly LC, et al. Sensory experience engages microglia to shape neural connectivity through a non-phagocytic mechanism. Neuron. 2020;108:451–68.e459.

    CAS  Google Scholar 

  80. Crapser JD, Arreola MA, Tsourmas KI, Green KN. Microglia as hackers of the matrix: sculpting synapses and the extracellular space. Cell Mol Immunol. 2021;18:2472–88.

    CAS  Google Scholar 

  81. Frost JL, Schafer DP. Microglia: architects of the developing nervous system. Trends Cell Biol. 2016;26:587–97.

    Google Scholar 

  82. Gildawie KR, Honeycutt JA, Brenhouse HC. Region-specific effects of maternal separation on perineuronal net and parvalbumin-expressing interneuron formation in male and female rats. Neuroscience. 2019;428:23–37.

    Google Scholar 

  83. Gray E, Thomas TL, Betmouni S, Scolding N, Love S. Elevated matrix metalloproteinase-9 and degradation of perineuronal nets in cerebrocortical multiple sclerosis plaques. J Neuropathol Exp Neurol. 2008;67:888–99.

    Google Scholar 

  84. Hensch TK. Critical period plasticity in local cortical circuits. Nat Rev Neurosci. 2005;6:877–88.

    CAS  Google Scholar 

  85. Takesian AE, Hensch TK. Balancing plasticity/stability across brain development. Prog Brain Res. 2013;207:3–34.

    Google Scholar 

  86. Carlezon WA Jr., Kim W, Missig G, Finger BC, Landino SM, Alexander AJ, et al. Maternal and early postnatal immune activation produce sex-specific effects on autism-like behaviors and neuroimmune function in mice. Sci Rep. 2019;9:16928.

    Google Scholar 

  87. Orso R, Creutzberg KC, Kestering-Ferreira E, Wearick-Silva LE, Tractenberg SG, Grassi-Oliveira R. Maternal separation combined with limited bedding increases anxiety-like behavior and alters hypothalamic-pituitary-adrenal axis function of male BALB/cJ mice. Front Behav Neurosci. 2020;14:600766.

    CAS  Google Scholar 

  88. Custodio CS, Mello BSF, Filho A, de Carvalho Lima CN, Cordeiro RC, Miyajima F, et al. Neonatal immune challenge with lipopolysaccharide triggers long-lasting sex- and age-related behavioral and immune/neurotrophic alterations in mice: relevance to autism spectrum disorders. Mol Neurobiol. 2018;55:3775–88.

    CAS  Google Scholar 

  89. Williamson LL, Bilbo SD. Chemokines and the hippocampus: a new perspective on hippocampal plasticity and vulnerability. Brain Behav Immun. 2013;30:186–94.

    CAS  Google Scholar 

  90. Silver R, Curley JP. Mast cells on the mind: new insights and opportunities. Trends Neurosci. 2013;36:513–21.

    CAS  Google Scholar 

  91. Metcalfe DD, Baram D, Mekori YA. Mast cells. Physiol Rev. 1997;77:1033–79.

    CAS  Google Scholar 

  92. Nautiyal KM, Ribeiro AC, Pfaff DW, Silver R. Brain mast cells link the immune system to anxiety-like behavior. Proc Natl Acad Sci USA. 2008;105:18053–7.

    CAS  Google Scholar 

  93. Joshi A, Page CE, Damante M, Dye CN, Haim A, Leuner B, et al. Sex differences in the effects of early life stress exposure on mast cells in the developing rat brain. Hormones Behav. 2019;113:76–84.

    Google Scholar 

  94. Gildawie KR, Orso R, Peterzell S, Thompson V, Brenhouse HC. Sex differences in prefrontal cortex microglia morphology: impact of a two-hit model of adversity throughout development. Neurosci Lett. 2020;738:135381.

    CAS  Google Scholar 

  95. Ganguly P, Honeycutt JA, Rowe JR, Demaestri C, Brenhouse HC. Effects of early life stress on cocaine conditioning and AMPA receptor composition are sex-specific and driven by TNF. Brain Behav Immun. 2019;78:41–51.

