Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A neuronal social trait space for first impressions in the human amygdala and hippocampus

Abstract

People instantaneously evaluate faces with significant agreement on evaluations of social traits. However, the neural basis for such rapid spontaneous face evaluation remains largely unknown. Here, we recorded from 490 neurons in the human amygdala and hippocampus and found that the neuronal activity was associated with the geometry of a social trait space. We further investigated the temporal evolution and modulation on the social trait representation, and we employed encoding and decoding models to reveal the critical social traits for the trait space. We also recorded from another 938 neurons and replicated our findings using different social traits. Together, our results suggest that there exists a neuronal population code for a comprehensive social trait space in the human amygdala and hippocampus that underlies spontaneous first impressions. Changes in such neuronal social trait space may have implications for the abnormal processing of social information observed in some neurological and psychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A neuronal social trait space.
Fig. 2: Encoding and decoding models.
Fig. 3: Replication of the neuronal social trait space using the FaceGen stimuli and a different set of social traits.
Fig. 4: People with ASD demonstrate atypical social trait representations.

Similar content being viewed by others

Data availability

All data are publicly available on OSF (https://osf.io/a4jn3/).

References

  1. Willis J, Todorov A. First impressions: making up your mind after a 100-Ms exposure to a face. Psychological Sci. 2006;17:592–8.

    Article  Google Scholar 

  2. Todorov A, Olivola CY, Dotsch R, Mende-Siedlecki P. Social attributions from faces: determinants, consequences, accuracy, and functional significance. Annu Rev Psychol. 2015;66:519–45.

    Article  PubMed  Google Scholar 

  3. Chang L, Tsao DY. The code for facial identity in the primate brain. Cell. 2017;169:1013–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Freiwald WA, Tsao DY, Livingstone MS. A face feature space in the macaque temporal lobe. Nat Neurosci. 2009;12:1187–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Leopold DA, Bondar IV, Giese MA. Norm-based face encoding by single neurons in the monkey inferotemporal cortex. Nature. 2006;442:572–5.

    Article  CAS  PubMed  Google Scholar 

  6. Montagrin A, Saiote C, Schiller D. The social hippocampus. Hippocampus. 2018;28:672–9.

    Article  PubMed  Google Scholar 

  7. Rutishauser U, Mamelak AN, Adolphs R. The primate amygdala in social perception—insights from electrophysiological recordings and stimulation. Trends Neurosci. 2015;38:295–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Adolphs R, Tranel D, Damasio AR. The human amygdala in social judgment. Nature. 1998;393:470–4.

    Article  CAS  PubMed  Google Scholar 

  9. Todorov A, Baron SG, Oosterhof NN. Evaluating face trustworthiness: a model based approach. Soc Cogn Affect Neurosci. 2008;3:119–27.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang S, Yu R, Tyszka JM, Zhen S, Kovach C, Sun S, et al. The human amygdala parametrically encodes the intensity of specific facial emotions and their categorical ambiguity. Nat Commun. 2017;8:14821.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Said CP, Sebe N, Todorov A. Structural resemblance to emotional expressions predicts evaluation of emotionally neutral faces. Emotion. 2009;9:260–4.

    Article  PubMed  Google Scholar 

  12. Oosterhof NN, Todorov A. The functional basis of face evaluation. Proc Natl Acad Sci USA. 2008;105:11087–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sutherland CAM, Oldmeadow JA, Santos IM, Towler J, Michael Burt D, Young AW. Social inferences from faces: Ambient images generate a three-dimensional model. Cognition. 2013;127:105–18.

    Article  PubMed  Google Scholar 

  14. Lin C, Keles U, Adolphs R. Four dimensions characterize attributions from faces using a representative set of English trait words. Nat Commun. 2021;12:5168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Adolphs R, Sears L, Piven J. Abnormal processing of social information from faces in autism. J Cogn Neurosci. 2001;13:232–40.

