Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Oxytocin and the social facilitation of placebo effects

Abstract

Significant clinical improvement is often observed in patients who receive placebo treatment in randomized double-blind placebo-controlled trials. While a proportion of this “improvement” reflects experimental design limitations (e.g., reliance on subjective outcomes, unbalanced groups, reporting biases), some of it reflects genuine improvement corroborated by physiological change. Converging evidence across diverse medical conditions suggests that clinically-relevant benefits from placebo treatment are associated with the activation of brain reward circuits. In parallel, evidence has accumulated showing that such benefits are facilitated by clinicians that demonstrate warmth and proficiency during interactions with patients. Here, we integrate research on these neural and social aspects of placebo effects with evidence linking oxytocin and social reward to advance a neurobiological account for the social facilitation of placebo effects. This account frames oxytocin as a key mediator of treatment success across a wide-spectrum of interventions that increase social connectedness, thereby providing a biological basis for assessing this fundamental non-specific element of medical care.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Oxytocinergic modulation of reward processing and the social facilitation of placebo effects.
Fig. 2: Blood oxytocin concentration predicts placebo effects on social functioning in individuals with autism.

Similar content being viewed by others

Notes

  1. More broadly, an individual’s overall level of “social connectedness” is an important predictor of well-being, morbidity, and mortality. Social connectedness can be measured by assessing structural, functional, and/or qualitative aspects of an individual’s relationships (e.g., the size of their social network, their access to social support, and affective valences), and is increased by forging new social connections of the kind described here [46, 47].

References

  1. Bingel U, Wanigasekera V, Wiech K, Mhuircheartaigh RN, Lee MC, Ploner M, et al. The effect of treatment expectation on drug efficacy: imaging the analgesic benefit of the opioid remifentanil. Sci Transl Med. 2011;3:70ra14.

  2. De la Fuente-Fernández R, Ruth TJ, Sossi V, Schulzer M, Calne DB, Stoessl AJ. Expectation and dopamine release: mechanism of the placebo effect in Parkinson’s disease. Science. 2001;293:1164–6.

    Article  PubMed  Google Scholar 

  3. Zubieta JK, Bueller JA, Jackson LR, Scott DJ, Xu Y, Koeppe RA, et al. Placebo effects mediated by endogenous opioid activity on μ-opioid receptors. J Neurosci. 2005;25:7754–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wager TD, Scott DJ, Zubieta JK. Placebo effects on human μ-opioid activity during pain. Proc Natl Acad Sci USA. 2007;104:11056–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Scott DJ, Stohler CS, Egnatuk CM, Wang H, Koeppe RA, Zubieta JK. Individual differences in reward responding explain placebo-induced expectations and effects. Neuron 2007;55:325–36.

    Article  CAS  PubMed  Google Scholar 

  6. Scott DJ, Stohler CS, Egnatuk CM, Wang H, Koeppe RA, Zubieta JK. Placebo and nocebo effects are defined by opposite opioid and dopaminergic responses. Arch Gen Psychiatry. 2008;65:220–31.

    Article  PubMed  Google Scholar 

  7. Peciña M, Zubieta JK. Molecular mechanisms of placebo responses in humans. Mol Psychiatry. 2015;20:416–23.

    Article  PubMed  CAS  Google Scholar 

  8. Peciña M, Sikora M, Avery ET, Heffernan J, Peciña S, Mickey BJ, et al. Striatal dopamine D2/3 receptor-mediated neurotransmission in major depression: Implications for anhedonia, anxiety and treatment response. Eur Neuropsychopharmacol. 2017;27:977–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Howe LC, Goyer JP, Crum AJ. Harnessing the placebo effect: exploring the influence of physician characteristics on placebo response. Heal Psychol. 2017;36:1074–82.

    Article  Google Scholar 

  10. Pollo A, Torre E, Lopiano L, Rizzone M, Lanotte M, Cavanna A, et al. Expectation modulates the response to subthalamic nucleus stimulation in Parkinsonian patients. Neuroreport 2002;13:1383–6.

    Article  PubMed  Google Scholar 

  11. Kemeny ME, Rosenwasser LJ, Panettieri RA, Rose RM, Berg-Smith SM, Kline JN. Placebo response in asthma: A robust and objective phenomenon. J Allergy Clin Immunol. 2007;119:1375–81.

