Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

Bioactive human Alzheimer brain soluble Aβ: pathophysiology and therapeutic opportunities

Abstract

The accumulation of amyloid-β protein (Aβ) plays an early role in the pathogenesis of Alzheimer’s disease (AD). The precise mechanism of how Aβ accumulation leads to synaptic dysfunction and cognitive impairment remains unclear but is likely due to small soluble oligomers of Aβ (oAβ). Most studies have used chemical synthetic or cell-secreted Aβ oligomers to study their pathogenic mechanisms, but the Aβ derived from human AD brain tissue is less well characterized. Here we review updated knowledge on the extraction and characterization of bioactive human AD brain oAβ and the mechanisms by which they cause hippocampal synaptic dysfunction. Human AD brain-derived oAβ can impair hippocampal long-term potentiation (LTP) and enhance long-term depression (LTD). Many studies suggest that oAβ may directly disrupt neuronal NMDA receptors, AMPA receptors and metabotropic glutamate receptors (mGluRs). oAβ also impairs astrocytic synaptic functions, including glutamate uptake, D-serine release, and NMDA receptor function. We also discuss oAβ-induced neuronal hyperexcitation. These results may suggest a multi-target approach for the treatment of AD, including both oAβ neutralization and reversal of glutamate-mediated excitotoxicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Summary of Aβ species-mediated effects on hippocampal long-term potentiation.
Fig. 2: Schematic diagram of Aβ oligomer-mediated effects on synaptic plasticity.
Fig. 3: N-terminal-specific antibodies, but not C-terminal-specific antibodies, prevent hippocampal LTP impairment induced by soluble AD brain extract.

Similar content being viewed by others

References

  1. Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL. Alzheimer's disease. Nat Rev Dis Prim. 2015;1:15056.

    Article  PubMed  Google Scholar 

  2. Spires-Jones TL, Hyman BT. The intersection of amyloid beta and tau at synapses in Alzheimer's disease. Neuron. 2014;82:756–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mecca AP, O'Dell RS, Sharp ES, Banks ER, Bartlett HH, Zhao W, et al. Synaptic density and cognitive performance in Alzheimer's disease: a PET imaging study with [11 C]UCB-J. Alzheimers Dement. 2022. https://doi.org/10.1002/alz.12582. Online ahead of print.

  4. Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, et al. Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer's disease. Am J Pathol. 1999;155:853–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, et al. Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Ann Neurol. 1999;46:860–6.

    Article  CAS  PubMed  Google Scholar 

  6. Oddo S, Caccamo A, Tran L, Lambert MP, Glabe CG, Klein WL, et al. Temporal profile of amyloid-beta (Abeta) oligomerization in an in vivo model of Alzheimer disease. A link between Abeta and tau pathology. J Biol Chem. 2006;281:1599–604.

    Article  CAS  PubMed  Google Scholar 

  7. Balducci C, Tonini R, Zianni E, Nazzaro C, Fiordaliso F, Salio M, et al. Cognitive deficits associated with alteration of synaptic metaplasticity precede plaque deposition in AβPP23 transgenic mice. J Alzheimers Dis. 2010;21:1367–81.

    Article  CAS  PubMed  Google Scholar 

  8. Müller-Schiffmann A, Herring A, Abdel-Hafiz L, Chepkova AN, Schäble S, Wedel D, et al. Amyloid-β dimers in the absence of plaque pathology impair learning and synaptic plasticity. Brain. 2016;139:509–25.

    Article  PubMed  Google Scholar 

  9. Li S, Selkoe DJ. A mechanistic hypothesis for the impairment of synaptic plasticity by soluble Aβ oligomers from Alzheimer's brain. J Neurochem. 2020;154:583–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, et al. Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat Med. 2008;14:837–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, et al. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature. 2002;416:535–9.

    Article  CAS  PubMed  Google Scholar 

  12. Klyubin I, Walsh DM, Lemere CA, Cullen WK, Shankar GM, Betts V, et al. Amyloid beta protein immunotherapy neutralizes Abeta oligomers that disrupt synaptic plasticity in vivo. Nat Med. 2005;11:556–61.

    Article  CAS  PubMed  Google Scholar 

  13. Li S, Jin M, Liu L, Dang Y, Ostaszewski BL, Selkoe DJ. Decoding the synaptic dysfunction of bioactive human AD brain soluble Aβ to inspire novel therapeutic avenues for Alzheimer's disease. Acta Neuropathol Commun. 2018;6:121.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Carrera I, Etcheverria I, Fernandez-Novoa L, Lombardi VR, Lakshmana MK, Cacabelos R, et al. A comparative evaluation of a novel vaccine in APP/PS1 mouse models of Alzheimer's disease. Biomed Res Int. 2015;2015:807146.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Esang M, Gupta M. Aducanumab as a novel treatment for Alzheimer's disease: a decade of hope, controversies, and the future. Cureus. 2021;13:e17591.

    PubMed  PubMed Central  Google Scholar 

  16. Rabinovici GD. Controversy and progress in Alzheimer's disease - FDA approval of aducanumab. N Engl J Med. 2021;385:771–4.

    Article  CAS  PubMed  Google Scholar 

  17. Swanson CJ, Zhang Y, Dhadda S, Wang J, Kaplow J, Lai RYK, et al. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer's disease with lecanemab, an anti-Aβ protofibril antibody. Alzheimers Res Ther. 2021;13:80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mintun MA, Lo AC, Duggan Evans C, Wessels AM, Ardayfio PA, Andersen SW, et al. Donanemab in early Alzheimer's disease. N Engl J Med 2021;384:1691–704.

    Article  CAS  PubMed  Google Scholar 

  19. Kollmer M, Close W, Funk L, Rasmussen J, Bsoul A, Schierhorn A, et al. Cryo-EM structure and polymorphism of Aβ amyloid fibrils purified from Alzheimer's brain tissue. Nat Commun. 2019;10:4760.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yang Y, Arseni D, Zhang W, Huang M, Lövestam S, Schweighauser M, et al. Cryo-EM structures of amyloid-β 42 filaments from human brains. Science. 2022;375:167–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Esparza TJ, Zhao H, Cirrito JR, Cairns NJ, Bateman RJ, Holtzman DM, et al. Amyloid-β oligomerization in Alzheimer dementia versus high-pathology controls. Ann Neurol. 2013;73:104–19.

