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Transcriptome-wide association study for postpartum
depression implicates altered B-cell activation and
insulin resistance
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Postpartum depression (PPD) affects 1 in 7 women and has negative mental health consequences for both mother and child.
However, the precise biological mechanisms behind the disorder are unknown. Therefore, we performed the largest transcriptome-
wide association study (TWAS) for PPD (482 cases, 859 controls) to date using RNA-sequencing in whole blood and deconvoluted
cell types. No transcriptional changes were observed in whole blood. B-cells showed a majority of transcriptome-wide significant
results (891 transcripts representing 789 genes) with pathway analyses implicating altered B-cell activation and insulin resistance.
Integration of other data types revealed cell type-specific DNA methylation loci and disease-associated eQTLs (deQTLs), but not
hormones/neuropeptides (estradiol, progesterone, oxytocin, BDNF), serve as regulators for part of the transcriptional differences
between cases and controls. Further, deQTLs were enriched for several brain region-specific eQTLs, but no overlap with MDD risk
loci was observed. Altogether, our results constitute a convergence of evidence for pathways most affected in PPD with data across
different biological mechanisms.
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INTRODUCTION
Postpartum depression (PPD), a diagnostic subtype of major
depressive disorder (MDD) that occurs in the postpartum period,
is a common complication of the perinatal period. It affects
approximately half a million women annually in the U.S [1–4]
and is one of the greatest causes of maternal morbidity and
mortality [5, 6]. Additionally, PPD can have long-term adverse
consequences on the newborn [7–11]. Despite this impact to
public health, there is a lack of studies investigating the biology
behind PPD. Although the precise mechanisms are unknown,
PPD is a complex disorder that likely involves the culmination of
genetic risk factors, response to hormonal fluctuations, and
environmental factors.
Pregnancy is characterized by dynamic physiological changes that

are expected to return to pre-pregnancy levels during the
postpartum period. The stress axis, reproductive system, glucor-
egulation, and immune activation are a few examples of biological
systems that interact and adapt to support the growing fetus.
Perturbations in the recovery of these systems after childbirth, in
addition to other risk factors, could result in PPD symptoms.
Performing transcriptome-wide association studies (TWAS) allows for
the interrogation of functional changes associated with case status.
Employing TWAS, we can identify the biologically relevant changes
in PPD that result from the aforementioned system disruptions,
providing crucial insight into specific causes of the disorder.

Traditionally, TWAS have been performed on bulk tissues that
are composed of multiple diverse cell types. This cellular
heterogeneity has a detrimental impact on the ability to detect
disease associations [12]. Thus, in bulk tissue, case-control
differences will be “diluted” when they affect only one or few
cell types, may cancel out if the differences are of opposite signs
across cell types, or may be undetectable altogether if the
differences involve low abundant cells. Furthermore, identifying
the specific cell types from which the association signals originate
is key to formulate refined hypotheses of PPD disease pathology,
designing proper follow-up experiments, and to develop effective
clinical interventions. Efforts to address these issues with cell type-
specific effects have been attempted using purified cell popula-
tions or single-cell RNA sequencing. However, these methods are
labor-intensive and/or cost-prohibitive for most large-scale
transcriptomic interrogation. As an alternative, statistical methods
have been developed to deconvolute effects of individual cell
types using data generated from bulk tissue [12–17].
Transcriptomic information can also be combined with other

data types leading to deeper mechanistic insight into the
regulation of transcription. For example, single nucleotide poly-
morphisms (SNPs) have been shown to regulate expression in a
cell type-specific manner [18, 19]. In addition, DNA methylation can
regulate gene transcription [20, 21]. Identifying the (epi-) genomic
regulators of transcriptional differences is a key step for generating
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novel hypotheses about PPD disease etiology. This would allow, for
example, designing functional follow-up studies. The identification
of (epi-) genomic regulators also has translational value as they are
potential targets for correcting aberrant transcription.
In this work, we performed the largest TWAS for PPD, using

RNA-sequencing of whole blood, in a cohort of women six-weeks
following childbirth. To date, three TWAS studies have been
performed with sample sizes ranging from 6 to 15 cases and 10 to
122 controls [22–24]. Further, the analyses presented here are
performed on a cell type-specific level. Additionally, SNPs, DNA
methylation, and hormone levels were used to identify regulators
underlying the observed case-control transcriptional differences.
Altogether, this represents the largest and most diverse inter-
rogation into the biology of PPD.

RESULTS
We recruited a case-control cohort of 1551 women (579 PPD
cases, 972 controls) at six weeks postpartum with PPD case-
control status established using clinical interviews. Participants
were racially (66.5% Black, 32.9% White, and 0.6% Asian) and
ethnically (15.9% Hispanic) diverse (Table S1) [25]. We generated
whole blood-derived transcription data using RNA-sequencing
(RNA-seq), which resulted in 134,302 known transcripts from
51,079 genes (88.2% of all Ensembl annotated genes) [26]. In
addition, to study regulators of PPD expression differences we
generated array-based DNA methylation data (Illumina 450k),
assaying 373,635 CpGs, and genome-wide SNP data which, with
imputation, assayed ~12.5 million variants. Cell type proportions
were estimated from DNA methylation data using standard
methods [14, 27]. The average estimated cell type proportions
were 9.7% CD8+ T-cells, 16.3% CD4+ T-cells, 5.6% B-cells, 4.7%

monocytes, 59.4% granulocytes, and 3.0% natural killer cells. The
validity of the estimated proportions was established through
high correlations with complete blood counts available for a
subset of participants (Supplemental Results) [14, 27]. We observe
differences in cell proportions between cases and controls for
CD4+ T-cells (β=−0.06, p= 0.03) and granulocytes (β= 0.06, p=
0.02), but not for the other cell types (Table S1). All downstream
analyses control for cell type proportions.