    Article  PubMed  Google Scholar 

  12. Kamenica E, Naclerio R, Malani A. Advertisements impact the physiological efficacy of a branded drug. Proc Natl Acad Sci USA. 2013;110:12931–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zunhammer M, Spisák T, Wager TD, Bingel U, Atlas L, Benedetti F, et al. Meta-analysis of neural systems underlying placebo analgesia from individual participant fMRI data. Nat Commun. 2021;12:1–11.

    Article  CAS  Google Scholar 

  14. Benedetti F Placebo effects: understanding the other side of medical care. third. Oxford: Oxford University Press; 2021.

  15. Rief W, Shedden-Mora MC, Laferton JAC, Auer C, Petrie KJ, Salzmann S, et al. Preoperative optimization of patient expectations improves long-term outcome in heart surgery patients: Results of the randomized controlled PSY-HEART trial. BMC Med. 2017;15:1–13.

    Article  Google Scholar 

  16. Evers AWM, Colloca L, Blease C, Gaab J, Jensen KB, Atlas LY, et al. What should clinicians tell patients about Placebo and Nocebo effects? practical considerations based on expert consensus. Psychother Psychosom. 2020;90:49–56.

    Article  PubMed  Google Scholar 

  17. Colloca L, Miller FG. The nocebo effect and its relevance for clinical practice. Psychosom Med. 2011;73:598–603.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Corsi N, Colloca L. Placebo and nocebo effects: the advantage of measuring expectations and psychological factors. Front Psychol. 2017;8:308.

  19. Parker KJ, Oztan O, Libove RA, Sumiyoshi RD, Jackson LP, Karhson DS, et al. Intranasal oxytocin treatment for social deficits and biomarkers of response in children with autism. Proc Natl Acad Sci. 2017;114:8119–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Friedman LM, Furberg CD, DeMets DL. Fundamentals of clinical trials. fourth. New York: Springer; 2010.

  21. Kaptchuk TJ. Powerful placebo: The dark side of the randomised controlled trial. Lancet 1998;351:1722–5.

    Article  CAS  PubMed  Google Scholar 

  22. Price DD, Finniss DG, Benedetti F. A comprehensive review of the placebo effect: recent advances and current thought. Annu Rev Psychol. 2008;59:565–90.

    Article  PubMed  Google Scholar 

  23. Benedetti F, Pollo A, Lopiano L, Lanotte M, Vighetti S, Rainero I. Conscious expectation and unconscious conditioning in analgesic, motor, and hormonal placebo/nocebo responses. J Neurosci. 2003;23:4315–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kirsch I. Response expectancy as a determinant of experience and behavior. Am Psychol. 1985;40:1189–202.

    Article  Google Scholar 

  25. Lyerly SB, Ross S, Krugman AD, Clyde DJ. Drugs and placebos: the effects of instructions upon performance and mood under amphetamine sulfate and chloral hydrate. J Abnorm Soc Psychol. 1964;68:321–7.

    Article  CAS  Google Scholar 

  26. Amanzio M, Benedetti F. Neuropharmacological dissection of placebo analgesia: expectation- activated opioid systems versus conditioning-activated specific subsystems. J Neurosci. 1999;19:484–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Koban L, Kross E, Woo CW, Ruzic L, Wager TD. Frontal-brainstem pathways mediating placebo effects on social rejection. J Neurosci. 2017;37:3621–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wager TD, Rilling JK, Smith EE, Sokolik A, Casey KL, Davidson RJ, et al. Placebo-induced changes in fMRI in the anticipation and experience of pain. Science. 2004;303:1162–7.

    Article  CAS  PubMed  Google Scholar 

  29. Levine JD, Gordon NC, Fields HL. The mechanism of placebo analgesia. Lancet 1978;312:654–7.

    Article  Google Scholar 

  30. Goetz CG, Wuu J, McDermott MP, Adler CH, Fahn S, Freed CR, et al. Placebo response in Parkinson’s disease: Comparisons among 11 trials covering medical and surgical interventions. Mov Disord. 2008;23:690–9.

    Article  PubMed  Google Scholar 

  31. Masi A, Lampit A, Glozier N, Hickie IB, Guastella AJ. Predictors of placebo response in pharmacological and dietary supplement treatment trials in pediatric autism spectru disorder: a meta-analysis. Transl Psychiatry. 2015;5:e640.

  32. Kirsch I. Placebo effect in the treatment of depression and anxiety. Front Psychiatry. 2019;10:1–9.

    Article  Google Scholar 

  33. Schafer SM, Colloca L, Wager TD. Conditioned placebo analgesia persists when subjects know they are receiving a placebo. J Pain. 2015;16:412–20.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Colloca L, Benedetti F. Placebo analgesia induced by social observational learning. Pain 2009;144:28–34.