    Article  CAS  PubMed  Google Scholar 

  22. Mc Donald JM, O'Malley TT, Liu W, Mably AJ, Brinkmalm G, Portelius E, et al. The aqueous phase of Alzheimer's disease brain contains assemblies built from 4 and 7 kDa Aβ species. Alzheimers Dement. 2015;11:1286–305.

    Article  Google Scholar 

  23. Brinkmalm G, Hong W, Wang Z, Liu W, O'Malley TT, Sun X, et al. Identification of neurotoxic cross-linked amyloid-β dimers in the Alzheimer's brain. Brain. 2019;142:1441–57.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wildburger NC, Esparza TJ, LeDuc RD, Fellers RT, Thomas PM, Cairns NJ, et al. Diversity of amyloid-beta proteoforms in the Alzheimer's disease brain. Sci Rep. 2017;7:9520.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Klyubin I, Betts V, Welzel AT, Blennow K, Zetterberg H, Wallin A, et al. Amyloid beta protein dimer-containing human CSF disrupts synaptic plasticity: prevention by systemic passive immunization. J Neurosci. 2008;28:4231–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. De S, Whiten DR, Ruggeri FS, Hughes C, Rodrigues M, Sideris DI, et al. Soluble aggregates present in cerebrospinal fluid change in size and mechanism of toxicity during Alzheimer's disease progression. Acta Neuropathol Commun. 2019;7:120.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yang T, Li S, Xu H, Walsh DM, Selkoe DJ. Large soluble oligomers of amyloid β-protein from Alzheimer brain are far less neuroactive than the smaller oligomers to which they dissociate. J Neurosci. 2017;37:152–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hong W, Wang Z, Liu W, O'Malley TT, Jin M, Willem M, et al. Diffusible, highly bioactive oligomers represent a critical minority of soluble Aβ in Alzheimer's disease brain. Acta Neuropathol. 2018;136:19–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sideris DI, Danial JSH, Emin D, Ruggeri FS, Xia Z, Zhang YP, et al. Soluble amyloid beta-containing aggregates are present throughout the brain at early stages of Alzheimer's disease. Brain Commun. 2021;3:fcab147.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tomic JL, Pensalfini A, Head E, Glabe CG. Soluble fibrillar oligomer levels are elevated in Alzheimer's disease brain and correlate with cognitive dysfunction. Neurobiol Dis. 2009;35:352–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stern AM, Liu L, Jin S, Liu W, Meunier AL, Ericsson M, et al. A calcium-sensitive antibody isolates soluble amyloid-β aggregates and fibrils from Alzheimer's disease brain. Brain. 2022:awac023. Epub ahead of print.

  32. Jin M, Shepardson N, Yang T, Chen G, Walsh D, Selkoe DJ. Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc Natl Acad Sci USA. 2011;108:5819–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang D, Mably AJ, Walsh DM, Rowan MJ. Peripheral interventions enhancing brain glutamate homeostasis relieve amyloid β- and TNFα- mediated synaptic plasticity disruption in the rat hippocampus. Cereb Cortex. 2017;27:3724–35.

    PubMed  Google Scholar 

  34. Zott B, Simon MM, Hong W, Unger F, Chen-Engerer HJ, Frosch MP, et al. A vicious cycle of beta amyloid-dependent neuronal hyperactivation. Science. 2019;365:559–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu L, Kwak H, Lawton TL, Jin SX, Meunier AL, Dang Y, et al. An ultra-sensitive immunoassay detects and quantifies soluble Aβ oligomers in human plasma. Alzheimers Dement. 2021. https://doi.org/10.1002/alz.12646. Online ahead of print.

  36. Jin M, O'Nuallain B, Hong W, Boyd J, Lagomarsino VN, O'Malley TT, et al. An in vitro paradigm to assess potential anti-Aβ antibodies for Alzheimer's disease. Nat Commun. 2018;9:2676.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Corbett GT, Wang Z, Hong W, Colom-Cadena M, Rose J, Liao M, et al. PrP is a central player in toxicity mediated by soluble aggregates of neurodegeneration-causing proteins. Acta Neuropathol. 2020;139:503–26.

    Article  CAS  PubMed  Google Scholar 

  38. Laurén J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 2009;457:1128–32.30.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Findley CA, Bartke A, Hascup KN, Hascup ER. Amyloid beta-related alterations to glutamate signaling dynamics during Alzheimer's disease progression. ASN Neuro. 2019;11:1759091419855541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rudy CC, Hunsberger HC, Weitzner DS, Reed MN. The role of the tripartite glutamatergic synapse in the pathophysiology of Alzheimer's disease. Aging Dis. 2015;6:131–48.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zucker RS, Regehr WG. Short-term synaptic plasticity. Annu Rev Physiol. 2002;64:355–405.

    Article  CAS  PubMed  Google Scholar 

  42. Cerpa W, Farías GG, Godoy JA, Fuenzalida M, Bonansco C, Inestrosa NC. Wnt-5a occludes Abeta oligomer-induced depression of glutamatergic transmission in hippocampal neurons. Mol Neurodegener. 2010;5:3.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Li S, Hong S, Shepardson NE, Walsh DM, Shankar GM, Selkoe D. Soluble oligomers of amyloid Beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron 2009;62:788–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schmid AW, Freir DB, Herron CE. Inhibition of LTP in vivo by beta-amyloid peptide in different conformational states. Brain Res. 2008;1197:135–42.

    Article  CAS  PubMed  Google Scholar 

  45. Talantova M, Sanz-Blasco S, Zhang X, Xia P, Akhtar MW, Okamoto S, et al. Aβ induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc Natl Acad Sci USA. 2013;110:E2518–2527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Parodi J, Sepúlveda FJ, Roa J, Opazo C, Inestrosa NC, Aguayo LG. Beta-amyloid causes depletion of synaptic vesicles leading to neurotransmission failure. J Biol Chem. 2010;285:2506–14.