TWAS for PPD identifies cell type-specific dysregulation
In addition to TWAS of whole blood, we performed cell-type-
specific TWAS using a statistical deconvolution approach
[12, 16, 18, 28, 29]. Figure 1A shows Manhattan plots, QQ-plots
and lambdas for the TWAS results for whole blood and each cell
type separately. Across all analyses, we correct for multiple testing
using false discovery rate (FDR), with a q-value < 0.1 threshold
indicating significance. Decreasing the q-value to 0.05 would, for
example, result in only a modest reduction in false positives but
decreases the probability of finding true effects exponentially as
shown previously [30]. The TWAS in whole blood and in the
different cell types each revealed transcripts that were signifi-
cantly associated with PPD (see Tables S2–S7 for all transcripts
with p-value < 0.05). The QQ-plots and lambdas from the TWAS
results (Fig. 1A) in combination with TWAS of permuted case-
control status for each analysis (Fig. S1), which yielded average
lambdas of approximately one, indicated no evidence of test-
statistic inflation.

Whole blood. TWAS in whole blood revealed nine transcripts
from nine genes that were significantly associated with PPD
(Table S2). The most significant transcript was for the small
nuclear RNA, RNVU1-9 (p-value= 1.92 × 10−7). Using the Ensembl

Fig. 1 PPD TWAS cell type-specific associations. A Manhattan plots and QQ-plots of PPD transcriptome-wide association study (TWAS)
results in bulk tissue and individual cell types. Non-significant transcripts are shown in grey/black. Significant transcripts at an FDR < 0.1 are
shown in color. B Upset plot showing overlap of significant TWAS transcripts across bulk tissue and individual cell types. C Biotype distribution
of significant TWAS transcripts in bulk tissue and individual cell types.
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biotype annotations [26], which provide an indication of
transcript function, we see that all nine transcripts are processed
transcripts (Fig. 1C).

Granulocytes. TWAS in granulocytes had two transcripts from
two genes significantly associated with PPD case status: a protein-
coding transcript for SH3PXD2A (p-value= 8.81 × 10−8) and a
processed transcript for CSF3R (p-value= 7.45 × 10−8) (Fig. 1C;
Table S3).

Monocytes. Monocyte TWAS resulted in eight transcripts from
eight genes that reached transcriptome-wide significance
(Table S4). Transcript biotypes are varied with three protein-
coding, three processed transcripts, one nonsense-mediated
decay, and one immunoglobulin (IG) gene (Fig. 1C). The top hit
(p-value= 6.60 × 10−7) is a protein-coding transcript for the
gene VWA3B.

CD8± T-cells. There were 90 transcripts in 87 genes that reached
transcriptome-wide significance in the TWAS of CD8+ T-cells
(Table S5). These transcripts are composed of 56 protein-coding,
24 processed transcripts, five pseudogenes, three nonsense-
mediated decay, and two IG genes (Fig. 1C). In this cell population,
a protein-coding transcript for the gene, HEATR2, was the most
significantly associated transcript (p-value= 6.46 × 10−12). We
found that the significant protein-coding transcripts were
enriched for 18 pathways, which group into three clusters related
to protein secretion, signal transduction, and neuronal processes
(Table S8).

CD4± T-cells. In CD4+ T-cells, 36 transcripts from 35 genes passed
transcriptome-wide significance (Table S6). These significant
transcripts included 21 protein-coding, 11 processed transcripts,
three pseudogenes, and one IG gene (Fig. 1C). IGKV1D-13, was the
top transcript (p-value= 2.94 × 10−4). Top protein-coding tran-
scripts from the CD4+ T-cell TWAS were enriched for 19 pathways,
which segregate into three clusters related to neuronal develop-
ment, signal transduction, and cell receptor signaling (Table S9).

B-cells. The TWAS in B-cells yielded 891 transcripts representing
789 genes that were transcriptome-wide significant (Table S7). The
altered transcripts are comprised of 534 protein coding, 242
processed transcripts, 56 nonsense-mediated decay, 46 pseudo-
genes, 12 IG genes, and one T-cell receptor (TR) gene (Fig. 1C). The
most significant (p-value= 1.76 × 10−120) is the only protein-
coding transcript for the gene FMOD. Pathway analyses of the
protein-coding findings show enrichment for 98 pathways.
Pathway clustering results in ten clusters including those related
to B-cell activation, apoptotic pathways, cellular starvation, cellular
metabolism, nucleic acid metabolism, neuron cell morphology,
organ development, glucose metabolism, and cell adhesion and
cytoskeleton organization (Table S10).
Overall, individual cell types have unique profiles of transcripts

that are differentially expressed between cases and controls
(Fig. 1B). However, an overlap of 20 significant transcripts is seen
among CD4+ T-cells, CD8+ T-cells and B-cells, which all are
lymphocytes. These overlapping differently expressed transcripts
could reflect common functions associated to PPD that are shared
by the different lymphocytes cell types. Among the overlapping

transcripts are three pathway clusters that involve nervous system
development, regulation of signal transduction, and regulation of
macromolecule metabolism (Table S11).

