Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gene expression changes following chronic antipsychotic exposure in single cells from mouse striatum

Abstract

Schizophrenia is an idiopathic psychiatric disorder with a high degree of polygenicity. Evidence from genetics, single-cell transcriptomics, and pharmacological studies suggest an important, but untested, overlap between genes involved in the etiology of schizophrenia and the cellular mechanisms of action of antipsychotics. To directly compare genes with antipsychotic-induced differential expression to genes involved in schizophrenia, we applied single-cell RNA-sequencing to striatal samples from male C57BL/6 J mice chronically exposed to a typical antipsychotic (haloperidol), an atypical antipsychotic (olanzapine), or placebo. We identified differentially expressed genes in three cell populations identified from the single-cell RNA-sequencing (medium spiny neurons [MSNs], microglia, and astrocytes) and applied multiple analysis pipelines to contextualize these findings, including comparison to GWAS results for schizophrenia. In MSNs in particular, differential expression analysis showed that there was a larger share of differentially expressed genes (DEGs) from mice treated with olanzapine compared with haloperidol. DEGs were enriched in loci implicated by genetic studies of schizophrenia, and we highlighted nine genes with convergent evidence. Pathway analyses of gene expression in MSNs highlighted neuron/synapse development, alternative splicing, and mitochondrial function as particularly engaged by antipsychotics. In microglia, we identified pathways involved in microglial activation and inflammation as part of the antipsychotic response. In conclusion, single-cell RNA sequencing may provide important insights into antipsychotic mechanisms of action and links to findings from psychiatric genomic studies.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Experimental overview and major cell type assignments.
Fig. 2: Differential gene expression in MSNs after chronic antipsychotic exposure.
Fig. 3: Differential gene expression in microglia after chronic antipsychotic exposure.
Fig. 4: A data reduction strategy was applied to the Hypergeometric gene-set analysis of upregulated DEG gene-sets in MSNs after chronic olanzapine exposure.
Fig. 5: GSEA pathway analysis.

Data availability

These data have been deposited in GEO under accession GSE171977.

Code availability

Code for differential gene expression analysis have been deposited to Github and will be made available upon request.

References

  1. Sullivan PF, Geschwind DH. Defining the genetic, genomic. Cell, Diagnostic Architectures Psychiatr Disord Cell. 2019;177:162–83.

    CAS  Google Scholar 

  2. Saha S, Chant D, McGrath J. A systematic review of mortality in schizophrenia: Is the differential mortality gap worsening over time? Arch Gen Psychiatry. 2007;64:1123–31.

    Article  PubMed  Google Scholar 

  3. World Health Organization. The Global Burden of Disease: 2004 Update. WHO Press: Geneva, 2008.

  4. Knapp M, Mangalore R, Simon J. The global costs of schizophrenia. Schizophr Bull. 2004;30:279–93.

    Article  PubMed  Google Scholar 

  5. Lichtenstein P, Bjork C, Hultman CM, Scolnick EM, Sklar P, Sullivan PF. Recurrence risks for schizophrenia in a Swedish national cohort. Psychol Med. 2006;36:1417–26.

    Article  PubMed  Google Scholar 

  6. Lichtenstein P, Yip B, Bjork C, Pawitan Y, Cannon TD, Sullivan PF, et al. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: A population-based study. Lancet. 2009;373:234–9.

    Article  CAS  PubMed  Google Scholar 

  7. Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a complex trait: Evidence from a meta-analysis of twin studies. Arch Gen Psychiatry. 2003;60:1187–92.

    Article  PubMed  Google Scholar 

  8. Sullivan PF, Daly MJ, O’Donovan M. Genetic architectures of psychiatric disorders: The emerging picture and its implications. Nat Rev Genet. 2012;13:537–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pardinas AF, Holmans P, Pocklington AJ, Escott-Price V, Ripke S, Carrera N, et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat Genet. 2018;50:381–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Timpson NJ, Greenwood CMT, Soranzo N, Lawson DJ, Richards JB. Genetic architecture: the shape of the genetic contribution to human traits and disease. Nat Rev Genet. 2018;19:110–24.