    Article  CAS  PubMed  Google Scholar 

  47. He Y, Wei M, Wu Y, Qin H, Li W, Ma X, et al. Amyloid β oligomers suppress excitatory transmitter release via presynaptic depletion of phosphatidylinositol-4,5-bisphosphate. Nat Commun. 2019;10:1193.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Marcantoni A, Cerullo MS, Buxeda P, Tomagra G, Giustetto M, Chiantia G, et al. Amyloid Beta42 oligomers up-regulate the excitatory synapses by potentiating presynaptic release while impairing postsynaptic NMDA receptors. J Physiol. 2020;598:2183–97.

    Article  CAS  PubMed  Google Scholar 

  49. Nimmrich V, Grimm C, Draguhn A, Barghorn S, Lehmann A, Schoemaker H, et al. Amyloid beta oligomers (A beta(1-42) globulomer) suppress spontaneous synaptic activity by inhibition of P/Q-type calcium currents. J Neurosci. 2008;28:788–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fogel H, Frere S, Segev O, Bharill S, Shapira I, Gazit N, et al. APP homodimers transduce an amyloid-β-mediated increase in release probability at excitatory synapses. Cell Rep. 2014;7:1560–76.

    Article  CAS  PubMed  Google Scholar 

  51. Wang Z, Jackson RJ, Hong W, Taylor WM, Corbett GT, Moreno A, et al. Human brain-derived Aβ oligomers bind to synapses and disrupt synaptic activity in a manner that requires APP. J Neurosci. 2017;37:11947–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brito-Moreira J, Paula-Lima AC, Bomfim TR, Oliveira FB, Sepúlveda FJ, De Mello FG, et al. Aβ oligomers induce glutamate release from hippocampal neurons. Curr Alzheimer Res. 2011;8:552–62.

    Article  CAS  PubMed  Google Scholar 

  53. Dolev I, Fogel H, Milshtein H, Berdichevsky Y, Lipstein N, Brose N, et al. Spike bursts increase amyloid-β 40/42 ratio by inducing a presenilin-1 conformational change. Nat Neurosci. 2013;16:587–95.

    Article  CAS  PubMed  Google Scholar 

  54. Russell CL, Semerdjieva S, Empson RM, Austen BM, Beesley PW, Alifragis P. Amyloid-β acts as a regulator of neurotransmitter release disrupting the interaction between synaptophysin and VAMP2. PLoS One. 2012;7:e43201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ge Y, Dong Z, Bagot RC, Howland JG, Phillips AG, Wong TP, et al. Hippocampal long-term depression is required for the consolidation of spatial memory. Proc Natl Acad Sci USA. 2010;107:16697–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Goh JJ, Manahan-Vaughan D. Spatial object recognition enables endogenous LTD that curtails LTP in the mouse hippocampus. Cereb Cortex. 2013;23:1118–25.

    Article  PubMed  Google Scholar 

  57. Whitlock JR, Heynen AJ, Shuler MG, Bear MF. Learning induces long-term potentiation in the hippocampus. Science. 2006;313:1093–7.

    Article  CAS  PubMed  Google Scholar 

  58. Ho VM, Lee JA, Martin KC. The cell biology of synaptic plasticity. Science 2011;334:623–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hayashi Y. Molecular mechanism of hippocampal long-term potentiation - towards multiscale understanding of learning and memory. Neurosci Res. 2021;175:3–15.

  60. Benke T, Traynelis SF. AMPA-type glutamate receptor conductance changes and plasticity: still a lot of noise. Neurochem Res. 2019;44:539–48.

    Article  CAS  PubMed  Google Scholar 

  61. Collingridge GL, Isaac JT, Wang YT. Receptor trafficking and synaptic plasticity. Nat Rev Neurosci. 2004;5:952–62.

    Article  CAS  PubMed  Google Scholar 

  62. Malinow R, Malenka RC. AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci. 2002;25:103–26.

    Article  CAS  PubMed  Google Scholar 

  63. Nicoll RA. A brief history of long-term potentiation. Neuron. 2017;93:281–90.

    Article  CAS  PubMed  Google Scholar 

  64. Klyubin I, Cullen WK, Hu NW, Rowan MJ. Alzheimer's disease Aβ assemblies mediating rapid disruption of synaptic plasticity and memory. Mol Brain. 2012;5:25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mucke L, Selkoe DJ. Neurotoxicity of amyloid β-protein: synaptic and network dysfunction. Cold Spring Harb Perspect Med. 2012;2:a006338.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ondrejcak T, Klyubin I, Hu NW, Barry AE, Cullen WK, Rowan MJ. Alzheimer's disease amyloid beta-protein and synaptic function. Neuromolecular Med. 2010;12:13–26.

    Article  CAS  PubMed  Google Scholar 

  67. Li S, Jin M, Koeglsperger T, Shepardson NE, Shankar GM, Selkoe DJ. Soluble Aβ oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. J Neurosci. 2011;31:6627–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dewachter I, Filipkowski RK, Priller C, Ris L, Neyton J, Croes S, et al. Deregulation of NMDA-receptor function and down-stream signaling in APP[V717I] transgenic mice. Neurobiol Aging. 2009;30:241–56.

    Article  CAS  PubMed  Google Scholar 

  69. Lacor PN, Buniel MC, Chang L, Fernandez SJ, Gong Y, Viola KL, et al. Synaptic targeting by Alzheimer's-related amyloid beta oligomers. J Neurosci. 2004;24:10191–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Venkitaramani DV, Chin J, Netzer WJ, Gouras GK, Lesne S, Malinow R, et al. Beta-amyloid modulation of synaptic transmission and plasticity. J Neurosci. 2007;27:11832–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Decker H, Jürgensen S, Adrover MF, Brito-Moreira J, Bomfim TR, Klein WL, et al. N-methyl-D-aspartate receptors are required for synaptic targeting of Alzheimer's toxic amyloid-β peptide oligomers. J Neurochem. 2010;115:1520–9.

    Article  CAS  PubMed  Google Scholar 

  72. Hu NW, Smith IM, Walsh DM, Rowan MJ. Soluble amyloid-beta peptides potently disrupt hippocampal synaptic plasticity in the absence of cerebrovascular dysfunction in vivo. Brain 2008;131(Pt 9):2414–24.

    Article  PubMed  Google Scholar 

  73. Kervern M, Angeli A, Nicole O, Léveillé F, Parent B, Villette V, et al. Selective impairment of some forms of synaptic plasticity by oligomeric amyloid-β peptide in the mouse hippocampus: implication of extrasynaptic NMDA receptors. J Alzheimers Dis. 2012;32:183–96.