Top Loci in Whole Blood Overlap Findings From Previous
Transcriptome Studies of PPD
Three other transcriptome studies of PPD have been performed
[22–24]. These previous studies were performed using whole
blood and are independent of the current study, which allowed us
to test whether our top bulk results overlap the most significant
genes in the previous studies.
As shown in Table 1, we found the top 5% of our whole blood

results shared genes with the significant genes reported by
Landsman et al. Further, for the remaining two studies (Pan et al.
and Mehta et al.) we observed overlap between the top 5% of our
whole blood results and the top 5% of the reported genes. We
used sign tests to compare the overall patterns of results between
our results and the previous PPD TWAS. Under the null, the
expectation is that 50% of the signs of the overlapping genes will
be the same between two independent sets of results. The
significance of the observed proportion was evaluated using the
binomial distribution. From this, we find that our results were
concordant with results by Mehta et al. (p < 0.001), which may be
due to the small sample sizes of the other studies.

SNPs and DNA methylation, but not hormones, may regulate
PPD-associated transcripts
Whole blood and cell type-specific TWAS identified multiple
transcripts that differed between cases and controls. We
performed regulation analyses to study whether these differences
were regulated by pregnancy-related hormones (estradiol, E2;
progesterone, P4; oxytocin; BDNF), DNA methylation, or SNPs
measured in the same samples. These analyses followed the
model depicted in Fig. S4, which assumes the tested marker
regulates transcription (a mediator), which in turn alters PPD risk.
As there may be additional mechanisms through which the
marker may affect PPD, the model also allows for a direct effect of
the marker on PPD. The null hypothesis states that the marker
does not regulate differentially expressed transcripts (H0: a × b=
0). SNPs and CpGs were tested as putative regulators if they had a
nominal association with case status (p < 0.05) and were within a
10 kb window (cis-acting elements) of the genes tested. Hormones
were tested as putative regulators if they had a nominal
association with case status (p < 0.05).
The postpartum period is characterized by a large fluctuation in

hormones, making dysregulation as a result of hormone changes an
attractive mechanism. We observed significant association between
PPD case status and oxytocin levels (p-value= 2.38 × 10−4), but not
for any other measured hormones (Table S1). However, when we
examine oxytocin as a potential regulator of transcriptional
differences, we did not observe any significant effects (Table S12).
This is not to say hormones are not contributing to case-control
differences, but we do not see supporting evidence that hormones
regulate the specific transcriptional differences observed in
this study.
Among the disease-associated DNA methylation sites (10 CpGs

in bulk, 158 CpGs in CD8+ T-cells, 67 CpGs in CD4+ T-cells, 1,520
CpGs in B-cells, 13 CpGs in monocytes, 5 CpGs in granulocytes),
we identified five CpGs that were significantly associated with four

Table 1. Overlap of top TWAS findings versus existing transcriptome studies of PPD.

Authors Year PMID Cases Controls Tissue Overlapping genes n Shared direction sign test p-value

Landsman et al. 2017 27816578 6 10 PBMC 10 7 0.17

Pan et al. 2018 29973662 8 10 PBMC 19 7 0.92

Mehta et al. 2021 33664235 15 122 Whole Blood 2894 1793 <0.001
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differentially expressed transcripts in B-cells (q-value < 0.1;
Table S13). Thus, these methylation marks may serve as potential
cis-acting regulators for their corresponding protein-coding
transcripts for CD22, CXXC5, MYO1D, and KCNG1 [31]. It should
be noted that methylation was assayed with a commonly used
array-based platform resulting in 373,635 high-quality methylation
markers, which corresponds to ~1.3% out of the 28.3 million CpGs
in the human genome [32]. Thus, it is possible, and likely, that
many additional regulatory methylation marks are present that
were not assayed in our dataset.
Using our SNP data, we examined whether disease-associated

eQTLs (deQTL) exist for any of the differentially expressed
transcripts. We tested 36 SNPs in whole blood, 1696 SNPs in
CD8+ T-cells, 322 SNPs in CD4+ T-cells, 15,154 SNPs in B-cells, 149
SNPs in monocytes, and 58 SNPs in granulocytes as putative
regulators. No deQTLs were identified for whole blood and
granulocytes. However, we detected 17 deQTLs for seven
transcripts in CD8+ T-cells, seven deQTLs for three transcripts in
CD4+ T-cells, 523 deQTLs for 124 transcripts in B-cells, and four
deQTLs for two transcripts in monocytes (q-value < 0.1; Table S14).
The majority of the transcripts with deQTLs were protein-coding
(78%). These deQTLs are genomic regulators of transcriptional
differences associated with PPD and have translational value as
potential targets for correcting aberrant transcription.