    CAS  Google Scholar 

  96. Réus GZ, Fernandes GC, de Moura AB, Silva RH, Darabas AC, de Souza TG, et al. Early life experience contributes to the developmental programming of depressive-like behaviour, neuroinflammation and oxidative stress. J Psychiatr Res. 2017;95:196–207.

    Google Scholar 

  97. Viola TW, Creutzberg KC, Zaparte A, Kestering-Ferreira É, Tractenberg SG, Centeno-Silva A, et al. Acute neuroinflammation elicited by TLR-3 systemic activation combined with early life stress induces working memory impairments in male adolescent mice. Behav Brain Res. 2019;376:112221.

    Google Scholar 

  98. Wieck A, Andersen SL, Brenhouse HC. Evidence for a neuroinflammatory mechanism in delayed effects of early life adversity in rats: relationship to cortical NMDA receptor expression. Brain Behav Immun. 2013;28:218–26.

    CAS  Google Scholar 

  99. González-Pardo H, Arias JL, Gómez-Lázaro E, López Taboada I, Conejo NM. Sex-specific effects of early life stress on brain mitochondrial function, monoamine levels and neuroinflammation. Brain Sci. 2020;10:447.

  100. Castro-Zavala A, Martín-Sánchez A, Montalvo-Martínez L, Camacho-Morales A, Valverde O. Cocaine-seeking behaviour is differentially expressed in male and female mice exposed to maternal separation and is associated with alterations in AMPA receptors subunits in the medial prefrontal cortex. Prog Neuro-Psychopharmacol Biol Psychiatry. 2021;109:110262.

    CAS  Google Scholar 

  101. Callaghan BL, Richardson R. Early-life stress affects extinction during critical periods of development: an analysis of the effects of maternal separation on extinction in adolescent rats. Stress. 2012;15:671–9.

    Google Scholar 

  102. Zelena D, Mikics É, Balázsfi D, Varga J, Klausz B, Urbán E, et al. Enduring abolishment of remote but not recent expression of conditioned fear by the blockade of calcium-permeable AMPA receptors before extinction training. Psychopharmacology. 2016;233:2065–76.

    CAS  Google Scholar 

  103. Schwarz JM, Bilbo SD. Sex, glia, and development: interactions in health and disease. Hormones Behav. 2012;62:243–53.

    CAS  Google Scholar 

  104. Nelson LH, Warden S, Lenz KM. Sex differences in microglial phagocytosis in the neonatal hippocampus. Brain Behav Immun. 2017;64:11–22.

    Google Scholar 

  105. Nelson LH, Lenz KM. The immune system as a novel regulator of sex differences in brain and behavioral development. J Neurosci Res. 2017;95:447–61.

    CAS  Google Scholar 

  106. Chocyk A, Przyborowska A, Makuch W, Majcher-Maślanka I, Dudys D, Wędzony K. The effects of early-life adversity on fear memories in adolescent rats and their persistence into adulthood. Behav Brain Res. 2014;264:161–72.

    Google Scholar 

  107. Walker CD, Bath KG, Joels M, Korosi A, Larauche M, Lucassen PJ, et al. Chronic early life stress induced by limited bedding and nesting (LBN) material in rodents: critical considerations of methodology, outcomes and translational potential. Stress. 2017;20:421–48.

    Google Scholar 

  108. Felger JC. Imaging the role of inflammation in mood and anxiety-related disorders. Curr Neuropharmacol. 2018;16:533–58.

    CAS  Google Scholar 

  109. Capuron L, Neurauter G, Musselman DL, Lawson DH, Nemeroff CB, Fuchs D, et al. Interferon-alpha-induced changes in tryptophan metabolism. relationship to depression and paroxetine treatment. Biol Psychiatry. 2003;54:906–14.

    CAS  Google Scholar 

  110. Raison CL, Dantzer R, Kelley KW, Lawson MA, Woolwine BJ, Vogt G, et al. CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-alpha: relationship to CNS immune responses and depression. Mol Psychiatry. 2010;15:393–403.