    Article  CAS  PubMed  Google Scholar 

  74. Rönicke R, Mikhaylova M, Rönicke S, Meinhardt J, Schröder UH, Fändrich M, et al. Early neuronal dysfunction by amyloid β oligomers depends on activation of NR2B-containing NMDA receptors. Neurobiol Aging. 2011;32:2219–28.

    Article  PubMed  Google Scholar 

  75. Varga E, Juhász G, Bozsó Z, Penke B, Fülöp L, Szegedi V. Amyloid-β1-42 disrupts synaptic plasticity by altering glutamate recycling at the synapse. J Alzheimers Dis. 2015;45:449–56.

    Article  CAS  PubMed  Google Scholar 

  76. Kessels HW, Nabavi S, Malinow R. Metabotropic NMDA receptor function is required for β-amyloid-induced synaptic depression. Proc Natl Acad Sci USA. 2013;110:4033–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Klyubin I, Wang Q, Reed MN, Irving EA, Upton N, Hofmeister J, et al. Protection against Aβ-mediated rapid disruption of synaptic plasticity and memory by memantine. Neurobiol Aging. 2011;32:614–23.

    Article  CAS  PubMed  Google Scholar 

  78. Léveillé F, El Gaamouch F, Gouix E, Lecocq M, Lobner D, Nicole O, et al. Neuronal viability is controlled by a functional relation between synaptic and extrasynaptic NMDA receptors. FASEB J. 2008;22:4258–71.

    Article  PubMed  Google Scholar 

  79. Rush T, Buisson A. Reciprocal disruption of neuronal signaling and Aβ production mediated by extrasynaptic NMDA receptors: a downward spiral. Cell Tissue Res. 2014;356:279–86.

    Article  CAS  PubMed  Google Scholar 

  80. Snyder EM, Nong Y, Almeida CG, Paul S, Moran T, Choi EY, et al. Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci. 2005;8:1051–8.

    Article  CAS  PubMed  Google Scholar 

  81. Birnbaum JH, Bali J, Rajendran L, Nitsch RM, Tackenberg C. Calcium flux-independent NMDA receptor activity is required for Aβ oligomer-induced synaptic loss. Cell Death Dis. 2015;6:e1791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tamburri A, Dudilot A, Licea S, Bourgeois C, Boehm J. NMDA-receptor activation but not ion flux is required for amyloid-beta induced synaptic depression. PloS one. 2013;8:e65350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Huganir RL, Nicoll RA. AMPARs and synaptic plasticity: the last 25 years. Neuron. 2013;80:704–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Armstrong DM, Ikonomovic MD, Sheffield R, Wenthold RJ. AMPA-selective glutamate receptor subtype immunoreactivity in the entorhinal cortex of non-demented elderly and patients with Alzheimer's disease. Brain Res. 1994;639:207–16.

    Article  CAS  PubMed  Google Scholar 

  85. Guntupalli S, Widagdo J, Anggono V. Amyloid-beta-induced dysregulation of AMPA receptor trafficking. Neural Plast. 2016;2016:3204519.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Hsieh H, Boehm J, Sato C, Iwatsubo T, Tomita T, Sisodia S, et al. AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron. 2006;52:831–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jurado S. AMPA receptor trafficking in natural and pathological aging. Front Mol Neurosci. 2018;10:446.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Miñano-Molina AJ, España J, Martín E, Barneda-Zahonero B, Fadó R, Solé M, et al. Soluble oligomers of amyloid-β peptide disrupt membrane trafficking of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor contributing to early synapse dysfunction. J Biol Chem. 2011;286:27311–21.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Sanderson JL, Freund RK, Gorski JA, Dell'Acqua ML. β-Amyloid disruption of LTP/LTD balance is mediated by AKAP150-anchored PKA and Calcineurin regulation of Ca2+-permeable AMPA receptors. Cell Rep. 2021;37:109786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Liu SJ, Gasperini R, Foa L, Small DH. Amyloid-beta decreases cell-surface AMPA receptors by increasing intracellular calcium and phosphorylation of GluR2. J Alzheimers Dis. 2010;21:655–66.

    Article  PubMed  Google Scholar 

  91. Zhang Y, Kurup P, Xu J, Anderson GM, Greengard P, Nairn AC, et al. Reduced levels of the tyrosine phosphatase STEP block β amyloid-mediated GluA1/GluA2 receptor internalization. J Neurochem. 2011;119:664–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhao WQ, Santini F, Breese R, Ross D, Zhang XD, Stone DJ, et al. Inhibition of calcineurin-mediated endocytosis and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors prevents amyloid beta oligomer-induced synaptic disruption. J Biol Chem. 2010;285:7619–32.

    Article  CAS  PubMed  Google Scholar 

  93. Guntupalli S, Jang SE, Zhu T, Huganir RL, Widagdo J, Anggono V. GluA1 subunit ubiquitination mediates amyloid-β-induced loss of surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. J Biol Chem. 2017;292:8186–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tanaka H, Sakaguchi D, Hirano T. Amyloid-β oligomers suppress subunit-specific glutamate receptor increase during LTP. Alzheimers Dement. 2019;5:797–808.

    Article  Google Scholar 

  95. Whitcomb DJ, Hogg EL, Regan P, Piers T, Narayan P, Whitehead G, et al. Intracellular oligomeric amyloid-beta rapidly regulates GluA1 subunit of AMPA receptor in the hippocampus. Sci Rep. 2015;5:10934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lapointe V, Morin F, Ratté S, Croce A, Conquet F, Lacaille JC. Synapse-specific mGluR1-dependent long-term potentiation in interneurones regulates mouse hippocampal inhibition. J Physiol. 2004;555:125–35.

    Article  CAS  PubMed  Google Scholar 

  97. Gil-Sanz C, Delgado-García JM, Fairén A, Gruart A. Involvement of the mGluR1 receptor in hippocampal synaptic plasticity and associative learning in behaving mice. Cereb Cortex. 2008;18:1653–63.