PPD deQTLs are enriched for multiple brain eQTLs but not for
MDD GWAS loci
We tested whether the PPD deQTLs we identified were enriched
for significant MDD GWAS loci [33, 34]. However, we did not
observe any overlap between PPD deQTLs and significant MDD
GWAS loci. The lack of overlap may be due to differences in
ancestry between studies. Our PPD cohort is comprised mainly of
Black and Hispanic women, whereas the MDD GWAS was limited
to individuals of European ancestry. Alternatively, our results could

support literature that PPD is a distinct disorder with a different
underlying etiology [35–38].
Further, to examine the potential impact of PPD deQTLs across

tissues, we tested whether they overlapped eQTLs in bulk brain
tissue or neurons from various brain regions as reported by the
most recent GTEx analyses [18, 19]. We found significant
enrichment with our deQTLs for eQTLs in nearly all brain regions
(Table 2; 10 out of 12, 83.3%), with the exception of amygdala and
substantia nigra. However, we did not identify any enrichment for
eQTLs in neurons. Although additional investigations would be
required, this could suggest that the PPD deQTLs detected in this
study do not exert their effects on neurons, but rather non-
neuronal cell types, such as glia. In total, there were 45 deQTL
containing genes overlapping with eQTLs in various brain tissues
(Table S14).

Convergent evidence implicates pathways most affected
in PPD
Pathway analyses of TWAS results identified pathways that are
altered in PPD cases compared with controls. However, RNA
transcription is potentially regulated by many biological pro-
cesses. Our analyses suggested that SNPs (deQTLs), and to a
lesser extent DNA methylation, may be involved in the regulation
of PPD-related transcriptional differences. By examining the
overlap of these pathways with deQTLs we can identify which
pathways are initially disrupted by genetic loci in cases
compared to the effect of other factors. We identified 138
transcripts regulated by deQTLs in whole blood and across the
five cell types examined. More specifically, 124 of these
transcripts were found in B-cells and overlap pathways in every
pathway cluster identified. Figure 2 illustrates the B-cell path-
ways that contain at least one deQTL containing gene organized
by cluster. Additional results for other cell types can be found
in Supplemental Tables. Overall, our results suggest the pathway

Table 2. Overlap of PPD deQTLs in bulk brain tissue or neurons from various brain regions.

Enrichment Target Enrichment OR p-value

Bulk eQTLs Amygdala 2.31 0.06

Anterior Cingulate Cortex (BA24) 2.32 0.04

Caudate Basal Ganglia 2.77 0.01

Cerebellar Hemisphere 2.59 3.02E-03

Cerebellum 2.58 2.19E-03

Cortex 2.95 1.05E-03

Frontal Cortex (BA9) 3.27 9.40E-04

Hippocampus 2.54 0.03

Hypothalamus 3.90 5.90E-04

Nucleus Accumbens (Basal Ganglia) 2.88 2.43E-03

Putamen (Basal Ganglia) 2.33 0.02

Substantia Nigra 2.19 0.07

Neuronal eQTLs Amygdala 1.47 0.39

Anterior Cingulate Cortex (BA24) 0.73 0.74

Caudate Basal Ganglia 0.00 1.00

Cerebellar Hemisphere 0.76 0.72

Cerebellum 0.00 1.00

Cortex 1.55 0.37

Frontal Cortex (BA9) 1.53 0.37

Hippocampus 2.21 0.16

Hypothalamus 1.52 0.38

Nucleus Accumbens (Basal Ganglia) 1.53 0.37

Putamen (Basal Ganglia) 0.00 1.00
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clusters shown in Fig. 2 may be potentially dysregulated due to
genetic factors in women with PPD.

DISCUSSION
To generate novel hypotheses for PPD disease pathology, we studied
the biological underpinnings of PPD in a large cohort of women six
weeks after childbirth. Results showed cell type-specific transcrip-
tional differences associated with PPD, with a majority of the changes
seen in B-cells. Furthermore, these associations were significantly
overrepresented in multiple sets of pathways. These pathways
reflected the significant effects of SNPs regulating the PPD-
associated transcriptional changes. This constitutes a convergence
of evidence with data from two different biological mechanisms.
Pregnancy is characterized by substantial changes in multiple

physiological systems. Failure to return to pre-pregnancy
levels during the postpartum period may contribute to PPD
symptoms, making these systems candidate mechanisms for PPD.
Our association and pathway results implicate two, potentially co-
occurring, such mechanisms: B-cell activation and insulin resistance
(IR). In addition to showing pregnancy-related changes, both
mechanisms have previously been linked to depression [39–44].
Our results specifically implicate B-cell activation (Fig. 2, cluster

10), which plays a critical role in the immune system. B-cells
becomes activated when their receptor recognizes an antigen and
binds to it. Activated B-cells then produce antibodies, along with

secreting pro- and anti-inflammatory factors. During pregnancy,
B-cells undergo dynamic changes as the maternal immune system
has to balance tolerance of the foreign‐growing fetus with
maintaining vigilance against pathogens [45, 46]. Thus, B-cell
concentrations are significantly lower during the third trimester
and immediately following delivery compared to non-pregnant
women, but levels typically return to those seen in non-pregnant
women by six-weeks postpartum [47].
A growing body of evidence suggests that inflammatory

processes may play a significant role in PPD [24, 48–50]. However,
the specific role of B-cells has yet to be elucidated. Recent work
has shown an increase in B-cell densities in the brains of those
with mood disorders compared to controls [39]. Furthermore, in
whole blood, altered B-cell homeostasis was observed in those
with MDD compared to controls [40, 41]. A possible mechanism
contributing to increased B-cell activation could be related to
autoimmunity [51]. Depression is often co-morbid with auto-
immune disease; risk of depression is 1.25–3.56 times higher in
people with autoimmune disease than without [52–54]. Addition-
ally, a feature of many autoimmune disorders is a loss of B-cell
tolerance coinciding with the inappropriate production of
autoantibodies [51, 55]. Thus, an aberrant autoimmune response
could potentially contribute to PPD.
Further, we did not observe significant differences in B-cell

proportions between cases and controls (p-value= 0.78). As multiple
subtypes of B-cells exist, it may be that we did not observe