    CAS  Google Scholar 

  111. Wong HR, Carcillo JA, Burckart G, Kaplan SS. Nitric oxide production in critically ill patients. Arch Dis Child. 1996;74:482–9.

    CAS  Google Scholar 

  112. Chikada N, Imaki T, Seki T, Harada S, Nakajima K, Yoshimoto T, et al. Distribution of c-fos mRNA in the brain following intracerebroventricular injection of nitric oxide (NO)-releasing compounds: possible role of NO in central cardiovascular regulation. J Neuroendocrinol. 2000;12:1112–23.

    CAS  Google Scholar 

  113. Tellez-Merlo G, Morales-Medina JC, Camacho-Ábrego I, Juárez-Díaz I, Aguilar-Alonso P, de la Cruz F, et al. Prenatal immune challenge induces behavioral deficits, neuronal remodeling, and increases brain nitric oxide and zinc levels in the male rat offspring. Neuroscience. 2019;406:594–605.

    CAS  Google Scholar 

  114. Sunico CR, Portillo F, González-Forero D, Moreno-López B. Nitric-oxide-directed synaptic remodeling in the adult mammal CNS. J Neurosci. 2005;25:1448–58.

    CAS  Google Scholar 

  115. Konsman JP, Veeneman J, Combe C, Poole S, Luheshi GN, Dantzer R. Central nervous action of interleukin-1 mediates activation of limbic structures and behavioural depression in response to peripheral administration of bacterial lipopolysaccharide. Eur J Neurosci. 2008;28:2499–510.

    CAS  Google Scholar 

  116. Tan YL, Yuan Y, Tian L. Microglial regional heterogeneity and its role in the brain. Mol Psychiatry. 2020;25:351–67.

    Google Scholar 

  117. Bolton JL, Short AK, Othy S, Kooiker CL, Shao M, Gunn BG, et al. Early stress-induced impaired microglial pruning of excitatory synapses on immature CRH-expressing neurons provokes aberrant adult stress responses. Cell Rep. 2022;38:110600.

    CAS  Google Scholar 

  118. Chocyk A, Dudys D, Przyborowska A, Majcher I, Maćkowiak M, Wędzony K. Maternal separation affects the number, proliferation and apoptosis of glia cells in the substantia nigra and ventral tegmental area of juvenile rats. Neuroscience. 2011;173:1–18.

    CAS  Google Scholar 

  119. Northcutt AL, Hutchinson MR, Wang X, Baratta MV, Hiranita T, Cochran TA, et al. DAT isn’t all that: cocaine reward and reinforcement require Toll-like receptor 4 signaling. Mol Psychiatry. 2015;20:1525–37.

    CAS  Google Scholar 

  120. Wang X, Northcutt AL, Cochran TA, Zhang X, Fabisiak TJ, Haas ME, et al. Methamphetamine activates toll-like receptor 4 to induce central immune signaling within the ventral tegmental area and contributes to extracellular dopamine increase in the nucleus accumbens shell. ACS Chem Neurosci. 2019;10:3622–34.

    CAS  Google Scholar 

  121. Yang S, Tseng KY. Maturation of corticolimbic functional connectivity during sensitive periods of brain development. Curr Top Behav Neurosci. 2021; https://doi.org/10.1007/7854_2021_239. Online ahead of print.

  122. Carr DB, Sesack SR. Hippocampal afferents to the rat prefrontal cortex: synaptic targets and relation to dopamine terminals. J Comp Neurol. 1996;369:1–15.

    CAS  Google Scholar 

  123. Gabbott P, Headlam A, Busby S. Morphological evidence that CA1 hippocampal afferents monosynaptically innervate PV-containing neurons and NADPH-diaphorase reactive cells in the medial prefrontal cortex (Areas 25/32) of the rat. Brain Res. 2002;946:314–22.