    Article  PubMed  Google Scholar 

  98. Reiner A, Levitz J. Glutamatergic signaling in the central nervous system: ionotropic and metabotropic receptors in concert. Neuron. 2018;98:1080–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Srivastava A, Das B, Yao AY, Yan R. Metabotropic glutamate receptors in Alzheimer's disease synaptic dysfunction: therapeutic opportunities and hope for the future. J Alzheimers Dis. 2020;78:1345–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Albasanz JL, Dalfó E, Ferrer I, Martín M. Impaired metabotropic glutamate receptor/phospholipase C signaling pathway in the cerebral cortex in Alzheimer's disease and dementia with Lewy bodies correlates with stage of Alzheimer's-disease-related changes. Neurobiol Dis. 2005;20:685–93.

    Article  CAS  PubMed  Google Scholar 

  101. Hu NW, Nicoll AJ, Zhang D, Mably AJ, O'Malley T, Purro SA, et al. mGlu5 receptors and cellular prion protein mediate amyloid-β-facilitated synaptic long-term depression in vivo. Nat Commun. 2014;5:3374.

    Article  PubMed  Google Scholar 

  102. O'Riordan KJ, Hu NW, Rowan MJ. Physiological activation of mGlu5 receptors supports the ion channel function of NMDA receptors in hippocampal LTD induction in vivo. Sci Rep. 2018;8:4391.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Sarantis K, Tsiamaki E, Kouvaros S, Papatheodoropoulos C, Angelatou F. Adenosine A2A receptors permit mGluR5-evoked tyrosine phosphorylation of NR2B (Tyr1472) in rat hippocampus: a possible key mechanism in NMDA receptor modulation. J Neurochem. 2015;135:714–26.

    Article  CAS  PubMed  Google Scholar 

  104. Ma T, Klann E. Amyloid β: linking synaptic plasticity failure to memory disruption in Alzheimer's disease. J Neurochem. 2012;120:140–8.

    Article  CAS  PubMed  Google Scholar 

  105. Yang W, Zhou X, Zimmermann HR, Cavener DR, Klann E, Ma T. Repression of the eIF2α kinase PERK alleviates mGluR-LTD impairments in a mouse model of Alzheimer's disease. Neurobiol Aging. 2016;41:19–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zimmermann HR, Yang W, Kasica NP, Zhou X, Wang X, Beckelman BC, et al. Brain-specific repression of AMPKα1 alleviates pathophysiology in Alzheimer's model mice. J Clin Invest. 2020;130:3511–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yang W, Zhou X, Ryazanov AG, Ma T. Suppression of the kinase for elongation factor 2 alleviates mGluR-LTD impairments in a mouse model of Alzheimer's disease. Neurobiol Aging. 2021;98:225–30.

    Article  CAS  PubMed  Google Scholar 

  108. Ma T. Roles of eukaryotic elongation factor 2 kinase (eEF2K) in neuronal plasticity, cognition, and Alzheimer disease. J Neurochem. 2021;1–11. Online ahead of print.

  109. Shen Y, Zhang ZC, Cheng S, Liu A, Zuo J, Xia S, et al. PQBP1 promotes translational elongation and regulates hippocampal mGluR-LTD by suppressing eEF2 phosphorylation. Mol Cell. 2021;81:1425–1438.e10.

    Article  CAS  PubMed  Google Scholar 

  110. Hu Z, Yu P, Zhang Y, Yang Y, Zhu M, Qin S, et al. Inhibition of the ISR abrogates mGluR5-dependent long-term depression and spatial memory deficits in a rat model of Alzheimer's disease. Transl Psychiatry. 2022;12:96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Barry AE, Klyubin I, Mc Donald JM, Mably AJ, Farrell MA, Scott M, et al. Alzheimer's disease brain-derived amyloid-β-mediated inhibition of LTP in vivo is prevented by immunotargeting cellular prion protein. J Neurosci. 2011;31:7259–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kobayashi E, Nakano M, Kubota K, Himuro N, Mizoguchi S. Chikenji T, et al. Activated forms of astrocytes with higher GLT-1 expression are associated with cognitive normal subjects with Alzheimer pathology in human brain. Sci Rep. 2018;8:1712.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Marvin JS, Borghuis BG, Tian L, Cichon J, Harnett MT, Akerboom J, et al. An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat Methods. 2013;10:162–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Scimemi A, Tian H, Diamond JS. Neuronal transporters regulate glutamate clearance, NMDA receptor activation, and synaptic plasticity in the hippocampus. J Neurosci. 2009;29:14581–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wilkie CM, Barron JC, Brymer KJ, Barnes JR, Nafar F, Parsons MP. The effect of GLT-1 upregulation on extracellular glutamate dynamics. Front Cell Neurosci. 2021;15:661412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lei M, Xu H, Li Z, Wang Z, O'Malley TT, Zhang D, et al. Soluble Aβ oligomers impair hippocampal LTP by disrupting glutamatergic/GABAergic balance. Neurobiol Dis. 2016;85:111–21.

    Article  CAS  PubMed  Google Scholar 

  117. Dutar P, Potier B. Susceptibility to Aβo and TBOA of LTD and extrasynaptic NMDAR-dependent tonic current in the aged rat hippocampus. Neurochem Res. 2019;44:692–702.

    Article  CAS  PubMed  Google Scholar 

  118. Huang S, Tong H, Lei M, Zhou M, Guo W, Li G, et al. Astrocytic glutamatergic transporters are involved in Aβ-induced synaptic dysfunction. Brain Res. 2018;1678:129–37.

    Article  CAS  PubMed  Google Scholar 

  119. Henson MA, Tucker CJ, Zhao M, Dudek SM. Long-term depression-associated signaling is required for an in vitro model of NMDA receptor-dependent synapse pruning. Neurobiol Learn Mem. 2017;138:39–53.

    Article  CAS  PubMed  Google Scholar 

  120. Matos M, Augusto E, Machado NJ, dos Santos-Rodrigues A, Cunha RA, Agostinho P. Astrocytic adenosine A2A receptors control the amyloid-β peptide-induced decrease of glutamate uptake. J Alzheimers Dis. 2012;31:555–67.

    Article  CAS  PubMed  Google Scholar 

  121. Jacob CP, Koutsilieri E, Bartl J, Neuen-Jacob E, Arzberger T, Zander N, et al. Alterations in expression of glutamatergic transporters and receptors in sporadic Alzheimer's disease. J Alzheimers Dis. 2007;11:97–116.