Fig. 2 Clusters of significant TWAS pathways in B-cells that contain at least one deQTL gene. Each cluster is represented by a different
color. Opaque bars are the total number of genes overlapping the pathway. Solid bars are the number of genes with a deQTL. Black points are
-log(p-value) for the pathway enrichment.
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differences in overall B-cell proportions but there may be differences
in more specific B-cell subsets.
Not only do we observe a pathway cluster, composed of 12

pathways, directly related to B-cell activation (cluster 10), we see
multiple pathway clusters associated with cellular metabolism,
which supports our hypothesis of B-cell activation. Activation
initializes cellular reprogramming of quiescent naïve B-cells to
drive re-entry into the cell cycle [56]. This rapid expansion requires
the production of biomolecules (lipids, proteins, nucleotides in
clusters 2, 5, 6, and 9) at an increased rate. Additionally, work in
mice has shown that B-cell activation results in increased glucose
uptake (cluster 2) and mitochondrial remodeling (cluster 8) [56].
Upon B-cell activation, not only is there a slew of metabolic
changes, but there are changes to the cellular structure (cluster 1).
Antigen binding triggers substantial remodeling of the cell
cytoskeleton, which induces cell spreading, the formation of the
immune synapse, and the gathering of antigen for endocytosis
[57]. Additionally, apoptosis is a carefully regulated process
through the lifecycle of B-cells. Disruptions to apoptotic pathways
(cluster 8) affect multiple processes including homeostasis, quality
control of the antibody response, and tolerance [58].
The second implicated mechanism, insulin resistance (IR), is

supported by several factors. Insulin promotes the absorption of
excess blood glucose into other tissues for energy storage. IR
occurs when cells become insensitive to the effects of insulin
leading to a buildup of blood glucose and insulin. Starting in the
second trimester of pregnancy, insulin sensitivity is progressively
reduced as much as 60–80% [59]. This coincides with steady
increases in insulin [60]. These changes serve as a physiological
adaptation of the mother to ensure adequate carbohydrate supply
for the rapidly growing fetus [61]. After delivery, insulin returns to
pre-pregnancy levels [62–64].
IR is a risk factor for depression. Rodent studies have shown that

brain IR alters dopamine turnover and induces anxiety and
depressive-like behaviors in mice [65]. In humans, greater
glycemic variability has been associated with negative moods
[66]. IR typically predates the development of diabetes. A meta-
analysis of 27 studies demonstrated that depression is significantly
associated with hyperglycemia for both type 1 and type 2
diabetes [67]. Studies further suggest that insulin-sensitizing
agents could play a significant role in the treatment of major
depression, particularly in patients with documented IR [68, 69].
Pregnancy is known to increase the risk of developing Type 2
diabetes after giving birth [70]. Furthermore, pre-pregnancy or
gestational diabetes was independently associated with perinatal
depression, including new onset of PPD [71–73].
We tested whether genes implicated by our top results were

significantly overrepresented for genes related to A1C [74] and IR
[75] in whole blood. Hemoglobin A1C levels are measure of a
person’s blood sugar levels over the past three months and are
highly correlated with measures of IR [76]. We found the top 5% of
our whole blood findings for PPD were enriched for the top 5% of
associations with A1C (p-value= 4.79 × 10−7) and IR (p-values=
0.04). Databases can not directly implicate IR as such a pathway
does not exist. IR is a disorder characterized by disruptions of
multiple biological functions. However, IR can be implicated by
nearly all clusters in our pathway analyses (Fig. 2). With the
evidence linking IR and B-cells [77, 78], it is reasonable to observe
a signature of IR in B-cells. For example, B-cells contribute to the
development of IR (cluster 10). These cells can promote IR through
T-cell modulation and production of pathogenic antibodies
[77, 78]. Insulin signaling regulates diverse cellular functions
including metabolic pathways, apoptosis, mitogenesis, and
membrane trafficking through protein kinases (cluster 1)
[79, 80]. Insulin directly affects glucose metabolic processes
(cluster 2). Circulating levels of purines (cluster 5) [81, 82], amino
acids, and fatty acids (cluster 6) [83, 84] are also associated with IR.
The administration of carboxylic acids (cluster 6) improved

glycemic control, potentially by reducing IR [85]. IR may lead to
inadequate intracellular glucose potentially leading to apoptosis
and intracellular starvation (cluster 7 and 8) [86]. Wnt signaling
(cluster 9) is involved in the regulation of glucose homeostasis in
multiple organs, particularly in insulin-responsive tissues [87].
A number of limitations of the present study should be

mentioned. While we studied blood, the pathogenic processes
for PPD most likely manifest in the brain. It is likely that in studying
blood, other possible PPD-related mechanisms might have been
missed. However, there is cross-talk between the two tissues
across the blood-brain barrier [88]. This would allow altered B-cell
activation and IR to affect the brain and be observed in our study.
Furthermore, we observed deQTLs that affect genes in both blood
and brain, specifically in brain regions implicated in mood
disorders (e.g., hippocampus, cingulate cortex, frontal cortex).
These deQTLs can be studied in model systems for functional
follow-up to evaluate causality and their downstream biological
effects [89]. Additionally, the B-cell activation and IR hypotheses
for PPD requires further validation through direct measurements
in PPD cases versus controls.
In conclusion, we have performed the largest and most

