Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Leukocyte telomere length in patients with schizophrenia and related disorders: a meta-analysis of case-control studies

Abstract

Context

Telomere length may serve as a biomarker of cellular aging. The literature assessing telomere length in schizophrenia contains conflicting results.

Objective

To assess differences in leukocyte telomere length (LTL) in peripheral blood in patients with schizophrenia and related disorders and healthy controls and to explore the effect of potential confounding variables.

Data sources

A search of Ovid MEDLINE, and Proquest databases was conducted to identify appropriate studies published from database inception through December 2020. The review protocol was registered with PROSPERO-ID: CRD42021233280.

Study selection

The initial literature search yielded 192 studies. After study selection in 3 phases, we included 29 samples from 22 studies in the meta-analysis database.

Data extraction

We used random effects and meta-regression models to derive Cohen d values with pooled 95% confidence intervals (CI) as estimates of effect size (ES) and to test effects of potential moderators.

Results

The overall meta-analysis included 4145 patients with schizophrenia and related disorders and 4184 healthy controls and showed that LTL was significantly shorter in patients, with a small to medium effect size (ES, −0.388; 95% CI, −0.492 to −0.283; p < 0.001). Subgroup meta-analyses did not find a significant effect of age or illness duration on differences in LTL in patients with psychosis relative to controls. Meta-regression analyses showed that none of the putative moderators had a significant effect on effect size estimates.

Conclusions

This meta-analysis find further support for the hypothesis of accelerated cellular aging in schizophrenia and related disorders and highlights the need for large longitudinal studies with repeated LTL measurements over time and appropriate assessments of associated factors.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Fig. 2

References

  1. Turner KJ, Vasu V, Griffin DK. Telomere biology and human phenotype. Cells. 2019;8:73.

    CAS  PubMed Central  Article  Google Scholar 

  2. Shammas MA. Telomeres, lifestyle, cancer, and aging. Curr Opin Clin Nutr Metab Care. 201;14:28–34.

  3. Zvereva MI, Shcherbakova DM, Dontsova OA. Telomerase: structure, functions, and activity regulation. Biochemistry (Mosc). 2010;75:1563–83.

    CAS  PubMed  Article  Google Scholar 

  4. Blasco MA. Telomere length, stem cells and aging. Nat Chem Biol. 2007;3:640–9.

    CAS  PubMed  Article  Google Scholar 

  5. Blasco MA. Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet. 2005;6:611–22.

    CAS  PubMed  Article  Google Scholar 

  6. Broer L, Codd V, Nyholt DR, Deelen J, Mangino M, Willemsen G, et al. Meta-analysis of telomere length in 19,713 subjects reveals high heritability, stronger maternal inheritance and a paternal age effect. Eur J Hum Genet. 2013;21:1163–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Aviv A. Telomeres and human aging: facts and fibs. Sci Aging Knowl Environ. 2004;51:e43.

    Google Scholar 

  8. Strandberg TE, Saijonmaa O, Tilvis RS, Pitk ä l äKH, Strandberg AY, Miettinen TA, et al. Association of telomere length in older men with mortality and midlife body mass index and smoking. J Gerontol A Biol Sci Med Sci. 2011;66:815–20.

    PubMed  Article  CAS  Google Scholar 

  9. Kirkpatrick B, Kennedy BK. Accelerated aging in schizophrenia and related disorders: future research. Schizophr Res. 2018;196:4–8.

    PubMed  Article  Google Scholar 

  10. Vakonaki E, Tsiminikaki K, Plaitis S, Fragkiadaki P, Tsoukalas D, Katsikantami I, et al. Common mental disorders and association with telomere length. Biomed Rep. 2018;8:111–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Flatow J, Buckley P, Miller BJ. Meta-analysis of oxidative stress in schizophrenia. Biol Psychiatry. 2013;74:400–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Kao HT, Cawthon RM, DeLisi LE, Bertisch HC, Ji F, Gordon D, et al. Rapid telomere erosion in schizophrenia. Mol Psychiatry. 2008;13:118–9.