    Article  CAS  PubMed  Google Scholar 

  16. Klin A, Jones W, Schultz R, Volkmar F, Cohen D. Visual fixation patterns during viewing of naturalistic social situations as predictors of social competence in individuals with autism. Arch Gen Psychiatry. 2002;59:809–16.

    Article  PubMed  Google Scholar 

  17. Pelphrey KA, Sasson NJ, Reznick JS, Paul G, Goldman BD, Piven J. Visual scanning of faces in autism. J Autism Developmental Disord. 2002;32:249–61.

    Article  Google Scholar 

  18. Dawson G, Webb SJ, McPartland J. Understanding the nature of face processing impairment in autism: insights from behavioral and electrophysiological studies. Developmental Neuropsychol. 2005;27:403–24.

    Article  Google Scholar 

  19. Wang S, Adolphs R. Reduced specificity in emotion judgment in people with autism spectrum disorder. Neuropsychologia. 2017;99:286–95.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang S, Adolphs R. Social saliency. In: Zhao Q, editor. Computational and cognitive neuroscience of vision. Singapore: Springer; 2017. p. 171–93.

  21. Baron-Cohen S, Ring HA, Bullmore ET, Wheelwright S, Ashwin C, Williams SC. The amygdala theory of autism. Neurosci Biobehav Rev. 2000;24:355–64.

    Article  CAS  PubMed  Google Scholar 

  22. Schumann CM, Amaral DG. Stereological analysis of amygdala neuron number in autism. J Neurosci. 2006;26:7674–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rutishauser U, Tudusciuc O, Wang S, Mamelak AN, Ross IB, Adolphs R. Single-neuron correlates of atypical face processing in autism. Neuron. 2013;80:887–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kliemann D, Dziobek I, Hatri A, Baudewig J, Heekeren HR. The role of the amygdala in atypical gaze on emotional faces in autism spectrum disorders. J Neurosci. 2012;32:9469–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Freiwald W, Duchaine B, Yovel G. Face processing systems: from neurons to real-world social perception. Annu Rev Neurosci. 2016;39:325–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cao R, Li X, Todorov A, Wang S. A flexible neural representation of faces in the human brain. Cereb Cortex Commun. 2020;1:tgaa055.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Reber TP, Bausch M, Mackay S, Boström J, Elger CE, Mormann F. Representation of abstract semantic knowledge in populations of human single neurons in the medial temporal lobe. PLoS Biol. 2019;17:e3000290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kriegeskorte N, Mur M, Bandettini P. Representational similarity analysis—connecting the branches of systems neuroscience. Front Syst Neurosci. 2008;2:4.

  29. Stolier RM, Freeman JB. Neural pattern similarity reveals the inherent intersection of social categories. Nat Neurosci. 2016;19:795–7.

    Article  CAS  PubMed  Google Scholar 

  30. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 1995;57:289–300.

    Google Scholar 

  31. Baron-Cohen S, Ring HA, Bullmore ET, Wheelwright S, Ashwin C, Williams SCR. The amygdala theory of autism. Neurosci Biobehav Rev. 2000;24:355–64.

    Article  CAS  PubMed  Google Scholar 

  32. Yilmazer-Hanke DM, Wolf HK, Schramm J, Elger CE, Wiestler OD, Blümcke I. Subregional pathology of the amygdala complex and entorhinal region in surgical specimens from patients with pharmacoresistant temporal lobe epilepsy. J Neuropathol Exp Neurol. 2000;59:907–20.

    Article  CAS  PubMed  Google Scholar 

  33. Blümcke I, Thom M, Aronica E, Armstrong DD, Bartolomei F, Bernasconi A, et al. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a Task Force report from the ILAE Commission on Diagnostic Methods. Epilepsia. 2013;54:1315–29.