comprehensive biological interrogation of PPD, to date. Our
results suggest that PPD is associated with an increase in B-cell
activation, a finding previously unreported in the literature.
While we do not know the precise mechanisms behind this
increase in B-cell activation, we hypothesize it could be due to
co-occurring dysregulation in IR. Additionally, we identified
genetic variants, deQTLs, that regulate, in part, the transcrip-
tional differences between cases and controls. Our findings
require further validation and follow-up studies. However, these
novel hypotheses for PPD provide promising avenues for future
research.

METHODS
Study population
Detailed information about the study can be found elsewhere [90]. Briefly,
we followed the 2010 US Census terminology for describing the self-
reported “race” and “ethnicity” (Hispanic or Non-Hispanic) of subjects. We
refer to the participants as Asian, Latina (“of Latino, Hispanic, or Spanish
origin”), Black (or African-American), and White (i.e., European ancestry,
non-Hispanic).
Recruitment of postpartum women aged 17–45 years occurred from 9/

2012 to 6/2016 in four outpatient obstetrical clinics (University of North
Carolina Women’s Hospital, Wake County Health Department, Alamance
County Health Department, East Carolina University School of Medicine)
during routine six-week postpartum visits (± 1–2 weeks). Detailed
recruitment procedures can be found in Supplemental Methods.
Case-control status was determined using clinical interview. All women

attending these clinics were first screened for study inclusion using the
Edinburgh Postnatal Depression Scale (EPDS). The 10-item EPDS is a
commonly used PPD screening instrument. High EPDS scores are
consistent with a PPD diagnosis by structured clinical interview [91].
Women with high EPDS scores (≥11) or low EPDS scores (≤7) were invited
to participate. All women then had PPD case status determined using the
MINI diagnostic interview. For a full list of inclusion/exclusion criteria,
see Supplemental Methods. Briefly, all participants included no indication
of MDD during the first or second trimesters of pregnancy, singleton
pregnancy, and live term birth (≥34 weeks gestation). This study was
approved by the University of North Carolina Institutional Review Board
Committee for the Protection of Human Subjects. All subjects provided
written informed consent and signed the Health Insurance Portability and
Accountability Act release.

Subject Assessments
All participants were administered the MINI International Neuropsychiatric
Interview (MINI-Plus, version 6.0), a structured clinical interview for the
assessment of psychiatric disorders [92, 93]. Experienced and certified (κ >
0.8 versus criterion ratings) psychiatric research nurses working in each
clinic setting administered the MINI-Plus. Cases for this study were defined
by having current MDD as assessed by the MINI-Plus. Controls did not have
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current MDD using the MINI-Plus. All study procedures could be performed
in Spanish with a native speaker.

Biological Sampling
Peripheral blood was sampled and immediately processed on-site at the
time of subject assessment. For plasma separation, blood aliquots were
centrifuged at 3300 rpm for 10min at room temperature immediately after
sampling. For serum separation, blood aliquots were centrifuged at 3300
rpm for 10min at 2–8 °C, 60 min after blood draw. All plasma and serum
samples were then snap-frozen and kept at −80 °C until analysis. Aliquots
were drawn into PAXgene RNA tubes and stored at −80 °C until RNA
extraction. Genomic DNA was extracted from aliquots of whole blood
using Qiagen Autopure LS, which utilized Qiagen Puregene chemistry.
Samples that were missing, had insufficient sample, or that did not meet
minimum detection thresholds were excluded from analyses.

RNA Sequencing
For RNA extraction, samples are pulled from −80 °C freezers, allowed to
thaw at +4 °C overnight, and extracted using the QIAsymphony platform.
A detailed RNA extraction protocol can be found in Supplemental
Methods. Fresh-frozen total RNA was prepared for sequencing following
the Nugen Ovation Human Blood RNA-seq library prep kit according to the
manufacturer’s instructions. RNA libraries were sequenced as 2 × 50 bp
paired-end reads with 24 samples per lane on an Illumina HiSeq
4000 sequencer. Each sample was run on two different lanes at two
different times. Samples were balanced by case status, age, race, ethnicity,
and recruitment site across sequencing pools to reduce technical biases.
Preliminary sample and read quality control (QC) was performed using
FastQC using default settings. Briefly, raw sequence reads are read in and
reports are generated on read quality and composition. No samples were
dropped or required resequencing. Reads were aligned with HISAT2
(v2.1.0) and transcriptomes were reconstructed using StringTie (v.1.3.3),
both within the rnacocktail pipeline [94]. Reads from runs 1 and 2 for every
sample were merged prior to quantification. Reference transcriptome was
downloaded from ENSEMBL (GRCh37, release 92; http://ftp.ensembl.org/
pub/grch37/release-92/gtf/homo_sapiens/Homo_sapiens.GRCh37.87.gtf.
gz) [26] and used for alignment, transcriptome reconstruction, and
quantification steps. This reference includes all available biotypes including
protein coding genes, as well as pseudogenes, lncRNA, and ncRNA.
Following transcriptome assembly, the StringTie merge option was used to
combine all assembled transcriptomes across all samples and then re-
quantified against the merged transcriptome (stringtie -eB) so expression
measures are consistent across all samples. Transcripts were excluded if
they were depletion targets for library prep (ENSEMBL gene_biotype
“rRNA”, HBA1, HBA2, HBB, HBD), unannotated (not associated with an
ENSEMBL ID), present in < 1% of samples, had an average TPM < 1 (low
expression outlier) or > 20,000 (high expression outlier). Following this
quality control, data for 108,474 transcripts remained for association
testing.
For association testing, technical variables were measured for each