    CAS  Google Scholar 

  124. Sotres-Bayon F, Sierra-Mercado D, Pardilla-Delgado E, Quirk GJ. Gating of fear in prelimbic cortex by hippocampal and amygdala inputs. Neuron. 2012;76:804–12.

    CAS  Google Scholar 

  125. Maren S, Phan KL, Liberzon I. The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat Rev Neurosci. 2013;14:417–28.

    CAS  Google Scholar 

  126. Cenquizca LA, Swanson LW. Spatial organization of direct hippocampal field CA1 axonal projections to the rest of the cerebral cortex. Brain Res Rev. 2007;56:1–26.

    CAS  Google Scholar 

  127. Zimmermann KS, Richardson R, Baker KD. Maturational changes in prefrontal and amygdala circuits in adolescence: implications for understanding fear inhibition during a vulnerable period of development. Brain Sci. 2019;9:65.

  128. Sullivan RM. Developing a sense of safety: the neurobiology of neonatal attachment. Ann N Y Acad Sci. 2003;1008:122–31.

    Google Scholar 

  129. Thompson JV, Sullivan RM, Wilson DA. Developmental emergence of fear learning corresponds with changes in amygdala synaptic plasticity. Brain Res. 2008;1200:58–65.

    CAS  Google Scholar 

  130. Kim JH, Richardson R. A developmental dissociation in reinstatement of an extinguished fear response in rats. Neurobiol Learn Mem. 2007;88:48–57.

    CAS  Google Scholar 

  131. Callaghan BL, Richardson R. The effect of adverse rearing environments on persistent memories in young rats: removing the brakes on infant fear memories. Transl Psychiatry. 2012;2:e138.

    CAS  Google Scholar 

  132. Callaghan BL, Tottenham N. The stress acceleration hypothesis: effects of early-life adversity on emotion circuits and behavior. Curr Opin Behav Sci. 2016;7:76–81.

    Google Scholar 

  133. Johnson CM, Loucks FA, Peckler H, Thomas AW, Janak PH, Wilbrecht L. Long-range orbitofrontal and amygdala axons show divergent patterns of maturation in the frontal cortex across adolescence. Developmental Cogn Neurosci. 2016;18:113–20.

    Google Scholar 

  134. Honeycutt JA, Demaestri C, Peterzell S, Silveri MM, Cai X, Kulkarni P, et al. Altered corticolimbic connectivity reveals sex-specific adolescent outcomes in a rat model of early life adversity. Elife. 2020;9:e52651.

  135. Morin EL, Howell BR, Feczko E, Earl E, Pincus M, Reding K, et al. Developmental outcomes of early adverse care on amygdala functional connectivity in nonhuman primates. Dev Psychopathol. 2020;32:1579–96.

    Google Scholar 

  136. Bolton JL, Molet J, Regev L, Chen Y, Rismanchi N, Haddad E, et al. Anhedonia following early-life adversity involves aberrant interaction of reward and anxiety circuits and is reversed by partial silencing of amygdala corticotropin-releasing hormone gene. Biol Psychiatry. 2018;83:137–47.

    CAS  Google Scholar 

  137. Manzano Nieves G, Bravo M, Baskoylu S, Bath KG. Early life adversity decreases pre-adolescent fear expression by accelerating amygdala PV cell development. Elife. 2020;9:e55263.

  138. Gee DG, Gabard-Durnam LJ, Flannery J, Goff B, Humphreys KL, Telzer EH, et al. Early developmental emergence of human amygdala-prefrontal connectivity after maternal deprivation. Proc Natl Acad Sci USA. 2013;110:15638–43.

    CAS  Google Scholar 

  139. Colich NL, Rosen ML, Williams ES, McLaughlin KA. Biological aging in childhood and adolescence following experiences of threat and deprivation: a systematic review and meta-analysis. Psychological Bull. 2020;146:721–64.

