Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Corticosteroid sensitization drives opioid addiction

Abstract

The global crisis of opioid overdose fatalities has led to an urgent search to discover the neurobiological mechanisms of opioid use disorder (OUD). A driving force for OUD is the dysphoric and emotionally painful state (hyperkatifeia) that is produced during acute and protracted opioid withdrawal. Here, we explored a mechanistic role for extrahypothalamic stress systems in driving opioid addiction. We found that glucocorticoid receptor (GR) antagonism with mifepristone reduced opioid addiction-like behaviors in rats and zebrafish of both sexes and decreased the firing of corticotropin-releasing factor neurons in the rat amygdala (i.e., a marker of brain stress system activation). In support of the hypothesized role of glucocorticoid transcriptional regulation of extrahypothalamic GRs in addiction-like behavior, an intra-amygdala infusion of an antisense oligonucleotide that blocked GR transcriptional activity reduced addiction-like behaviors. Finally, we identified transcriptional adaptations of GR signaling in the amygdala of humans with OUD. Thus, GRs, their coregulators, and downstream systems may represent viable therapeutic targets to treat the “stress side” of OUD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chronic glucocorticoid receptor antagonism blunts the development of heroin addiction-like behaviors.
Fig. 2: Chronic glucocorticoid receptor antagonism decreases the excitability of CeA CRF cells.
Fig. 3: Acute glucocorticoid receptor antagonism reverses escalated IV methadone self-administration.
Fig. 4: Increasing the SRC-1a isoform in the CeA reduces heroin self-administration in rats under LgA conditions.
Fig. 5: Transcriptional evidence of the activation of GR signaling in individuals with histories of opioid dependence.
Fig. 6: Glucocorticoid receptor-dependent plasticity in the CeA mediates opioid addiction-like behaviors.

Similar content being viewed by others

References

  1. Strang J, Volkow ND, Degenhardt L, Hickman M, Johnson K, Koob GF, et al. Opioid use disorder. Nat Rev Dis Prim. 2020;6:3.

    Article  PubMed  Google Scholar 

  2. Understanding the Epidemic | Drug Overdose | CDC Injury Center. 2019. Accessed 7 January 2020 https://www.cdc.gov/drugoverdose/epidemic/index.html.

  3. Case A, Deaton A. Rising morbidity and mortality in midlife among white non-Hispanic Americans in the 21st century. Proc Natl Acad Sci USA. 2015;112:15078–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Koob GF. Neurobiology of opioid addiction: opponent process, hyperkatifeia, and negative reinforcement. Biol Psychiatry. 2020;87:44–53.

    Article  CAS  PubMed  Google Scholar 

  5. Evans CJ, Cahill CM, Neurobiology of opioid dependence in creating addiction vulnerability. F1000Res. 2016;5:F1000 Faculty Rev-1748.

  6. Mechling AE, Arefin T, Lee H-L, Bienert T, Reisert M, Ben Hamida S, et al. Deletion of the mu opioid receptor gene in mice reshapes the reward-aversion connectome. Proc Natl Acad Sci USA. 2016;113:11603–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pantazis CB, Gonzalez LA, Tunstall BJ, Carmack SA, Koob GF, Vendruscolo LF. Cues conditioned to withdrawal and negative reinforcement: Neglected but key motivational elements driving opioid addiction. Sci Adv. 2021;7:eabf0364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Koob G, Kreek MJ. Stress, dysregulation of drug reward pathways, and the transition to drug dependence. Am J Psychiatry. 2007;164:1149–59.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Koob GF, Schulkin J. Addiction and stress: an allostatic view. Neurosci Biobehav Rev. 2019;106:245–62.

    Article  PubMed  Google Scholar 

  10. McEwen BS, Akil H. Revisiting the stress concept: implications for affective disorders. J Neurosci. 2020;40:12–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Selye H. Stress and the general adaptation syndrome. Br Med J. 1950;1:1383–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schulkin J, The CRF signal: uncovering an information molecule. Oxford University Press; 2017.

  13. de Kloet ER, Meijer OC, de Nicola AF, de Rijk RH, Joëls M. Importance of the brain corticosteroid receptor balance in metaplasticity, cognitive performance and neuro-inflammation. Front Neuroendocrinol. 2018;49:124–45.