sample including: i) the total number of reads, the number of uniquely
aligned reads, and the proportion of reads aligned using StringTie, ii)
sequencing pool, and iii) calculation of the first ten principal components
across all transcript counts for depletion targets for library prep (ENSEMBL
gene_biotype “rRNA”, HBA1, HBA2, HBB, HBD). Final association models
included maternal age, race/ethnicity, estimated cell proportions, propor-
tion of reads aligned, number of uniquely aligned reads, and sequencing
pool. Additionally, principal components of TPM values were used to
capture any remaining unmeasured source of variation. One principal
component (PC1) was included based on the scree test. Lastly, multi-
dimensional outliers were excluded, resulting in data for 482 cases and 859
controls. Quantile-quantile plots for each cell type–specific TWAS (Fig. 1A),
along with TWAS of permuted case-control status for each analysis yielded
average lambdas of approximately 1 (Figure S1), indicated no evidence of
test-statistic inflation under the empirical null.

DNA Methylation Assessment
A detailed DNA methylation pipeline can be found in Supplemental
Methods. DNA sample bisulfite conversion and microarray hybridization
were through the Illumina Fast Track Genotyping service. DNA methylation
was assessed using the Infinium Human 450k array. Quality control steps
are described elsewhere [95]. Briefly, we employed a stringent quality
control pipeline comprised of the following steps: i) removal of samples

with > 1% of probes with detection P-value > 0.001, ii) removal of probes
with > 1% of samples with detection P-value > 0.001, iii) removal of cross-
hybridizing probes, iv) and probes containing a SNP with minor allele
frequency > 1% within 10 bp of the single-base extension position [96].
Normalization of the DNA methylation data was performed using the BMIQ
function [97] within the minfi package. Following quality control of probes,
data for 373,635 CpGs remained for regulation analyses.
Residuals were used for regulation (deQTL) analyses. Covariates were

selected using multiple regression analyses in RaMWAS [98] from a pool of
multiple types of variables (see Supplemental Methods for description of
variables tested). Final association models included maternal age, race/
ethnicity, estimated cell proportions, slide and array (batch), and median
methylated and unmethylated signal intensities, and three PCs from raw
control probes (PCs 2, 8, 10). Additionally, PCs of beta values were used to
capture any remaining unmeasured source of variation. PCs 1–5 were
included based on the scree test. As a final step, multidimensional outliers
across PC1–15 were identified using the mvoutliers R package and
excluded, resulting in data for 503 cases and 897 controls.

SNP Genotyping
Genotypes were assessed using the Illumina Multi-Ethnic Genome Arrays
(MEGA; Illumina, San Diego, CA, USA) through the Illumina Fast Track
Genotyping service. GenomeStudio software version 2.0 (Illumina, San
Diego, CA, USA) was used to call genotypes from raw Illumina data. We
have described our quality control procedures for SNPs elsewhere
[99, 100]. Briefly, SNPs are removed for bad genome mapping of array
probe, missingness (>0.01), and low MAF (<0.01). Any individual with
high missingness was excluded (>0.01). Genotypes were imputed
against the Haplotype Reference Consortium [101] using the University
of Michigan Imputation Server [102]. Following imputation, genotypes
underwent another round of quality control. Genotypes were excluded
for having low quality scores (r2 < 0.8), missingness (>0.01), and low MAF
(<0.01). Again, any individual with high missingness was excluded
(>0.01).
For deQTL analyses, principal components of SNPs were used to capture

any unmeasured source of variation in our genetic data (e.g population
stratification). Two principal components (PCs 1 and 2) were included
based on the scree test, resulting in data for 487 cases and 864 controls.

Cell type-specific analyses
Whole blood contains a mixture of different cell types. Cell type-specific
TWAS are critical as expression changes may remain undetectable in whole
blood as changes may cancel each other out when they have opposites
affects across cell types or involve effects of low abundant cells that are
diluted by effects of common cell types [12, 18]. Cell type-specific TWAS
also improve the biological interpretation of findings as knowing the cell
type in which the change occurred may provide further clues about the
underlying biological mechanisms. Therefore, we performed cell type-
specific deconvolution analyses, which were first introduced about 20
years ago [103]. Most of the initial deconvolution papers include sections
showing the validity of the approach. For example, the 2010 paper by
Shen-Orr [29] experimentally validated the method through tests with
predesigned mixtures.
For TWAS, cell type-specific analyses were conducted using a

deconvolution approach described and validated previously [16, 28, 29].
Briefly, cell proportions are estimated from bulk (cellularly heterogenous)
DNA methylation data using available reference panels [27]. These
predicted cell type proportions are then used to test case-control
differences on a cell type-specific level using all study samples with
available bulk transcription data. The statistical model we use is:

Ybulk ¼
Xnc

c¼1

mcPc þ
Xnc

c¼1

mPPD
c PPD ´ Pcð Þ þ E

Thus, measurements from bulk tissue Ybulk are regressed on c= 1 to nc,
cell type proportions Pc, and the product of disease status for PPD coded as
0 or 1 by cell type proportions (PPD × Pc). The model allows for covariates
(not shown) and residual effects E. Coefficient mc is the effect of cell type c.
The case-control difference mPPD

c for cell type c is used to test the null
hypothesis that cell type means are equal for cases and controls. Note that
the model has no constant due to

Pnc
c¼1 Pc ffi 1. Alternatively, the model is

sometimes written with a constant whereby one of the cell type
proportions is omitted [17] but this produces identical results [16, 28, 29].
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Pathway analyses
Pathway analyses were performed with Reactome [104] and GO [105, 106]
databases. These analyses also used circular permutations (For a detailed
description see Circular Permutations section of Supplemental Methods)
that properly control the Type I error in the presence of correlated sites.
Furthermore, as the permutations are performed on a marker level they
also properly account for gene size, as larger genes with more markers are
more likely to be among the top results in the permutations. Specifically,
we first mapped each marker to genes (Ensembl gene annotations
GRCh37, release 92: ftp://ftp.ensembl.org/pub/grch37/release-92/) [26]
using the Bioconductor GRanges package. Gene boundaries were
extended to include a 10 kb upstream flank (i.e., promoters). Markers were
allowed to map to multiple genes if their genomic position overlapped
multiple unique gene annotations. After mapping, we performed 10,000
circular permutations at the marker level. For each permutation, a two-by-
two table was created by cross classifying whether or not the genes were
among the top findings for each analysis (TWAS) versus whether or not the
gene was in the tested pathway. Each gene was counted only once when
creating this table (thus, if there were three markers in the gene, this was
counted as one and not as three). Cramér’s V (sometimes referred to as
Cramér’s phi) was used as the test statistic to measure whether genes from
the pathway were overrepresented among the top analysis results. P
values were calculated as the proportion of permutations that yielded a
value equal to or greater than that of Cramér’s V observed in the empirical
data. A minimum of three input genes were required to be present in each
queried pathway and were considered significant after controlling the
family-wide error rate at α= 0.05. Pathway tests were run on all markers
with a q-value < 0.1. As many pathways share a large number of common
gene members, we used the Louvain method [107] in the igraph R
package to cluster enriched pathways by similarity.

Regulation Analyses
To study regulatory effects of SNPs, we perform mediation analyses using
the model in Fig. S4 (covariates not shown) assuming that the SNP
regulates (path a) transcription (a mediator), which in turn alters (path b)
PPD risk. As there may be additional mechanisms through which the
marker may affect PPD, the model also allows for a direct effect of the SNP
(path c’) on PPD. The null hypothesis states that the marker does not
regulate differentially expressed transcripts (H0: a × b= 0).
The model in Fig. S4 is the standard approach underlying Mendelian

Randomization [108] that aims to improve causal inferences in correla-
tional studies. In this model, the SNP is the instrumental variable where the
direction of effect has to be from SNP to transcript abundance (path a) and
SNP to PPD status (path c’). Thus, the causal direction cannot be reversed
as neither gene expression nor PPD status can change the SNP. The
direction of effect from transcript abundance to PPD status (path b) can in
principle be reversed. However, if we reverse the direction of effect there
can no longer be an indirect effect of the SNP on PPD so that in these
instances the null hypothesis, H0: a × b= 0, is true. Therefore, rejecting the
null hypothesis in the SNP regulatory analyses essentially provides
evidence for the causal direction of effects displayed in Fig. S4 where
transcriptional changes alter PPD risk and not the other way around.
We also used the model depicted in Fig. S4 to study possible regulatory

effects of hormones and DNA methylation. However, as both the direction
of path a and path c’ can be reversed it no longer provides evidence for
the causal direction of effects so strictly speaking significant findings
cannot be interpreted as meaning that hormones and DNA methylation
are regulators.
For each gene with a differentially expressed transcript, all annotated

transcripts with expression data were tested. SNPs and CpGs were tested
as putative regulators if they had a nominal association with case status (p
< 0.05) in a 10 kb window of the genes tested. Hormones were tested as
putative regulators if they had a nominal association with case status (p <
0.05). This pre-selection avoids running regulatory analyses with a large
number of markers (SNPs, CpGs, hormones), the majority of which cannot
be regulators because they do not affect transcript abundance. All raw
data had their respective covariates regressed out prior to mediation
testing. Causal mediation analyses were conducted with the mediate
package (v4.5.0) in R. Specifically, we used the mediate function which
implements a quasi-Bayesian approach with 1000 to 1,000,000 Monte
Carlo draws for the approximation of the p-values for the mediation effect
[109]. All analyses begin with 1000 simulations. If a p-value cannot be
approximated (p-value= 0), another round is performed using 10,000 simu-
lations. This process continutes with a 10-fold increment in simulations

until a p-value can be approximated, or the number of simulations reaches
1,000,000. A q-value < 0.1 was used to declare significance [30].

DATA AVAILABILITY
Full transcriptomic, DNA methylation, and SNP data used to support the findings of
this study have, or will be, deposited in dbGaP (accession: phs002103.v1.p1). [https://
www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs002103.v1.p1].
but will be embargoed until results from full datasets are in press.
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