    Article  CAS  PubMed  Google Scholar 

  122. Scott HA, Gebhardt FM, Mitrovic AD, Vandenberg RJ, Dodd PR. Glutamate transporter variants reduce glutamate uptake in Alzheimer's disease. Neurobiol Aging. 2011;32:553.e1–11.

    Article  PubMed  Google Scholar 

  123. Meeker KD, Meabon JS, Cook DG. Partial loss of the glutamate transporter GLT-1 alters brain akt and insulin signaling in a mouse model of Alzheimer's disease. J Alzheimers Dis. 2015;45:509–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mookherjee P, Green PS, Watson GS, Marques MA, Tanaka K, Meeker KD, et al. GLT-1 loss accelerates cognitive deficit onset in an Alzheimer's disease animal model. J Alzheimers Dis. 2011;26:447–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Fan S, Xian X, Li L, Yao X, Hu Y, Zhang M, et al. Ceftriaxone improves cognitive function and upregulates GLT-1-related glutamate-glutamine cycle in APP/PS1 mice. J Alzheimers Dis. 2018;66:1731–43.

    Article  CAS  PubMed  Google Scholar 

  126. Takahashi K, Kong Q, Lin Y, Stouffer N, Schulte DA, Lai L, et al. Restored glial glutamate transporter EAAT2 function as a potential therapeutic approach for Alzheimer's disease. J Exp Med. 2015;212:319–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tikhonova MA, Amstislavskaya TG, Ho YJ, Akopyan AA, Tenditnik MV, Ovsyukova MV, et al. Neuroprotective effects of ceftriaxone involve the reduction of Aβ burden and neuroinflammatory response in a mouse model of Alzheimer's disease. Front Neurosci. 2021;15:736786.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Araque A, Carmignoto G, Haydon PG, Oliet SH, Robitaille R, Volterra A. Gliotransmitters travel in time and space. Neuron. 2014;81:728–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sherwood MW, Oliet SHR, Panatier A. NMDARs, coincidence detectors of astrocytic and neuronal activities. Int J Mol Sci. 2021;22:7258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Mota SI, Ferreira IL, Rego AC. Dysfunctional synapse in Alzheimer's disease - a focus on NMDA receptors. Neuropharmacology. 2014;76:16–26.

    Article  CAS  PubMed  Google Scholar 

  131. Lee MC, Ting KK, Adams S, Brew BJ, Chung R, Guillemin GJ. Characterisation of the expression of NMDA receptors in human astrocytes. PLoS One. 2010;5:e14123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Li Y, Chang L, Song Y, Gao X, Roselli F, Liu J, et al. Astrocytic GluN2A and GluN2B oppose the synaptotoxic effects of amyloid-β1-40 in hippocampal cells. J Alzheimers Dis. 2016;54:135–48.

    Article  CAS  PubMed  Google Scholar 

  133. Busche MA, Chen X, Henning HA, Reichwald J, Staufenbiel M, Sakmann B, et al. Critical role of soluble amyloid-β for early hippocampal hyperactivity in a mouse model of Alzheimer's disease. Proc Natl Acad Sci USA. 2012;109:8740–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gschwind T, Lafourcade C, Gfeller T, Zaichuk M, Rambousek L, Knuesel I, et al. Contribution of early Alzheimer's disease-related pathophysiology to the development of acquired epilepsy. Eur J Neurosci. 2018;47:1534–62.

    Article  PubMed  Google Scholar 

  135. Hector A, Brouillette J. Hyperactivity induced by soluble amyloid-β oligomers in the early stages of Alzheimer's disease. Front Mol Neurosci. 2021;13:600084.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Vossel KA, Ranasinghe KG, Beagle AJ, Mizuiri D, Honma SM, Dowling AF, et al. Incidence and impact of subclinical epileptiform activity in Alzheimer's disease. Ann Neurol. 2016;80:858–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lam AD, Sarkis RA, Pellerin KR, Jing J, Dworetzky BA, Hoch DB, et al. Association of epileptiform abnormalities and seizures in Alzheimer disease. Neurology. 2020;95:e2259–e2270.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T, et al. APP processing and synaptic function. Neuron. 2003;37:925–37.

    Article  CAS  PubMed  Google Scholar 

  139. Cirrito JR, Yamada KA, Finn MB, Sloviter RS, Bales KR, May PC, et al. Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo. Neuron. 2005;48:913–22.

    Article  CAS  PubMed  Google Scholar 

  140. Cirrito JR, Kang JE, Lee J, Stewart FR, Verges DK, Silverio LM, et al. Endocytosis is required for synaptic activity-dependent release of amyloid-beta in vivo. Neuron. 2008;58:42–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Cheng X, Wu J, Geng M, Xiong J. Role of synaptic activity in the regulation of amyloid beta levels in Alzheimer's disease. Neurobiol Aging. 2014;35:1217–32.

    Article  CAS  PubMed  Google Scholar 

  142. Lozupone M, Solfrizzi V, D'Urso F, Di Gioia I, Sardone R, Dibello V, et al. Anti-amyloid-β protein agents for the treatment of Alzheimer's disease: an update on emerging drugs. Expert Opin Emerg Drugs. 2020;25:319–35.

    Article  CAS  PubMed  Google Scholar 

  143. Tucker S, Möller C, Tegerstedt K, Lord A, Laudon H, Sjödahl J, et al. The murine version of BAN2401 (mAb158) selectively reduces amyloid-β protofibrils in brain and cerebrospinal fluid of tg-ArcSwe mice. J Alzheimers Dis. 2015;43:575–88.

    Article  CAS  PubMed  Google Scholar 

  144. Bussiere T, Weinreb PH, Dunstan RW, Qian F, Arast MF, Li M. Differential in vitro and in vivo binding profiles of BIIB037 and other anti-abeta clinical antibody candidates. Neurodegener Dis. 2013;11(Suppl 1).