    CAS  PubMed  Article  Google Scholar 

  13. Rao S, Ye N, Hu H, Shen Y, Xu Q. Variants in TERT influencing telomere length are associated with paranoid schizophrenia risk. Am J Med Genet B Neuropsychiatr Genet. 2016;171B:317–24.

    PubMed  Article  CAS  Google Scholar 

  14. Galletly C, Dhillon VS, Liu D, Balzan RP, Hahn LA, Fenech MF. Shorter telomere length in people with schizophrenia: a preliminary study from Australia. Schizophr Res. 2017;190:46–51.

    PubMed  Article  Google Scholar 

  15. Mansour H, Chowdari K, Fathi W, Elassy M, Ibrahim I, Wood J, et al. Does telomere length mediate associations between inbreeding and increased risk for bipolar I disorder and schizophrenia? Psychiatry Res. 2011;188:129–32.

    CAS  PubMed  Article  Google Scholar 

  16. Malaspina D, Dracxler R, Walsh-Messinger J, Harlap S, Goetz RR, Keefe D, Perrin MC. Telomere length, family history, and paternal age in schizophrenia. Mol Genet Genom Med. 2014;2:326–31.

    Article  Google Scholar 

  17. Monroy-Jaramillo N, Rodríguez-Agudelo Y, Aviña-Cervantes LC, Roberts DL, Velligan DI, Walss-Bass C. Leukocyte telomere length in Hispanic schizophrenia patients under treatment with olanzapine. J Psychiatr Res. 2017;90:26–30.

    PubMed  Article  Google Scholar 

  18. Maurya PK, Rizzo LB, Xavier G, Tempaku PF, Ota VK, Santoro ML, et al. Leukocyte telomere length variation in different stages of schizophrenia. J Psychiatr Res. 2018;96:218–23.

    PubMed  Article  Google Scholar 

  19. Nieratschker V, Lahtinen J, Meier S, Strohmaier J, Frank J, Heinrich A, et al. Longer telomere length in patients with schizophrenia. Schizophr Res. 2013;149:116–20.

    PubMed  Article  Google Scholar 

  20. Polho GB, De-Paula VJ, Cardillo G, dos Santos B, Kerr DS. Leukocyte telomere length in patients with schizophrenia: a meta-analysis. Schizophr Res. 2015;165:195–200.

    CAS  PubMed  Article  Google Scholar 

  21. Darrow SM, Verhoeven JE, Révész D, Lindqvist D, Penninx BW, Delucchi KL, et al. The association between psychiatric disorders and telomere length: a meta-analysis involving 14,827 persons. Psychosom Med. 2016;78:776–87.

    PubMed  PubMed Central  Article  Google Scholar 

  22. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. PLoS Med. 2021;18:e1003583.

    PubMed  PubMed Central  Article  Google Scholar 

  23. Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.

    PubMed  PubMed Central  Article  Google Scholar 

  24. Paulson JF, Bazemore SD. Prenatal and postpartum depression in fathers and its association with maternal depression: a meta-analysis. JAMA. 2010;303:1961–9.

    CAS  PubMed  Article  Google Scholar 

  25. Fraguas D, Díaz-Caneja CM, Pina-Camacho L, Moreno C, Durán-Cutilla M, Ayora M, et al. Dietary interventions for autism spectrum disorder: a meta-analysis. Pediatrics. 2019;144:e20183218.

    PubMed  Article  Google Scholar 

  26. Borenstein MHL, Higgins J, Rothstein H. Comprehensive meta-analysis version 2. Englewood, NJ, USA: Biostat; 2005.

  27. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Introduction to meta-analysis. Chichester, UK: John Wiley and Sons; 2009.

  28. Sterne J. Meta-analysis in Stata: an updated collection from the Stata Journal. College Station, TX: Stata Press; 200930.