    Article  CAS  PubMed  Google Scholar 

  11. Ripke S, Walters JT, O’Donovan MC. Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia. medRxiv 2020: 2020.2009.2012.20192922.

  12. CNV Working Group of the Psychiatric Genomics Consortium, Schizophrenia Working Group of the Psychiatric Genomics Consortium. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat Genet. 2017;49:27–35.

    Article  CAS  Google Scholar 

  13. Nguyen HT, Bryois J, Kim A, Dobbyn A, Huckins LM, Munoz-Manchado AB, et al. Integrated Bayesian analysis of rare exonic variants to identify risk genes for schizophrenia and neurodevelopmental disorders. Genome Med. 2017;9:114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Singh T, Kurki MI, Curtis D, Purcell SM, Crooks L, McRae J, et al. Rare loss-of-function variants in SETD1A are associated with schizophrenia and developmental disorders. Nat Neurosci. 2016;19:571–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Singh T, Poterba T, Curtis D, Akil H, Al Eissa M, Barchas JD, et al. Exome sequencing identifies rare coding variants in 10 genes which confer substantial risk for schizophrenia. medRxiv. 2020: 2020.2009.2018.20192815.

  16. Purcell SM, Moran JL, Fromer M, Ruderfer D, Solovieff N, Roussos P, et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature. 2014;506:185–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 Years of GWAS discovery: Biology, function, and translation. Am J Hum Genet. 2017;101:5–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Watanabe K, Stringer S, Frei O, Umicevic Mirkov M, de Leeuw C, Polderman TJC, et al. A global overview of pleiotropy and genetic architecture in complex traits. Nat Genet. 2019;51:1339–48.

    Article  CAS  PubMed  Google Scholar 

  19. O’Connor LJ, Schoech AP, Hormozdiari F, Gazal S, Patterson N, Price AL. Extreme polygenicity of complex traits is explained by negative selection. Am J Hum Genet. 2019;105:456–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Wang K, Li M, Hakonarson H. Analysing biological pathways in genome-wide association studies. Nat Rev Genet. 2010;11:843–54.

    Article  CAS  PubMed  Google Scholar 

  21. Gazal S, Finucane HK, Furlotte NA, Loh PR, Palamara PF, Liu X, et al. Linkage disequilibrium-dependent architecture of human complex traits shows action of negative selection. Nat Genet. 2017;49:1421–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lloyd-Jones LR, Zeng J, Sidorenko J, Yengo L, Moser G, Kemper KE, et al. Improved polygenic prediction by Bayesian multiple regression on summary statistics. Nat Commun. 2019;10:5086.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Gandal MJ, Haney JR, Parikshak NN, Leppa V, Ramaswami G, Hartl C, et al. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science. 2018;359:693–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Network, Pathway Analysis Subgroup of Psychiatric Genomics C. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nat Neurosci. 2015;18:199–209.

    Article  CAS  Google Scholar 

  25. Skene NG, Bryois J, Bakken TE, Breen G, Crowley JJ, Gaspar HA, et al. Genetic identification of brain cell types underlying schizophrenia. Nat Genet. 2018;50:825–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Koopmans F, van Nierop P, Andres-Alonso M, Byrnes A, Cijsouw T, Coba MP, et al. SynGO: An evidence-based, expert-curated knowledge base for the synapse. Neuron. 2019;103:217–34 e214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Finucane HK, Bulik-Sullivan BK, Gusev A, Trynka G, Reshef Y, Loh P-R, et al. Partitioning heritability by functional category using GWAS summary statistics. Nat Genet. 2015;47:1228–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Genovese G, Fromer M, Stahl EA, Ruderfer DM, Chambert K, Landen M, et al. Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia. Nat Neurosci. 2016;19:1433–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bryois J, Garrett ME, Song L, Safi A, Giusti-Rodriguez P, Johnson GD, et al. Evaluation of chromatin accessibility in prefrontal cortex of individuals with schizophrenia. Nat Commun. 2018;9:3121.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Wang D, Liu S, Warrell J, Won H, Shi X, Navarro FCP, et al. Comprehensive functional genomic resource and integrative model for the human brain. Science 2018;362;eaat8464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fullard JF, Hauberg ME, Bendl J, Egervari G, Cirnaru MD, Reach SM, et al. An atlas of chromatin accessibility in the adult human brain. Genome Res. 2018;28:1243–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bryois J, Skene NG, Hansen TF, Kogelman LJA, Watson HJ, Liu Z, et al. Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson’s disease. Nat Genet. 2020;52:482–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mauri MC, Paletta S, Maffini M, Colasanti A, Dragogna F, Di Pace C, et al. Clinical pharmacology of atypical antipsychotics: An update. EXCLI J. 2014;13:1163–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gaspar HA, Breen G. Drug enrichment and discovery from schizophrenia genome-wide association results: An analysis and visualisation approach. Sci Rep. 2017;7:12460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim Y, Giusti-Rodriguez P, Crowley JJ, Bryois J, Nonneman RJ, Ryan AK, et al. Comparative genomic evidence for the involvement of schizophrenia risk genes in antipsychotic effects. Mol Psychiatry. 2018;23:708–12.