    Article  PubMed  Google Scholar 

  35. De la Fuente-Fernández R. The placebo-reward hypothesis: dopamine and the placebo effect. Park Relat Disord. 2009;15:72–74.

    Article  Google Scholar 

  36. De la Fuente-Fernández R, Phillips AG, Zamburlini M, Sossi V, Calne DB, Ruth TJ, et al. Dopamine release in human ventral striatum and expectation of reward. Behav Brain Res. 2002;136:359–63.

    Article  PubMed  Google Scholar 

  37. Strafella AP, Ko JJ, Monchi O. Therapeutic application of TMS in PD: the contribution of expectation. Neuroimage 2006;31:1666–72.

    Article  PubMed  Google Scholar 

  38. Knutson B, Adams CM, Fong GW, Hommer D. Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci. 2001;21:1–5.

    Article  Google Scholar 

  39. Crum AJ, Langer EJ. Mind-set matters: exercise and the placebo effect. Psychol Sci. 2007;18:165–71.

    Article  PubMed  Google Scholar 

  40. Crum AJ, Leibowitz KA, Verghese A. Making mindset matter. BMJ 2017;356:6674.

    Google Scholar 

  41. Espay AJ, Norris MM, Eliassen JC, Smith MS, Banks C, Allendorfer JB, et al. Placebo effect of medication cost in Parkinson disease. Neurology 2015;84:794–802.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Czerniak E, Biegon A, Ziv A, Karnieli-Miller O, Weiser M, Alon U, et al. Manipulating the placebo response in experimental pain by altering doctor’s performance style. Front Psychol. 2016;7:1–10.

    Article  Google Scholar 

  43. Kaptchuk TJ, Kelley JM, Conboy LA, Davis RB, Kerr CE, Jacobson EE, et al. Components of placebo effect: randomised controlled trial in patients with irritable bowel syndrome. Bmj 2008;336:999–1003.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Howe LC, Leibowitz KA, Crum AJ. When your doctor “Gets it” and “Gets you”: the critical role of competence and warmth in the patient-provider interaction. Front Psychiatry. 2019;10:1–22.

    Article  CAS  Google Scholar 

  45. Rakel D, Barrett B, Zhang Z, Hoeft T, Chewning B, Marchand L, et al. Perception of empthay in the therapeutic encounter: effects on the common cold. Patient Educ Counc. 2011;85:390–7.

    Article  Google Scholar 

  46. Seppala E, Rossomando T, Doty JR. Social connection and compassion: important predictors of health and well-being. Soc Res. 2013;80:411–30.

    Article  Google Scholar 

  47. Holt-Lunstad J. The major health implications of social connection. Curr Dir Psychol Sci. 2021;30:251–9.

    Article  Google Scholar 

  48. Enck P, Klosterhalfen S. The story of O–Is oxytocin the mediator of the placebo response? Neurogastroenterol Motil. 2009;21:347–50.

    Article  CAS  PubMed  Google Scholar 

  49. Benedetti F The patient’s brain: the neuroscience behind the doctor-patient relationship. Oxford University Press; 2010.

  50. Jurek B, Neumann ID. The oxytocin receptor: From intracellular signaling to behavior. Physiol Rev. 2018;98:1805–908.

    Article  CAS  PubMed  Google Scholar 

  51. Carmichael MS, Warburton VL, Dixen J, Davidson JM. Relationships among cardiovascular, muscular, and oxytocin responses during human sexual activity. Arch Sex Behav. 1994;23:59–79.

    Article  CAS  PubMed  Google Scholar 

  52. Fuchs AR, Fuchs F. Endocrinology of human parturition: a review. Br J Obstet Gynaecol. 1984;91:948–67.

    Article  CAS  PubMed  Google Scholar 

  53. Uvnäs-Moberg K, Prime DK. Oxytocin effects in mothers and infants during breatfeeding. Infant. 2013;9:201–6.

    Google Scholar 

  54. Seltzer LJ, Ziegler TE, Pollak SD. Social vocalizations can release oxytocin in humans. Proc R Soc B. 2010;277:2661–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nagasawa M, Mitsui S, En S, Ohtani N, Ohta M, Sakuma Y, et al. Oxytocin-gaze positive loop and the coevolution of human-dog bonds. Science. 2015;348:333–6.

    Article  CAS  PubMed  Google Scholar 

  56. Odendaal JSJ, Meintjes RA. Neurophysiological correlates of affiliative behaviour between humans and dogs. Vet J. 2003;165:296–301.