  29. Lipsey M, Wilson D. Practical metaanalysis. Thousand Oaks, CA: Sage Publications; 2000.

  30. Guyatt GH, Oxman AD, Kunz R, Woodcock J, Brozek J, Helfand M, et al. GRADE Working Group. GRADE guidelines, 7: rating the quality of evidence—inconsistency. J Clin Epidemiol. 2011;64:1294–302.

    PubMed  Article  Google Scholar 

  31. Orwin RG. A fail-safe N for effect size in meta-analysis. J Edu Stat. 1983;8:157–9.

    Google Scholar 

  32. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000;56:455–63.

    CAS  PubMed  Article  Google Scholar 

  34. Aubert G, Hills M, Lansdorp PM. Telomere length measurement-caveats and a critical assessment of the available technologies and tools. Mutat Res 2012;730:59–67.

    CAS  PubMed  Article  Google Scholar 

  35. Thierry AD. Association between telomere length and neighborhood characteristics by race and region in US midlife and older adults. Health Place 2020;62:102272.

    PubMed  Article  Google Scholar 

  36. Brainder. False discovery rate: corrected & adjusted P values. 2020. https://brainder.org/2011/09/05/fdr-corrected-fdradjusted-p-values/.

  37. Yu WY, Chang HW, Lin CH, Cho CL. Short telomeres in patients with chronic schizophrenia who show a poor response to treatment. J Psychiatry Neurosci. 2008;33:244–7.

    PubMed  PubMed Central  Google Scholar 

  38. Fernandez-Egea E, Bernardo M, Heaphy CM, Griffith JK, Parellada E, Esmatjes E, et al. Telomere length and pulse pressure in newly diagnosed, antipsychotic-naive patients with nonaffective psychosis. Schizophr Bull. 2009;35:437–42.

    PubMed  PubMed Central  Article  Google Scholar 

  39. Kota LN, Purushottam M, Moily NS, Jain S. Shortened telomere in unremitted schizophrenia. Psychiatry Clin Neurosci. 2015;69:292–7.

    PubMed  Article  Google Scholar 

  40. Czepielewski LS, Massuda R, Panizzutti B, da Rosa ED, de Lucena D, Macêdo D, et al. Telomere length in subjects with schizophrenia, their unaffected siblings and healthy controls: evidence of accelerated aging. Schizophr Res. 2016;174:39–42.

    PubMed  Article  Google Scholar 

  41. Wolkowitz OM, Jeste DV, Martin AS, Lin J, Daly RE, Reuter C, Kraemer H. Leukocyte telomere length: Effects of schizophrenia, age, and gender. J Psychiatr Res. 2017;85:42–8.

    PubMed  Article  Google Scholar 

  42. Czepielewski LS, Massuda R, Panizzutti B, Grun LK, Barbé-Tuana FM, Teixeira AL, et al. Telomere Length and CCL11 levels are associated with gray matter volume and episodic memory performance in schizophrenia: evidence of pathological accelerated aging. Schizophr Bull. 2018;44:158–67.

    PubMed  Article  Google Scholar 

  43. Cui Yin, Prabhu VV, Nguyen TB, Devi SM, Chung YC. Longer telomere length of T lymphocytes in patients with early and chronic psychosis. Clin Psychopharmacol Neurosci. 2017;15:146–52.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Riley G, Perrin M, Vaez-Azizi LM, Ruby E, Goetz RR, Dracxler R, et al. Telomere length and early trauma in schizophrenia. Schizophr Res. 2018;199:426–30.

    PubMed  PubMed Central  Article  Google Scholar 

  45. Zhang Y, Hishimoto A, Otsuka I, Watanabe Y, Numata S, Yamamori H, et al. Longer telomeres in elderly schizophrenia are associated with long-term hospitalization in the Japanese population. J Psychiatr Res. 2018;103:161–6.