    Article  CAS  PubMed  Google Scholar 

  36. Crowley JJ, Kim Y, Szatkiewicz JP, Pratt AL, Quackenbush CR, Adkins DE, et al. Genome-wide association mapping of loci for antipsychotic-induced extrapyramidal symptoms in mice. Mamm Genome. 2012;23:322–35.

    Article  CAS  PubMed  Google Scholar 

  37. Crowley JJ, Adkins DE, Pratt AL, Quackenbush CR, van den Oord EJ, Moy SS, et al. Antipsychotic-induced vacuous chewing movements and extrapyramidal side effects are highly heritable in mice. Pharmacogenomics J. 2012;12:147–55.

    Article  CAS  PubMed  Google Scholar 

  38. Adkins DE, McClay JL, Vunck SA, Batman AM, Vann RE, Clark SL, et al. Behavioral metabolomics analysis identifies novel neurochemical signatures in methamphetamine sensitization. Genes Brain Behav. 2013;12:780–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Morgan AP, Crowley JJ, Nonneman RJ, Quackenbush CR, Miller CN, Ryan AK, et al. The antipsychotic olanzapine interacts with the gut microbiome to cause weight gain in mouse. PLoS ONE. 2014;9:e115225.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Crowley JJ, Kim Y, Lenarcic AB, Quackenbush CR, Barrick CJ, Adkins DE, et al. Genetics of adverse reactions to haloperidol in a mouse diallel: A drug-placebo experiment and Bayesian causal analysis. Genetics. 2014;196:321–47.

    Article  CAS  PubMed  Google Scholar 

  41. Crowley JJ, Zhabotynsky V, Sun W, Huang S, Pakatci IK, Kim Y, et al. Analyses of allele-specific gene expression in highly divergent mouse crosses identifies pervasive allelic imbalance. Nat Genet. 2015;47:353–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Roth BL, Sheffler DJ, Kroeze WK. Magic shotguns versus magic bullets: Selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Disco. 2004;3:353–9.

    Article  CAS  Google Scholar 

  43. Soares-Weiser K, Fernandez HH. Tardive dyskinesia. SeminNeurol. 2007;27:159–69.

    Google Scholar 

  44. Meltzer HY. Update on typical and atypical antipsychotic drugs. Annu Rev Med. 2013;64:393–406.

    Article  CAS  PubMed  Google Scholar 

  45. Giusti-Rodriguez P, Xenakis JG, Crowley JJ, Nonneman RJ, DeCristo DM, Ryan A, et al. Antipsychotic behavioral phenotypes in the mouse collaborative cross recombinant inbred inter-crosses (RIX). G3 (Bethesda). 2020;10:3165–77.

    Article  CAS  Google Scholar 

  46. Zeisel A, Hochgerner H, Lonnerberg P, Johnsson A, Memic F, van der Zwan J, et al. Molecular architecture of the mouse nervous system. Cell. 2018;174:999–1014 e1022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rossi MA, Basiri ML, McHenry JA, Kosyk O, Otis JM, van den Munkhof HE, et al. Obesity remodels activity and transcriptional state of a lateral hypothalamic brake on feeding. Science. 2019;364:1271–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual. Cells Using Nanoliter Droplets Cell. 2015;161:1202–14.