    Article  CAS  PubMed  Google Scholar 

  57. Spengler FB, Scheele D, Marsh N, Kofferath C, Flach A, Schwarz S, et al. Oxytocin facilitates reciprocity in social communication. Soc Cogn Affect Neurosci. 2017;12:1325–33.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Parker KJ, Garner JP, Libove RA, Hyde SA, Hornbeak KB, Carson DS, et al. Plasma oxytocin concentrations and OXTR polymorphisms predict social impairments in children with and without autism spectrum disorder. Proc Natl Acad Sci. 2014;111:12258–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kosfeld M, Heinrichs M, Zak PJ, Fischbacher U, Fehr E. Oxytocin increases trust in humans. Nature 2005;435:673–6.

    Article  CAS  PubMed  Google Scholar 

  60. Declerck CH, Boone C, Pauwels L, Vogt B, Fehr E. A registered replication study on oxytocin and trust. Nat Hum Behav. 2020;4:646–55.

    Article  PubMed  Google Scholar 

  61. Zak PJ, Stanton AA, Ahmadi S. Oxytocin increases generosity in humans. PLoS One. 2007;2:1–5.

    Article  CAS  Google Scholar 

  62. Declerck CH, Boone C, Kiyonari T. Oxytocin and cooperation under conditions of uncertainty: the modulating role of incentives and social information. Horm Behav. 2010;57:368–74.

    Article  CAS  PubMed  Google Scholar 

  63. De Dreu CKW, Greer LL, Handgraaf MJJ, Shalvi S, Van Kleef GA, Baas M, et al. The neuropeptide oxytocin regulates parochial altruism in intergroup conflict among humans. Science (80-). 2010;328:1408–11.

    Article  CAS  Google Scholar 

  64. Domes G, Heinrichs M, Michel A, Berger C, Herpertz SC. Oxytocin improves ‘mind-reading’ in humans. Biol Psychiatry. 2007;61:731–3.

    Article  CAS  PubMed  Google Scholar 

  65. Shahrestani S, Kemp AH, Guastella AJ. The impact of a single administration of intranasal oxytocin on the recognition of basic emotions in humans: a meta-analysis. Neuropsychopharmacology 2013;38:1929–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Guastella AJ, Mitchell PB, Dadds MR. Oxytocin increases gaze to the eye region of human faces. Biol Psychiatry. 2008;63:3–5.

    Article  CAS  PubMed  Google Scholar 

  67. Domes G, Sibold M, Schulze L, Lischke A, Herpertz SC, Heinrichs M. Intranasal oxytocin increases covert attention to positive social cues. Psychol Med. 2013;43:1747–53.

    Article  CAS  PubMed  Google Scholar 

  68. Kelley AE, Berridge KC. The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci. 2002;22:3306–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dölen G, Malenka RC. The emerging role of nucleus accumbens oxytocin in social cognition. Biol Psychiatry. 2014;76:354–5.

    Article  PubMed  CAS  Google Scholar 

  70. Young KA, Liu Y, Wang Z. The neurobiology of social attachment: a comparative approach to behavioral, neuroanatomical, and neurochemical studies. Comp Biochem Physiol Part C. 2008;148:401–10.

    Google Scholar 

  71. Freeman SM, Young LJ. Comparative perspectives on oxytocin and vasopressing receptor research in rodents and primates, translational implications. J Neuroendocrinol. 2016;28 https://doi.org/10.1111/jne.12382.

  72. Young LJ, Lim MM, Gingrich B, Insel TR. Cellular mechanisms of social attachment. Horm Behav. 2001;40:133–8.

    Article  CAS  PubMed  Google Scholar 

  73. Ross HE, Young LJ. Oxytocin and the neural mechanisms regulating social cognition and affiliative behavior. Front Neuroendocrinol. 2009;30:534–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dölen G, Darvishzadeh A, Huang KW, Malenka RC. Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 2013;501:179–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Scheele D, Wille A, Kendrick KM, Stoffel-Wagner B, Becker B, Güntürkün O, et al. Oxytocin enhances brain reward system responses in men viewing the face of their female partner. Proc Natl Acad Sci USA. 2013;110:20308–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Striepens N, Matusch A, Kendrick KM, Mihov Y, Elmenhorst D, Becker B, et al. Oxytocin enhances attractiveness of unfamiliar female faces independent of the dopamine reward system. Psychoneuroendocrinology 2014;39:74–87.