    PubMed  Article  Google Scholar 

  46. Russo P, Prinzi G, Proietti S, Lamonaca P, Frustaci A, Boccia S, et al. Shorter telomere length in schizophrenia: evidence from a real-world population and meta-analysis of most recent literature. Schizophr Res. 2018;202:37–45.

    PubMed  Article  Google Scholar 

  47. Shivakumar V, Kalmady SV, Rajasekaran A, Chhabra H, Anekal AC, Narayanaswamy JC, et al. Telomere length and its association with hippocampal gray matter volume in antipsychotic-naïve/free schizophrenia patients. Psychiatry Res Neuroimaging. 2018;282:11–17.

    PubMed  Article  Google Scholar 

  48. Çevik B, Mançe-Çalışır Ö, Atbaşoğlu EC, Saka MC, Alptekin K, Üçok A, et al. Psychometric liability to psychosis and childhood adversities are associated with shorter telomere length: a study on schizophrenia patients, unaffected siblings, and non-clinical controls. J Psychiatr Res. 2019;111:169–85.

    PubMed  Article  Google Scholar 

  49. Aas M, Elvsåshagen T, Westlye LT, Kaufmann T, Athanasiu L, Djurovic S, et al. Telomere length is associated with childhood trauma in patients with severe mental disorders. Transl Psychiatry. 2019;9:97.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. Squassina A, Manchia M, Pisanu C, Ardau R, Arzedi C, Bocchetta A, et al. Telomere attrition and inflammatory load in severe psychiatric disorders and in response to psychotropic medications. Neuropsychopharmacology. 2020;45:2229–38.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. Higgins-Chen AT, Boks MP, Vinkers CH, Kahn RS, Levine ME. Schizophrenia and epigenetic aging biomarkers: increased mortality, reduced cancer risk, and unique clozapine effects. Biol Psychiatry. 2020;88:224–235.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Nguyen TT, Eyler LT, Jeste DV. Systemic biomarkers of accelerated aging in schizophrenia: a critical review and future directions. Schizophr Bull. 2018;44:398–408.

    PubMed  Article  Google Scholar 

  53. Lapham K, Kvale MN, Lin J, Connell S, Croen LA, Dispensa BP, et al. Automated assay of telomere length measurement and informatics for 100,000 subjects in the genetic epidemiology research on adult health and aging (GERA) cohort. Genetics. 2015;200:1061–72.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  54. Hanssen LM, Schutte NS, Malouff JM, Epel ES. The relationship between childhood psychosocial stressor level and telomere length: a meta-analysis. Health Psychol Res. 2017;5:6378.

    PubMed  PubMed Central  Article  Google Scholar 

  55. Astuti Y, Wardhana A, Watkins J, Wulaningsih W. PILAR research network. cigarette smoking and telomere length: a systematic review of 84 studies and meta-analysis. Environ Res. 2017;158:480–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. Valdes AM, Andrew T, Gardner JP, Kimura M, Oelsner E, Cherkas LF, et al. Obesity, cigarette smoking, and telomere length in women. Lancet. 2005;366:662–4.

    CAS  PubMed  Article  Google Scholar 

  57. Li Z, Tang J, Li H, Chen S, He Y, Liao Y, et al. Shorter telomere length in peripheral blood leukocytes is associated with childhood autism. Sci Rep. 2014;4:7073.

    PubMed  PubMed Central  Article  Google Scholar 

  58. Lindqvist D, Epel ES, Mellon SH, Penninx BW, Révész D, Verhoeven JE, et al. Psychiatric disorders and leukocyte telomere length: Underlying mechanisms linking mental illness with cellular aging. Neurosci Biobehav Rev. 2015;55:333–64.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. Bersani FS, Mellon SH, Reus VI, Wolkowitz OM. Accelerated aging in serious mental disorders. Curr Opin Psychiatry. 2019;32:381–7.