    CAS  PubMed  Google Scholar 

  49. Munoz-Manchado AB, Bengtsson Gonzales C, Zeisel A, Munguba H, Bekkouche B, Skene NG, et al. Diversity of interneurons in the dorsal striatum revealed by single-cell RNA sequencing and PatchSeq. Cell Rep. 2018;24:2179–90 e2177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gokce O, Stanley GM, Treutlein B, Neff NF, Camp JG, Malenka RC, et al. Cellular taxonomy of the mouse striatum as revealed by single-cell RNA-seq. Cell Rep. 2016;16:1126–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ero C, Gewaltig MO, Keller D, Markram H. A cell atlas for the mouse brain. Front Neuroinform. 2018;12:84.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36:411–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, et al. Comprehensive integration of single. Cell Data Cell. 2019;177:1888–902 e1821.

    CAS  PubMed  Google Scholar 

  54. Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biology 2019;20:296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Waltman L, van Eck NJ. A smart local moving algorithm for large-scale modularity-based community detection. Eur Phys J B. 2013;86:471.

    Article  CAS  Google Scholar 

  56. Zeisel A, Munoz-Manchado AB, Codeluppi S, Lonnerberg P, La Manno G, Jureus A, et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. 2015;347:1138–42.

    Article  CAS  PubMed  Google Scholar 

  57. Tasic B, Menon V, Nguyen TN, Kim TK, Jarsky T, Yao Z, et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat Neurosci. 2016;19:335–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mou T, Deng W, Gu F, Pawitan Y, Vu TN. Reproducibility of methods to detect differentially expressed genes from single-cell RNA sequencing. Front Genet. 2019;10:1331.

    Article  CAS  PubMed  Google Scholar 

  59. Miao Z, Deng K, Wang X, Zhang X. DEsingle for detecting three types of differential expression in single-cell RNA-seq data. Bioinformatics. 2018;34:3223–4.

    Article  CAS  PubMed  Google Scholar 

  60. Wang T, Li B, Nelson CE, Nabavi S. Comparative analysis of differential gene expression analysis tools for single-cell RNA sequencing data. BMC Bioinforma. 2019;20:40.

    Article  Google Scholar 

  61. Lawson LJ, Perry VH, Dri P, Gordon S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience. 1990;39:151–70.

    Article  CAS  PubMed  Google Scholar 

  62. Cotel MC, Lenartowicz EM, Natesan S, Modo MM, Cooper JD, Williams SC, et al. Microglial activation in the rat brain following chronic antipsychotic treatment at clinically relevant doses. Eur Neuropsychopharmacol. 2015;25:2098–107.

    Article  CAS  PubMed  Google Scholar 

  63. Frydecka D, Krzystek-Korpacka M, Lubeiro A, Stramecki F, Stanczykiewicz B, Beszlej JA, et al. Profiling inflammatory signatures of schizophrenia: A cross-sectional and meta-analysis study. Brain Behav Immun. 2018;71:28–36.

    Article  PubMed  Google Scholar 

  64. Badimon A, Strasburger HJ, Ayata P, Chen X, Nair A, Ikegami A, et al. Negative feedback control of neuronal activity by microglia. Nature. 2020;586:417–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ormel PR, Bottcher C, Gigase FAJ, Missall RD, van Zuiden W, Fernandez Zapata MC, et al. A characterization of the molecular phenotype and inflammatory response of schizophrenia patient-derived microglia-like cells. Brain Behav Immun. 2020;90:196–207.

    Article  CAS  PubMed  Google Scholar 

  66. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang MJ, Hou K, Dey KK, Jagadeesh KA, Weinand K, Sakaue S, et al. Polygenic enrichment distinguishes disease associations of individual cells in single-cell RNA-seq data. bioRxiv. 2021. https://doi.org/10.1101/2021.09.24.461597.

  68. Fernandez A, Meechan DW, Karpinski BA, Paronett EM, Bryan CA, Rutz HL, et al. Mitochondrial dysfunction leads to cortical under-connectivity and cognitive impairment. Neuron. 2019;102:1127–42 e1123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Flippo KH, Strack S. An emerging role for mitochondrial dynamics in schizophrenia. Schizophr Res. 2017;187:26–32.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hernandez JM, Giner P, Hernandez-Yago J. Gene structure of the human mitochondrial outer membrane receptor Tom20 and evolutionary study of its family of processed pseudogenes. Gene. 1999;239:283–91.