    Article  CAS  PubMed  Google Scholar 

  77. Groppe SE, Gossen A, Rademacher L, Hahn A, Westphal L, Gründer G, et al. Oxytocin influences processing of socially relevant cues in the ventral tegmental area of the human brain. Biol Psychiatry. 2013;74:172–9.

    Article  CAS  PubMed  Google Scholar 

  78. Insel TR. Is social attachment an addictive disorder? Physiol Behav. 2003;79:351–7.

    Article  CAS  PubMed  Google Scholar 

  79. Cho MM, Devries AC, Williams JR, Carter CS. The effects of oxytocin and vasopressin on partner preferences in male and female prairie voles (Microtus ochrogaster). Behav Neurosci. 1999;113:1071–9.

    Article  CAS  PubMed  Google Scholar 

  80. Aragona BJ, Liu Y, Curtis JT, Stephan FK, Wang Z. A critical role for nucleus accumbens dopamine in partner-preference formation in male prairie voles. J Neurosci. 2003;23:3483–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gingrich B, Liu Y, Cascio C, Wang Z, Insel TR. Dopamine D2 receptors in the nucleus accumbens are important for social attachment in female prairie voles (Microtus ochrogaster). Behav Neurosci. 2000;114:173–83.

    Article  CAS  PubMed  Google Scholar 

  82. Liu Y, Wang ZX. Nucleus accumbens oxytocin and dopamine interact to regulate pair bond formation in female prairie voles. Neuroscience 2003;121:537–44.

    Article  CAS  PubMed  Google Scholar 

  83. Gunaydin LA, Grosenick L, Finkelstein JC, Kauvar IV, Fenno LE, Adhikari A, et al. Natural neural projection dynamics underlying social behavior. Cell 2014;157:1535–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hung LW, Neuner S, Polepalli JS, Beier KT, Wright M, Walsh JJ, et al. Gating of social reward by oxytocin in the ventral tegmental area. Science. 2017;357:1406–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Song Z, Borland JM, Larkin TE, O’Malley M, Albers HE. Activation of oxytocin receptors, but not arginine-vasopressin (AVP) receptors, in the ventral tegmental area of male Syrian hamsters is essential for the reward-like properties of social interactions. Psychoneuroendocrinology 2016;74:164–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Le Merrer J, Becker JAJ, Befort K, Kieffer BL. Reward processing by the opioid system in the brain. Physiol Rev. 2009;89:1379–412.

    Article  PubMed  Google Scholar 

  87. Nelson EE, Panksepp J. Brain substrates of infant–mother attachment: contributions of opioids, oxytocin, and norepinephrine. Neurosci Biobehav Rev. 1998;22:437–52.

    Article  CAS  PubMed  Google Scholar 

  88. Trezza V, Damsteegt R, Marijke Achterberg EJ, Vanderschuren LJMJ. Nucleus accumbens μ-opioid receptors mediate social reward. J Neurosci. 2011;31:6362–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Douglas AJ, Neumann I, Meeren HKM, Leng G, Johnstone LE, Munro G, et al. Central endogenous opioid inhibition of supraoptic oxytocin neurons in pregnant rats. J Neurosci. 1995;15:5049–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Clarke G, Wood P, Merrick L, Lincoln DW. Opiate inhibition of peptide release from the neurohumoral terminals of hypothalamic neurones. Nature 1979;282:746–8.

    Article  CAS  PubMed  Google Scholar 

  91. Mansour A, Hoversten MT, Taylor LP, Watson SJ, Akil H. The cloned μ, δ and κ receptors and their endogenous ligands: Evidence for two opioid peptide recognition cores. Brain Res. 1995;700:89–98.

    Article  CAS  PubMed  Google Scholar 

  92. You ZD, Li JH, Song CY, Wang CH, Lu CL. Chronic morphine treatment inhibits oxytocin synthesis in rats. Neuroreport 2000;11:3113–6.

    Article  CAS  PubMed  Google Scholar 

  93. Dal Monte O, Piva M, Anderson KM, Tringides M, Holmes AJ, Chang SWC. Oxytocin under opioid antagonism leads to supralinear enhancement of social attention. Proc Natl Acad Sci USA. 2017;114:5247–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Moles A, Kieffer BL, D’Amato FR. Deficit in attachment behavior in mice lacking the μ-opioid receptor gene. Science. 2004;304:1983–6.

    Article  CAS  PubMed  Google Scholar 

  95. Cinque C, Pondiki S, Oddi D, Di Certo MG, Marinelli S, Troisi A, et al. Modeling socially anhedonic syndromes: Genetic and pharmacological manipulation of opioid neurotransmission in mice. Transl Psychiatry. 2012;2:1–7.