    PubMed  PubMed Central  Article  Google Scholar 

  60. Sanders JL, Newman AB. Telomere length in epidemiology: a biomarker of aging, age-related disease, both, or neither? Epidemiol Rev. 2013;35:112–31.

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

Supported by the Spanish Ministry of Science and Innovation, Instituto de Salud Carlos III (PI14/00397, PI17/00481, PIE16/00055, PI20/00216, PI20/00721, JR19/00024), co-financed by ERDF Funds from the European Commission, “A way of making Europe”, CIBERSAM, Madrid Regional Government (B2017/BMD-3740 AGES-CM-2), EU Structural Funds, EU Seventh Framework Program under grant agreement FP7-HEALTH-2013-2.2.1-2-603196 (Project PSYSCAN); EU H2020 Program under the Innovative Medicines Initiative 2 Joint Undertaking under grant agreements 115916 (Project PRISM), and 777394 (project AIMS-2-TRIALS), Fundación Familia Alonso, Fundación Alicia Koplowitz and Fundación Mutua Madrileña. Research in the Blasco lab is funded by Spanish State Research Agency (AEI), Ministry of Science and Innovation, cofunded by the European Regional Development Fund (ERDF) (SAF2017-82623-R and SAF2015-72455-EXP), the Comunidad de Madrid Project (S2017/BMD-3770), the World Cancer Research (WCR) Project (16-1177), the European Research Council (ERC-AvG Shelterines GA882385) and the Fundación Botín (Spain).

Author information

Authors and Affiliations

Authors

Contributions

MA and DF had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Concept and design: MA, DF, CDC, RAC, and CA. Acquisition, analysis, or interpretation of data: MA, DF, RAC, SR, MB, AM, AD, CA, and CDC. Drafting of the manuscript: MA, DF, and CDC. Critical revision of the manuscript for important intellectual content: MA, DF, RAC, SR, MB, AM, AD, CA, and CDC. Statistical analysis: MA and DF. Obtained funding: DF, CDC, and CA. Administrative, technical, or material support: MA, DF, RAC, CDC, and SR. Supervision: MA, DF, MB, CA, and CDC.

Corresponding author

Correspondence to David Fraguas.

Ethics declarations

Competing interests

MA has held a Río Hortega grant from Instituto de Salud Carlos III (Spanish Ministry of Science and Innovation). DF has been a consultant and/or has received fees from Angelini, Casen Recordati, Janssen, Lundbeck, and Otsuka. He has also received grant support from Instituto de Salud Carlos III (Spanish Ministry of Science and Innovation) and from Fundación Alicia Koplowitz. RAC has received grant support from Instituto de Salud Carlos III. SR has no conflicts of interest. MB is founder and owns stock from Life Length, SL, a biotechnology company focussed on telomere length determinations for biomedical use. Aksinya Derevyanko has no conflicts of interest. CA has been a consultant to or has received honoraria or grants from Acadia, Abbot, AMGEN, AstraZeneca, Bristol-Myers Squibb, Caja Navarra, CIBERSAM, Dainippon Sumitomo Pharma, Fundación Alicia Koplowitz, Forum, Instituto de Salud Carlos III, Gedeon Richter, Janssen Cilag, Lundbeck, Merck, Ministerio de Ciencia e Innovación, Ministerio de Sanidad, Ministerio de Economía y Competitividad, Mutua Madrileña, Otsuka, Pfizer, Roche, Servier, Shire, Schering Plough, Sunovio and Takeda. CDC has received grant support from Instituto de Salud Carlos III (Spanish Ministry of Science and Innovation) and honoraria from Exeltis and Angelini.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ayora, M., Fraguas, D., Abregú-Crespo, R. et al. Leukocyte telomere length in patients with schizophrenia and related disorders: a meta-analysis of case-control studies. Mol Psychiatry 27, 2968–2975 (2022). https://doi.org/10.1038/s41380-022-01541-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01541-7

Search

Quick links