    Article  CAS  PubMed  Google Scholar 

  71. GTEx Consortium. Genetic effects on gene expression across human tissues. Nature. 2017;550:204–13.

    Article  PubMed Central  Google Scholar 

  72. Anitha A, Nakamura K, Thanseem I, Yamada K, Iwayama Y, Toyota T, et al. Brain region-specific altered expression and association of mitochondria-related genes in autism. Mol Autism. 2012;3:12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Kuo SH, Tang G, Ma K, Babij R, Cortes E, Vonsattel JP, et al. Macroautophagy abnormality in essential tremor. PLoS One. 2012;7:e53040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Teixeira FR, Randle SJ, Patel SP, Mevissen TE, Zenkeviciute G, Koide T, et al. Gsk3beta and Tomm20 are substrates of the SCFFbxo7/PARK15 ubiquitin ligase associated with Parkinson’s disease. Biochem J. 2016;473:3563–80.

    Article  CAS  PubMed  Google Scholar 

  75. Yue F, Cheng Y, Breschi A, Vierstra J, Wu W, Ryba T, et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature. 2014;515:355–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Olsen CM, Huang Y, Goodwin S, Ciobanu DC, Lu L, Sutter TR, et al. Microarray analysis reveals distinctive signaling between the bed nucleus of the stria terminalis, nucleus accumbens, and dorsal striatum. Physiol Genomics. 2008;32:283–98.

    Article  CAS  PubMed  Google Scholar 

  77. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA. 2004;101:6062–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kochinke K, Zweier C, Nijhof B, Fenckova M, Cizek P, Honti F, et al. Systematic phenomics analysis deconvolutes genes mutated in intellectual disability into biologically coherent modules. Am J Hum Genet. 2016;98:149–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Satterstrom FK, Kosmicki JA, Wang J, Breen MS, De Rubeis S, An JY, et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell. 2020;180:568–84 e523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Deciphering Developmental Disorders S. Prevalence and architecture of de novo mutations in developmental disorders. Nature. 2017;542:433–8.

    Article  CAS  Google Scholar 

  81. Horvath GA, Stowe RM, Ferreira CR, Blau N. Clinical and biochemical footprints of inherited metabolic diseases. III. Psychiatric presentations. Mol Genet Metab. 2020;130:1–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Jens Hjerling-Leffler for assistance with experimental design and analysis, Dr. James Crowley for technical assistance, and Sydney Clarkin and Maureen Eberle for literature evaluation support. Thanks to the Translational Genomics Laboratory at the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill.

Author information

Authors and Affiliations

Authors

Contributions

PGR, NA, MLB, GDS, PFS and RH designed experiments. NA, SS, and RH performed experiments. AA and PFS performed data analysis. AA, PGR, PFS, and RH interpreted the data and wrote the paper.

Corresponding author

Correspondence to Rainbo Hultman.

Ethics declarations

Competing interests

Dr. Sullivan reports the following potentially competing financial interests: Lundbeck A/G (advisory committee, grant recipient) and Neumora (advisory committee, shareholder). Dr. Hultman reported no biomedical financial interests or potential conflicts of interest. Dr. Stuber reported no biomedical financial interests or potential conflicts of interest. Dr. Basiri reported no biomedical financial interests or potential conflicts of interest. Ms. Sekle reported no biomedical financial interests or potential conflicts of interest. Ms. Ancalade reported no biomedical financial interests or potential conflicts of interest. Dr. Giusti-Rodriguez reported no biomedical financial interests or potential conflicts of interest. Mr. Abrantes reported no biomedical financial interests or potential conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abrantes, A., Giusti-Rodriguez, P., Ancalade, N. et al. Gene expression changes following chronic antipsychotic exposure in single cells from mouse striatum. Mol Psychiatry 27, 2803–2812 (2022). https://doi.org/10.1038/s41380-022-01509-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01509-7

Search

Quick links