    Article  CAS  Google Scholar 

  96. Wöhr M, Moles A, Schwarting RKW, D’Amato FR. Lack of social exploratory activation in male μ-opioid receptor KO mice in response to playback of female ultrasonic vocalizations. Soc Neurosci. 2011;6:76–87.

    Article  PubMed  Google Scholar 

  97. Gigliucci V, Leonzino M, Busnelli M, Luchetti A, Palladino VS, D’Amato FR, et al. Region specific up-regulation of oxytocin receptors in the opioid Oprm1 -/- mouse model of autism. Front Pediatr. 2014;2:1–12.

    Article  Google Scholar 

  98. Meguro Y, Miyano K, Hirayama S, Yoshida Y, Ishibashi N, Ogino T, et al. Neuropeptide oxytocin enhances μ opioid receptor signaling as a positive allosteric modulator. J Pharm Sci. 2018;137:67–75.

    Article  CAS  Google Scholar 

  99. Le Moine C, Normand E, Guitteny AF, Fouque B, Teoule R, Bloch B. Dopamine receptor gene expression by enkephalin neurons in rat forebrain. Proc Natl Acad Sci USA. 1990;87:230–4.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Kalivas PW. Neurotransmitter regulation of dopamine neurons in the ventral tegmental area. Brain Res Rev. 1993;18:75–113.

    Article  CAS  PubMed  Google Scholar 

  101. MacDonald AF, Billington CJ, Levine AS. Alterations in food intake by opioid and dopamine signaling pathways between the ventral tegmental area and the shell of the nucleus accumbens. Brain Res. 2004;1018:78–85.

    Article  CAS  PubMed  Google Scholar 

  102. Corre J, van Zessen R, Loureiro M, Patriarchi T, Tian L, Pascoli V, et al. Dopamine neurons projecting to medial shell of the nucleus accumbens drive heroin reinforcement. Elife 2018;7:1–22.

    Article  Google Scholar 

  103. Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology 2010;35:217–38.

    Article  PubMed  Google Scholar 

  104. Berridge KC, Kringelbach ML. Pleasure systems in the brain. Neuron 2015;86:646–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Herbert J. Peptides in the limbic system: neurochemical codes for co-ordinated adaptive responses to behavioural and physiological demand. Prog Neurobiol. 1993;41:723–91.

    Article  CAS  PubMed  Google Scholar 

  106. Csiffáry A, Ruttner Z, Tóth Z, Palkovits M. Oxytocin nerve fibers innervate Beta-endorphin neurons in the arcuate nucleus of the rat hypothalamus. Neuroendocrinology 1992;56:429–35.

    Article  PubMed  Google Scholar 

  107. Pandit R, Omrani A, Luijendijk MCM, De Vrind VAJ, Van Rozen AJ, Ophuis RJAO, et al. Melanocortin 3 receptor signaling in midbrain dopamine neurons increases the motivation for food reward. Neuropsychopharmacology 2016;41:2241–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Beaulieu J, Champagne D, Drolet G. Enkephalin innervation of the paraventricular nucleus of the hypothalamus: distribution of fibers and origins of input. J Chem Neuroanat. 1996;10:79–92.

    Article  CAS  PubMed  Google Scholar 

  109. Douglas AJ, Bicknell RJ, Leng G, Russell JA, Meddle SL. β-Endorphin cells in the arcuate nucleus: projections to the supraoptic nucleus and changes in expression during pregnancy and parturition. J Neuroendocrinol. 2002;14:768–77.

    Article  CAS  PubMed  Google Scholar 

  110. Flückiger C, Re ACDel, Wampold BE, Symonds D, Horvath AO. How central is the alliance in psychotherapy? A multilevel longitudinal meta-analysis. J Couns Psychol. 2012;59:10–17.

    Article  PubMed  Google Scholar 

  111. Smith ML, Glass GV. Meta-analysis of psychotherapy outcome studies. Am Psychol. 1977;32:752–60.

    Article  CAS  PubMed  Google Scholar 

  112. Strupp HH, Hadley SW. Specific vs nonspecific factors in psychotherapy: a controlled study of outcome. Arch Gen Psychiatry. 1979;36:1125–36.

    Article  CAS  PubMed  Google Scholar 

  113. Ackerman SJ, Hilsenroth MJ. A review of therapist characteristics and techniques positively impacting the therapeutic alliance. Clin Psychol Rev. 2003;23:1–33.