  145. Yang T, Dang Y, Ostaszewski B, Mengel D, Steffen V, Rabe C, et al. Target engagement in an alzheimer trial: Crenezumab lowers amyloid β oligomers in cerebrospinal fluid. Ann Neurol. 2019;86:215–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Koffie RM, Meyer-Luehmann M, Hashimoto T, Adams KW, Mielke ML, Garcia-Alloza M, et al. Oligomeric amyloid beta associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc Natl Acad Sci USA. 2009;106:4012–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Bard F, Barbour R, Cannon C, Carretto R, Fox M, Games D, et al. Epitope and isotype specificities of antibodies to beta -amyloid peptide for protection against Alzheimer's disease-like neuropathology. Proc Natl Acad Sci USA. 2003;100:2023–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zago W, Buttini M, Comery TA, Nishioka C, Gardai SJ, Seubert P, et al. Neutralization of soluble, synaptotoxic amyloid β species by antibodies is epitope specific. J Neurosci. 2012;32:2696–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. van Dyck CH. Anti-amyloid-β monoclonal antibodies for Alzheimer's disease: pitfalls and promise. Biol Psychiatry. 2018;83:311–9.

    Article  PubMed  Google Scholar 

  150. Yang Y, Ji WG, Zhang YJ, Zhou LP, Chen H, Yang N, et al. Riluzole ameliorates soluble Aβ1-42-induced impairments in spatial memory by modulating the glutamatergic/GABAergic balance in the dentate gyrus. Prog Neuropsychopharmacol Biol Psychiatry. 2021;108:110077.

    Article  CAS  PubMed  Google Scholar 

  151. Minkeviciene R, Rheims S, Dobszay MB, Zilberter M, Hartikainen J, Fülöp L, et al. Amyloid beta-induced neuronal hyperexcitability triggers progressive epilepsy. J Neurosci. 2009;29:3453–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Südkamp N, Shchyglo O, Manahan-Vaughan D. Absence of pannexin 1 stabilizes hippocampal excitability after intracerebral treatment with Aβ (1-42) and prevents LTP deficits in middle-aged mice. Front Aging Neurosci. 2021;13:591735.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Brunetti V, D'Atri A, Della Marca G, Vollono C, Marra C, Vita MG, et al. Subclinical epileptiform activity during sleep in Alzheimer's disease and mild cognitive impairment. Clin Neurophysiol. 2020;131:1011–8.

    Article  PubMed  Google Scholar 

  154. Horvath AA, Papp A, Zsuffa J, Szucs A, Luckl J, Radai F, et al. Subclinical epileptiform activity accelerates the progression of Alzheimer's disease: a long-term EEG study. Clin Neurophysiol. 2021;132:1982–9.

    Article  PubMed  Google Scholar 

  155. Vossel KA, Tartaglia MC, Nygaard HB, Zeman AZ, Miller BL. Epileptic activity in Alzheimer's disease: causes and clinical relevance. Lancet Neurol. 2017;16:311–22.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Lam AD, Deck G, Goldman A, Eskandar EN, Noebels J, Cole AJ. Silent hippocampal seizures and spikes identified by foramen ovale electrodes in Alzheimer's disease. Nat Med. 2017;23:678–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Armada-Moreira A, Gomes JI, Pina CC, Savchak OK, Gonçalves-Ribeiro J, Rei N, et al. Going the Extra (Synaptic) Mile: Excitotoxicity as the Road Toward Neurodegenerative Diseases. Front Cell Neurosci. 2020;14:90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bürge M, Kratzer S, Mattusch C, Hofmann C, Kreuzer M, Parsons CG, et al. The anaesthetic xenon partially restores an amyloid beta-induced impairment in murine hippocampal synaptic plasticity. Neuropharmacology 2019;151:21–32.

    Article  PubMed  Google Scholar 

  159. Hu NW, Klyubin I, Anwyl R, Rowan MJ. GluN2B subunit-containing NMDA receptor antagonists prevent Abeta-mediated synaptic plasticity disruption in vivo. Proc Natl Acad Sci USA. 2009;106:20504–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Rammes G, Hasenjäger A, Sroka-Saidi K, Deussing JM, Parsons CG. Therapeutic significance of NR2B-containing NMDA receptors and mGluR5 metabotropic glutamate receptors in mediating the synaptotoxic effects of β-amyloid oligomers on long-term potentiation (LTP) in murine hippocampal slices. Neuropharmacology. 2011;60:982–90.

    Article  CAS  PubMed  Google Scholar 

  161. Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, et al. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature. 2005;433:73–77.

    Article  CAS  PubMed  Google Scholar 

  162. Tikhonova MA, Amstislavskaya TG, Belichenko VM, Fedoseeva LA, Kovalenko SP, Pisareva EE, et al. Modulation of the expression of genes related to the system of amyloid-beta metabolism in the brain as a novel mechanism of ceftriaxone neuroprotective properties. BMC Neurosci. 2018;19:13.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Fan S, Li L, Xian X, Liu L, Gao J, Li W. Ceftriaxone regulates glutamate production and vesicular assembly in presynaptic terminals through GLT-1 in APP/PS1 mice. Neurobiol Learn Mem. 2021;183:107480.

    Article  CAS  PubMed  Google Scholar 

  164. Hefendehl JK, LeDue J, Ko RW, Mahler J, Murphy TH, MacVicar BA. Mapping synaptic glutamate transporter dysfunction in vivo to regions surrounding Aβ plaques by iGluSnFR two-photon imaging. Nat Commun. 2016;7:13441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Zumkehr J, Rodriguez-Ortiz CJ, Cheng D, Kieu Z, Wai T, Hawkins C, et al. Ceftriaxone ameliorates tau pathology and cognitive decline via restoration of glial glutamate transporter in a mouse model of Alzheimer's disease. Neurobiol Aging. 2015;36:2260–71.

    Article  CAS  PubMed  Google Scholar 

  166. Gylys KH, Fein JA, Yang F, Wiley DJ, Miller CA, Cole GM. Synaptic changes in Alzheimer's disease: increased amyloid-beta and gliosis in surviving terminals is accompanied by decreased PSD-95 fluorescence. Am J Pathol. 2004;165:1809–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sheng M, Sabatini BL, Südhof TC. Synapses and Alzheimer's disease. Cold Spring Harb Perspect Biol. 2012;4:a005777.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Bin Ibrahim MZ, Benoy A, Sajikumar S Long-term plasticity in the hippocampus: maintaining within and 'tagging' between synapses. FEBS J. 2021. https://doi.org/10.1111/febs.16065.