    Google Scholar 

  140. Avishai-Eliner S, Brunson KL, Sandman CA, Baram TZ. Stressed-out, or in (utero)? Trends Neurosci. 2002;25:518–24.

    CAS  Google Scholar 

  141. Fenoglio KA, Brunson KL, Baram TZ. Hippocampal neuroplasticity induced by early-life stress: functional and molecular aspects. Front Neuroendocrinol. 2006;27:180–92.

    CAS  Google Scholar 

  142. Herringa RJ, Birn RM, Ruttle PL, Burghy CA, Stodola DE, Davidson RJ, et al. Childhood maltreatment is associated with altered fear circuitry and increased internalizing symptoms by late adolescence. Proc Natl Acad Sci USA. 2013;110:19119–24.

    CAS  Google Scholar 

  143. Silvers JA, Lumian DS, Gabard-Durnam L, Gee DG, Goff B, Fareri DS, et al. Previous institutionalization is followed by broader amygdala-hippocampal-PFC network connectivity during aversive learning in human development. J Neurosci. 2016;36:6420–30.

    CAS  Google Scholar 

  144. Doherty TS, Forster A, Roth TL. Global and gene-specific DNA methylation alterations in the adolescent amygdala and hippocampus in an animal model of caregiver maltreatment. Behav Brain Res. 2016;298:55–61.

    CAS  Google Scholar 

  145. Roth TL, Matt S, Chen K, Blaze J. Bdnf DNA methylation modifications in the hippocampus and amygdala of male and female rats exposed to different caregiving environments outside the homecage. Dev Psychobiol. 2014;56:1755–63.

    CAS  Google Scholar 

  146. Coley EJL, Demaestri C, Ganguly P, Honeycutt JA, Peterzell S, Rose N, et al. Cross-generational transmission of early life stress effects on HPA regulators and Bdnf are mediated by sex, lineage, and upbringing. Front Behav Neurosci. 2019;13:101.

    CAS  Google Scholar 

  147. Chen ZY, Jing D, Bath KG, Ieraci A, Khan T, Siao CJ, et al. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science. 2006;314:140–3.

    CAS  Google Scholar 

  148. Caballero A, Granberg R, Tseng KY. Mechanisms contributing to prefrontal cortex maturation during adolescence. Neurosci Biobehav Rev. 2016;70:4–12.

    Google Scholar 

  149. Santiago AN, Lim KY, Opendak M, Sullivan RM, Aoki C. Early life trauma increases threat response of peri-weaning rats, reduction of axo-somatic synapses formed by parvalbumin cells and perineuronal net in the basolateral nucleus of amygdala. J Comp Neurol. 2018;526:2647–64.

    CAS  Google Scholar 

  150. Cabungcal JH, Steullet P, Kraftsik R, Cuenod M, Do KQ. Early-life insults impair parvalbumin interneurons via oxidative stress: reversal by N-acetylcysteine. Biol Psychiatry. 2013;73:574–82.

    CAS  Google Scholar 

  151. Morishita H, Cabungcal JH, Chen Y, Do KQ, Hensch TK. Prolonged period of cortical plasticity upon redox dysregulation in fast-spiking interneurons. Biol Psychiatry. 2015;78:396–402.

  152. White JD, Kaffman A. The moderating effects of sex on consequences of childhood maltreatment: from clinical studies to animal models. Front Neurosci. 2019;13:1082.

    Google Scholar 

  153. Bath KG. Synthesizing views to understand sex differences in response to early life adversity. Trends Neurosci. 2020;43:300–10.

    CAS  Google Scholar 

  154. Ellis SN, Honeycutt JA. Sex differences in affective dysfunction and alterations in parvalbumin in rodent models of early life adversity. Front Behav Neurosci. 2021;15:741454.

    CAS  Google Scholar 

  155. Manzano-Nieves G, Gaillard M, Gallo M, Bath KG. Early life stress impairs contextual threat expression in female, but not male, mice. Behav Neurosci. 2018;132:247–57.

    Google Scholar 

  156. Uematsu A, Matsui M, Tanaka C, Takahashi T, Noguchi K, Suzuki M, et al. Developmental trajectories of amygdala and hippocampus from infancy to early adulthood in healthy individuals. PLoS ONE. 2012;7:e46970.