    Article  PubMed  Google Scholar 

  114. Ardito RB, Rabellino D. Therapeutic alliance and outcome of psychotherapy: historical excursus, measurements, and prospects for research. Front Psychol. 2011;2:1–11.

    Article  Google Scholar 

  115. Horvath AO, Luborsky L. The role of the therapeutic alliance in psychotherapy. J Consult Clin Psychol. 1993;61:561–73.

    Article  CAS  PubMed  Google Scholar 

  116. Piacentini J, Woods DW, Scahill L, Wilhelm S, Peterson AL, Chang S, et al. Behavior therapy for children with Tourette disorder. Jama 2010;303:1929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bisson J, Andrew M. Psychological treatment of post-traumatic stress disorder (PTSD). Cochrane Database Syst Rev. 2007. 2007. https://doi.org/10.1002/14651858.CD003388.pub3.

  118. Hofmann SG, Asnaani A, Vonk IJJ, Sawyer AT, Fang A. The efficacy of CBT: a review of meta-analyses. Cogn Ther Res. 2012;36:427–40.

    Article  Google Scholar 

  119. López-lópez JA, Davies SR, Caldwell DM, Churchill R, Peters TJ, Tallon D, et al. The process and delivery of CBT for depression in adults: a systematic review and network meta-analysis. Psychol Med. 2019;49:1937–47.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Kirsch I. Changing expectations: a key to effective psychotherapy. Pacific Grove, CA: Brooks/Cole.; 1990.

  121. King BH, Dukes K, Donnelly CL, Sikich L, McCracken JT, Scahill L, et al. Baseline factors predicting placebo response to treatment in children and adolescents with autism spectrum disorders: A multisite randomized clinical trial. JAMA Pediatr. 2013;167:1045–52.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Constantino JN, Davis SA, Todd RD, Schindler MK, Gross MM, Brophy SL, et al. Validation of a brief quantitative measure of autistic traits: Comparison of the social responsiveness scale with the Autism Diagnostic Interview-Revised. J Autism Dev Disord. 2003;33:427–33.

    Article  PubMed  Google Scholar 

  123. Cochran DM, Fallon D, Hill M, Frazier JA. The role of oxytocin in psychiatric disorders: a review of biological and therapeutic research findings. Harv Rev Psychiatry. 2013;21:219–47.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Herpertz SC, Bertsch K. A new perspective on the pathophysiology of borderline personality disorder: a model of the role of oxytocin. Am J Psychiatry. 2015;172:840–51.

    Article  PubMed  Google Scholar 

  125. Heinrichs M, Baumgartner T, Kirschbaum C, Ehlert U. Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biol Psychiatry. 2003;54:1389–98.

    Article  CAS  PubMed  Google Scholar 

  126. Karelina K, Devries AC. Modeling social influences on human health. Psychosom Med. 2011;73:67–74.

    Article  PubMed  Google Scholar 

  127. Knox SS, Uvnäs-Moberg K. Social isolation and cardiovascular disease: an atherosclerotic pathway? Psychoneuroendocrinology 1998;23:877–90.

    Article  CAS  PubMed  Google Scholar 

  128. Peciña M, Bohnert ASB, Sikora M, Avery ET, Langenecker SA, Mickey BJ, et al. Association between placebo-activated neural systems and antidepressant responses neurochemistry of placebo effects in major depression. JAMA Psychiatry. 2015;72:1087–94.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Kessner S, Sprenger C, Wrobel N, Wiech K, Bingel U. Effect of oxytocin on placebo analgesia: a randomized study. JAMA - J Am Med Assoc. 2013;310:1733–5.

    Article  CAS  Google Scholar 

  130. Zhao W, Becker B, Yao S, Ma X, Kou J, Kendrick KM. Oxytocin enhancement of the placebo effect may be a novel therapy for working memory impairments. Psychother Psychosom. 2019;88:125–6.

    Article  PubMed  Google Scholar 

  131. Skvortsova A, Veldhuijzen DS, van Middendorp H, Colloca L, Evers AWM. Effects of oxytocin on placebo and nocebo effects in a pain conditioning paradigm: a randomized controlled trial. J Pain. 2020;21:430–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Liu C, Huang Y, Chen L, Yu R. Lack of evidence for the effect of oxytocin on placebo analgesia and nocebo hyperalgesia. Psychother Psychosom. 2020;89:185–7.

    Article  PubMed  Google Scholar 

  133. Colloca L, Pine DS, Ernst M, Miller FG, Grillon C. Vasopressin boosts placebo analgesic effects in women: a randomized trial. Biol Psychiatry. 2016;79:794–802.