  169. Hannan AJ. Environmental enrichment and brain repair: harnessing the therapeutic effects of cognitive stimulation and physical activity to enhance experience-dependent plasticity. Neuropathol Appl Neurobiol. 2014;40:13–25.

    Article  CAS  PubMed  Google Scholar 

  170. Li S, Jin M, Zhang D, Yang T, Koeglsperger T, Fu H, et al. Environmental novelty activates β2-adrenergic signaling to prevent the impairment of hippocampal LTP by Aβ oligomers. Neuron. 2013;77:929–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ohline SM, Abraham WC. Environmental enrichment effects on synaptic and cellular physiology of hippocampal neurons. Neuropharmacology. 2019;145:3–12.

    Article  CAS  PubMed  Google Scholar 

  172. Zhou HC, Sun YY, Cai W, He XT, Yi F, Li BM, et al. Activation of β2-adrenoceptor enhances synaptic potentiation and behavioral memory via cAMP-PKA signaling in the medial prefrontal cortex of rats. Learn Mem. 2013;20:274–84.

    Article  CAS  PubMed  Google Scholar 

  173. Chai GS, Wang YY, Yasheng A, Zhao P. Beta 2-adrenergic receptor activation enhances neurogenesis in Alzheimer's disease mice. Neural Regen Res. 2016;11:1617–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Chai GS, Wang YY, Zhu D, Yasheng A, Zhao P. Activation of β2-adrenergic receptor promotes dendrite ramification and spine generation in APP/PS1 mice. Neurosci Lett. 2017;636:158–64.

    Article  CAS  PubMed  Google Scholar 

  175. Branca C, Wisely EV, Hartman LK, Caccamo A, Oddo S. Administration of a selective β2 adrenergic receptor antagonist exacerbates neuropathology and cognitive deficits in a mouse model of Alzheimer's disease. Neurobiol Aging. 2014;35:2726–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Wang D, Govindaiah G, Liu R, De Arcangelis V, Cox CL, Xiang YK. Binding of amyloid beta peptide to beta2 adrenergic receptor induces PKA-dependent AMPA receptor hyperactivity. FASEB J. 2010;24:3511–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Evans AK, Ardestani PM, Yi B, Park HH, Lam RK, Shamloo M. Beta-adrenergic receptor antagonism is proinflammatory and exacerbates neuroinflammation in a mouse model of Alzheimer's Disease. Neurobiol Dis. 2020;146:105089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Sharma D, Farrar JD. Adrenergic regulation of immune cell function and inflammation. Semin Immunopathol. 2020;42:709–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Xu H, Rajsombath MM, Weikop P, Selkoe DJ. Enriched environment enhances β-adrenergic signaling to prevent microglia inflammation by amyloid-β. EMBO Mol Med. 2018;10:e8931.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Dang V, Medina B, Das D, Moghadam S, Martin KJ, Lin B, et al. Formoterol, a long-acting β2 adrenergic agonist, improves cognitive function and promotes dendritic complexity in a mouse model of Down syndrome. Biol Psychiatry. 2014;75:179–88.

    Article  CAS  PubMed  Google Scholar 

  181. Emili M, Stagni F, Salvalai ME, Uguagliati B, Giacomini A, Albac C, et al. Neonatal therapy with clenbuterol and salmeterol restores spinogenesis and dendritic complexity in the dentate gyrus of the Ts65Dn model of Down syndrome. Neurobiol Dis 2020;140:104874.

    Article  CAS  PubMed  Google Scholar 

  182. Chen CL, Wang SY, Chen TC, Chuang CS. Association between β2-adrenoreceptor medications and risk of Parkinson's disease: a meta-analysis. Medicina. 2021;57:1006.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Hopfner F, Wod M, Höglinger GU, Blaabjerg M, Rösler TW, Kuhlenbäumer G, et al. Use of β2-adrenoreceptor agonist and antagonist drugs and risk of Parkinson disease. Neurology. 2019;93:e135–e142.

    Article  CAS  PubMed  Google Scholar 

  184. Bartus RT, Bétourné A, Basile A, Peterson BL, Glass J, Boulis NM. β2-Adrenoceptor agonists as novel, safe and potentially effective therapies for Amyotrophic lateral sclerosis (ALS). Neurobiol Dis. 2016;85:11–24.

    Article  CAS  PubMed  Google Scholar 

  185. Araujo LP, Maricato JT, Guereschi MG, Takenaka MC, Nascimento VM, de Melo FM, et al. The sympathetic nervous system mitigates CNS autoimmunity via β2-adrenergic receptor signaling in immune cells. Cell Rep. 2019;28:3120–3130.e5.

    Article  CAS  PubMed  Google Scholar 

  186. Yong HY, McKay KA, Daley CGJ, Tremlett H. Drug exposure and the risk of multiple sclerosis: a systematic review. Pharmacoepidemiol Drug Saf. 2018;27:133–9.

    Article  CAS  PubMed  Google Scholar 

  187. Lengali L, Hippe J, Hatlestad-Hall C, Rygvold TW, Sneve MH, Andersson S. Sensory-induced human LTP-like synaptic plasticity - using visual evoked potentials to explore the relation between LTP-like synaptic plasticity and visual perceptual learning. Front Hum Neurosci. 2021;15:684573.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Cirillo G, Di Pino G, Capone F, Ranieri F, Florio L, Todisco V, et al. Neurobiological after-effects of non-invasive brain stimulation. Brain Stimul. 2017;10:1–18.

    Article  CAS  PubMed  Google Scholar 

  189. Patel UK, Anwar A, Saleem S, Malik P, Rasul B, Patel K, et al. Artificial intelligence as an emerging technology in the current care of neurological disorders. J Neurol. 2021;268:1623–42.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by a grant (to SL) from the Massachusetts Alzheimer’s Disease Research Center (5P50 AG 005134).

Author information

Authors and Affiliations

Authors

Contributions

SL was invited to write this Expert Review and conceived the scope of the paper. SL and AMS wrote and edited the manuscript.

Corresponding author

Correspondence to Shaomin Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Stern, A.M. Bioactive human Alzheimer brain soluble Aβ: pathophysiology and therapeutic opportunities. Mol Psychiatry 27, 3182–3191 (2022). https://doi.org/10.1038/s41380-022-01589-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01589-5

This article is cited by

Search

Quick links