    CAS  Google Scholar 

  157. Markham JA, Mullins SE, Koenig JI. Periadolescent maturation of the prefrontal cortex is sex-specific and is disrupted by prenatal stress. J Comp Neurol. 2013;521:1828–43.

    Google Scholar 

  158. McLean CP, Asnaani A, Litz BT, Hofmann SG. Gender differences in anxiety disorders: prevalence, course of illness, comorbidity and burden of illness. J Psychiatr Res. 2011;45:1027–35.

    Google Scholar 

  159. Keller SM, Nowak A, Roth TL. Female pups receive more maltreatment from stressed dams. Dev Psychobiol. 2019;61:824–31.

    Google Scholar 

  160. White JD, Kaffman A. Editorial perspective: Childhood maltreatment—the problematic unisex assumption. J Child Psychol Psychiatry Allied Discip. 2020;61:732–4.

    Google Scholar 

  161. Guadagno A, Verlezza S, Long H, Wong TP, Walker CD. It is all in the right amygdala: increased synaptic plasticity and perineuronal nets in male, but not female, juvenile rat pups after exposure to early-life stress. J Neurosci. 2020;40:8276–91.

    CAS  Google Scholar 

  162. White JD, Arefin TM, Pugliese A, Lee CH, Gassen J, Zhang J, et al. Early life stress causes sex-specific changes in adult fronto-limbic connectivity that differentially drive learning. Elife. 2020;9:e58301.

  163. Lidia GM, Martina A, Silvia M, Veronica L, Paolo R, Emanuele P, et al. Autonomic vulnerability to biased perception of social inclusion in borderline personality disorder. Borderline Personal Disord Emot Dysregul. 2021;8:28.

    Google Scholar 

  164. Godbout N, Daspe M, Runtz M, Cyr G, Briere J. Childhood maltreatment, attachment, and borderline personality-related symptoms: gender-specific structural equation models. Psychol Trauma. 2019;11:90–8.

    Google Scholar 

  165. Waddington CH. Canalization of development and genetic assimilation of acquired characters. Nature. 1959;183:1654–5.

    CAS  Google Scholar 

  166. Cowan CSM, Richardson R. Early-life stress leads to sex-dependent changes in pubertal timing in rats that are reversed by a probiotic formulation. Dev Psychobiol. 2019;61:679–87.

  167. Sun Y, Fang J, Wan Y, Su P, Tao F. Association of early-life adversity with measures of accelerated biological aging among children in China. JAMA Netw Open. 2020;3:e2013588.

    Google Scholar 

  168. Deardorff J, Hayward C, Wilson KA, Bryson S, Hammer LD, Agras S. Puberty and gender interact to predict social anxiety symptoms in early adolescence. J Adolesc Health. 2007;41:102–4.

    Google Scholar 

  169. Sheridan MA, Peverill M, Finn AS, McLaughlin KA. Dimensions of childhood adversity have distinct associations with neural systems underlying executive functioning. Dev Psychopathol. 2017;29:1777–94.

    Google Scholar 

  170. Arnsten AF. Stress weakens prefrontal networks: molecular insults to higher cognition. Nat Neurosci. 2015;18:1376–85.

    CAS  Google Scholar 

  171. Delpech JC, Wei L, Hao J, Yu X, Madore C, Butovsky O, et al. Early life stress perturbs the maturation of microglia in the developing hippocampus. Brain Behav Immun. 2016;57:79–93.

    Google Scholar 

  172. Roque A, Ochoa-Zarzosa A, Torner L. Maternal separation activates microglial cells and induces an inflammatory response in the hippocampus of male rat pups, independently of hypothalamic and peripheral cytokine levels. Brain Behav Immun. 2016;55:39–48.

    CAS  Google Scholar 

  173. Hennessy MB, Deak T, Sensenbaugh JD, Gallimore DM, Garybush AM, Mondello JE, et al. Central neuroimmune activity and depressive-like behavior in response to repeated maternal separation and injection of LPS. Physiol Behav. 2019;199:366–74.