    Article  CAS  PubMed  Google Scholar 

  134. Skvortsova A, Veldhuijzen DS, Van Middendorp H, Van Den Bergh O, Evers AWM. Enhancing placebo effects in somatic symptoms through oxytocin. Psychosom Med. 2018;80:353–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Donaldson ZR, Young LJ. Oxytocin, vasopressin, and the neurogenetics of sociality. Science. 2008;322:900–4.

    Article  CAS  PubMed  Google Scholar 

  136. Insel TR. The challenge of translation in social neuroscience: a review of oxytocin, vasopressin, and affiliative behavior. Neuron 2010;65:768–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Thompson RR, George K, Walton JC, Orr SP, Benson J. Sex-specific influences of vasopressin on human social communication. Proc Natl Acad Sci USA. 2006;103:7889–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Rilling JK, Li T, Chen X, Gautam P, Haroon E, Thompson RR. Arginine vasopressin effects on subjective Judgments and neural responses to same and other-sex Faces in men and women. Front Endocrinol. 2017;8:200.

  139. Chen X, Hackett PD, DeMarco AC, Feng C, Stair S, Haroon E, et al. Effects of oxytocin and vasopressin on the neural response to unreciprocated cooperation within brain regions involved in stress and anxiety in men and women. Brain Imaging Behav. 2016;10:581–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Feng C, Hackett PD, DeMarco AC, Chen X, Stair S, Haroon E, et al. Oxytocin and vasopressin effects on the neural response to social cooperation are modulated by sex in humans. Brain Imaging Behav. 2015;9:754–64.

    Article  PubMed  Google Scholar 

  141. Enck P, Klosterhalfen S. Does sex/gender play a role in placebo and nocebo effects? Conflicting evidence from clinical trials and experimental studies. Front Neurosci. 2019;13:160.

  142. Vambheim SM, Flaten MA. A systematic review of sex differences in the placebo and the nocebo effect. J Pain Res. 2017;10:1831–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Becker B, Zhao W, Kendrick KM. Reply to the letter to the editor: ‘lack of evidence for the effect of oxytocin on placebo analgesia and nocebo hyperalgesia’. Psychother Psychosom. 2020;89:188.

    Article  PubMed  Google Scholar 

  144. Kaptchuk TJ. Open-label placebo reflections on a research agenda. Perspect Biol Med. 2018;61:311–34.

    Article  PubMed  Google Scholar 

  145. Bartz JA, Zaki J, Bolger N, Ochsner KN. Social effects of oxytocin in humans: context and person matter. Trends Cogn Sci. 2011;15:301–9.

    CAS  PubMed  Google Scholar 

  146. Froemke RC, Young, LJ. Oxytocin, Neural Plasticity, and Social Behavior. Annu Rev Neurosci. 2021;44:359–81.

    Article  CAS  PubMed  Google Scholar 

  147. Luo R, Xu L, Zhao W, Ma X, Xu X, Kou J, et al. Oxytocin facilitation of acceptance of social advice is dependent upon the perceived trustworthiness of individual advisors. Psychoneuroendocrinology 2017;83:1–8.

    Article  PubMed  CAS  Google Scholar 

  148. Knobloch HS, Charlet A, Hoffmann LC, Eliava M, Khrulev S, Cetin AH, et al. Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 2012;73:553–66.

    Article  CAS  PubMed  Google Scholar 

  149. Lewis EM, Stein-O’Brien GL, Patino AV, Nardou R, Grossman CD, Brown M, et al. Parallel social information processing circuits are differentially impacted in autism. Neuron 2020;108:659–675.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Olena Zyga for her input on the clinical implications of social connectedness on an early draft of this manuscript. This work was supported by National Institute of Mental Health Grant K01MH122730 (DLB), a seed grant from the Wu Tsai Neuroscience Institute at Stanford University (DLB & KPJ), a Stanford School of Medicine Dean’s fellowship (EI), and the Stanford Department of Psychiatry (KJP).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conceptualization, investigation, writing, review, and editing of this manuscript.

Corresponding authors

Correspondence to Daniel L. Bowling or Karen J. Parker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publishers note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Itskovich, E., Bowling, D.L., Garner, J.P. et al. Oxytocin and the social facilitation of placebo effects. Mol Psychiatry 27, 2640–2649 (2022). https://doi.org/10.1038/s41380-022-01515-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01515-9

This article is cited by

Search

Quick links