    Article  PubMed  Google Scholar 

  34. Leal RB, Lopes MW, Formolo DA, de Carvalho CR, Hoeller AA, Latini A, et al. Amygdala levels of the GluA1 subunit of glutamate receptors and its phosphorylation state at serine 845 in the anterior hippocampus are biomarkers of ictal fear but not anxiety. Mol Psychiatry. 2020;25:655–65.

    Article  CAS  PubMed  Google Scholar 

  35. de Carvalho CR, Lopes MW, Constantino LC, Hoeller AA, de Melo HM, Guarnieri R, et al. The ERK phosphorylation levels in the amygdala predict anxiety symptoms in humans and MEK/ERK inhibition dissociates innate and learned defensive behaviors in rats. Mol Psychiatry. 2021;26:7257–69.

  36. Stanley DA, Adolphs R. Toward a neural basis for social behavior. Neuron. 2013;80:816–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mende-Siedlecki P, Said CP, Todorov A. The social evaluation of faces: a meta-analysis of functional neuroimaging studies. Soc Cogn Affect Neurosci. 2013;8:285–99.

    Article  PubMed  Google Scholar 

  38. Pessoa L, Adolphs R. Emotion processing and the amygdala: from a ‘low road’ to ‘many roads’ of evaluating biological significance. Nat Rev Neurosci. 2010;11:773–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Grossman S, Gaziv G, Yeagle EM, Harel M, Mégevand P, Groppe DM, et al. Convergent evolution of face spaces across human face-selective neuronal groups and deep convolutional networks. Nat Commun. 2019;10:4934.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Strange BA, Witter MP, Lein ES, Moser EI. Functional organization of the hippocampal longitudinal axis. Nat Rev Neurosci. 2014;15:655–69.

    Article  CAS  PubMed  Google Scholar 

  41. Janak PH, Tye KM. From circuits to behaviour in the amygdala. Nature. 2015;517:284–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Langlois JH, Roggman LA. Attractive faces are only average. Psychological Sci. 1990;1:115–21.

    Article  Google Scholar 

  43. Rhodes G. The evolutionary psychology of facial beauty. Annu Rev Psychol. 2005;57:199–226.

    Article  Google Scholar 

  44. Todorov A, Mende-Siedlecki P, Dotsch R. Social judgments from faces. Curr Opin Neurobiol. 2013;23:373–80.

    Article  CAS  PubMed  Google Scholar 

  45. Sofer C, Dotsch R, Wigboldus DH, Todorov A. What is typical is good: the influence of face typicality on perceived trustworthiness. Psychological Sci. 2014;26:39–47.

    Article  Google Scholar 

  46. Hinton GE, McClelland J, Rumelhart D. Distributed representations In Parallel distributed processing: explorations in the microstructure of cognition, eds. Rumelhart D, McClelland J, pp. 77–109. Cambridge, MA: MIT Press, 1986.

  47. Adolphs R. What does the amygdala contribute to social cognition? Ann N Y Acad Sci. 2010;1191:42–61.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all patients for their participation, staff from WVU Ruby Memorial Hospital for support with patient testing, and Paula Webster for valuable comments. This research was supported by AFOSR Young Investigator Program Award (FA9550-21-1-0088), NSF Grants (BCS-1945230, IIS-2114644), Dana Foundation Clinical Neuroscience Award, and ORAU Ralph E. Powe Junior Faculty Enhancement Award. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

RC, CL, XL, and SW designed research. RC and SW performed experiments. NJB performed surgery. RC, CL, JH, and SW analyzed data. RC, CL, XL, AT, and SW wrote the paper. All authors discussed the results and contributed toward the manuscript.

Corresponding authors

Correspondence to Runnan Cao or Shuo Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, R., Lin, C., Hodge, J. et al. A neuronal social trait space for first impressions in the human amygdala and hippocampus. Mol Psychiatry 27, 3501–3509 (2022). https://doi.org/10.1038/s41380-022-01583-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01583-x

This article is cited by

Search

Quick links