    CAS  Google Scholar 

  174. Richardson R, Bowers J, Callaghan BL, Baker KD. Does maternal separation accelerate maturation of perineuronal nets and parvalbumin-containing inhibitory interneurons in male and female rats? Dev Cogn Neurosci. 2021;47:100905.

    CAS  Google Scholar 

  175. Guadagno A, Wong TP, Walker CD. Morphological and functional changes in the preweaning basolateral amygdala induced by early chronic stress associate with anxiety and fear behavior in adult male, but not female rats. Prog Neuro-Psychopharmacol Biol Psychiatry. 2018;81:25–37.

    Google Scholar 

  176. Hill MN, Eiland L, Lee TTY, Hillard CJ, McEwen BS. Early life stress alters the developmental trajectory of corticolimbic endocannabinoid signaling in male rats. Neuropharmacology. 2019;146:154–62.

    CAS  Google Scholar 

  177. Rincón-Cortés M, Sullivan RM. Emergence of social behavior deficit, blunted corticolimbic activity and adult depression-like behavior in a rodent model of maternal maltreatment. Transl Psychiatry. 2016;6:e930.

    Google Scholar 

  178. Holland FH, Ganguly P, Potter DN, Chartoff EH, Brenhouse HC. Early life stress disrupts social behavior and prefrontal cortex parvalbumin interneurons at an earlier time-point in females than in males. Neurosci Lett. 2014;566:131–6.

    CAS  Google Scholar 

  179. Ganguly P, Holland FH, Brenhouse HC. Functional uncoupling NMDAR NR2A subunit from PSD-95 in the prefrontal cortex: effects on behavioral dysfunction and parvalbumin loss after early-life stress. Neuropsychopharmacology. 2015;40:2666–75.

    CAS  Google Scholar 

  180. Brenhouse HC, Andersen SL. Nonsteroidal anti-inflammatory treatment prevents delayed effects of early life stress in rats. Biol Psychiatry. 2011;70:434–40.

    CAS  Google Scholar 

  181. Reincke SA, Hanganu-Opatz IL. Early-life stress impairs recognition memory and perturbs the functional maturation of prefrontal-hippocampal-perirhinal networks. Sci Rep. 2017;7:42042.

    CAS  Google Scholar 

  182. Farrell MR, Holland FH, Shansky RM, Brenhouse HC. Sex-specific effects of early life stress on social interaction and prefrontal cortex dendritic morphology in young rats. Behav Brain Res. 2016;310:119–25.

    CAS  Google Scholar 

  183. Heydari A, Esmaeilpour K, Sheibani V. Maternal separation impairs long term-potentiation in CA3-CA1 synapses in adolescent female rats. Behav Brain Res. 2019;376:112239.

    Google Scholar 

  184. McCarthy MM. Sex differences in the developing brain as a source of inherent risk. Dialogues Clin Neurosci. 2016;18:361–72.

    Google Scholar 

  185. Blair C, Raver CC. Child development in the context of adversity: experiential canalization of brain and behavior. Am Psychologist. 2012;67:309–18.

    Google Scholar 

  186. Gottlieb G. Experiential canalization of behavioral development: theory. Dev Psychol. 1991;27:4.

    Google Scholar 

Download references

Acknowledgements

This work was partially funded by NIMH R01MH127850. The author thanks Dr. Laurel Gabard-Durnam for her invaluable editorial assistance with the manuscript. Artistic contribution from Jennifer Leigh at Creative Outlaw Design.

Author information

Authors and Affiliations

Authors

Contributions

HCB prepared and wrote this entire article.

Corresponding author

Correspondence to Heather C. Brenhouse.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brenhouse, H.C. Points of divergence on a bumpy road: early development of brain and immune threat processing systems following postnatal adversity. Mol Psychiatry 28, 269–283 (2023). https://doi.org/10.1038/s41380-022-01658-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01658-9

Search

Quick links