    Article  PubMed  CAS  Google Scholar 

  14. Carmack SA, Keeley RJ, Vendruscolo JCM, Lowery-Gionta EG, Lu H, Koob GF, et al. Heroin addiction engages negative emotional learning brain circuits in rats. J Clin Invest. 2019;129:2480–4.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Upadhyay J, Maleki N, Potter J, Elman I, Rudrauf D, Knudsen J, et al. Alterations in brain structure and functional connectivity in prescription opioid-dependent patients. Brain. 2010;133:2098–114.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Roberto M, Spierling SR, Kirson D, Zorrilla EP, Chapter Two-Corticotropin-Releasing Factor (CRF) and Addictive Behaviors. In: Thiele TE, editor. International Review of Neurobiology, vol. 136, Academic Press; 2017. p. 5–51.

  17. Zalachoras I, Verhoeve SL, Toonen LJ, van Weert LTCM, van Vlodrop AM, Mol IM, et al. Isoform switching of steroid receptor co-activator-1 attenuates glucocorticoid-induced anxiogenic amygdala CRH expression. Mol Psychiatry. 2016;21:1733–9.

    Article  CAS  PubMed  Google Scholar 

  18. Edwards S, Little HJ, Richardson HN, Vendruscolo LF. Divergent regulation of distinct glucocorticoid systems in alcohol dependence. Alcohol 2015;49:811–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cook CJ. Glucocorticoid feedback increases the sensitivity of the limbic system to stress. Physiol Behav. 2002;75:455–64.

    Article  CAS  PubMed  Google Scholar 

  20. Marchette RCN, Gregory-Flores A, Tunstall BJ, Carlson ER, Jackson SN, Sulima A, et al. κ-Opioid receptor antagonism reverses heroin withdrawal-induced hyperalgesia in male and female rats. Neurobiol Stress. 2021;14:100325.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Moreton JE, Roehrs T, Khazan N. Drug self-administration and sleep-awake activity in rats dependent on morphine, methadone, or l -alpha-acetylmethadol. Psychopharmacology 1976;47:237–41.

    Article  CAS  PubMed  Google Scholar 

  22. Werner TE, Smith SG, Davis WM. A dose-response comparison between methadone and morphine self-administration. Psychopharmacology 1976;47:209–11.

    Article  CAS  Google Scholar 

  23. Collins RJ, Weeks JR. Relative potency of codeine, methadone and dihydromorphinone to morphine in self-maintained addict rats. Naunyn - Schmiedebergs Arch. 1965;249:509–14.

    Article  CAS  Google Scholar 

  24. Holtman JR, Wala EP. Characterization of the antinociceptive and pronociceptive effects of methadone in rats. Anesthesiology 2007;106:563–71.

    Article  CAS  PubMed  Google Scholar 

  25. Vendruscolo JCM, Tunstall BJ, Carmack SA, Schmeichel BE, Lowery-Gionta EG, Cole M, et al. Compulsive-like sufentanil vapor self-administration in rats. Neuropsychopharmacology 2018;43:801–9.

    Article  CAS  PubMed  Google Scholar 

  26. Vendruscolo LF, Estey D, Goodell V, Macshane LG, Logrip ML, Schlosburg JE, et al. Glucocorticoid receptor antagonism decreases alcohol seeking in alcohol-dependent individuals. J Clin Invest. 2015;125:3193–7.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Vendruscolo LF, Barbier E, Schlosburg JE, Misra KK, Whitfield TW, Logrip ML, et al. Corticosteroid-dependent plasticity mediates compulsive alcohol drinking in rats. J Neurosci. 2012;32:7563–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Somkuwar SS, Vendruscolo LF, Fannon MJ, Schmeichel BE, Nguyen TB, Guevara J, et al. Abstinence from prolonged ethanol exposure affects plasma corticosterone, glucocorticoid receptor signaling and stress-related behaviors. Psychoneuroendocrinology 2017;84:17–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rigo F, Chun SJ, Norris DA, Hung G, Lee S, Matson J, et al. Pharmacology of a central nervous system delivered 2′-O-Methoxyethyl–modified survival of motor neuron splicing oligonucleotide in mice and nonhuman primates. J Pharm Exp Ther. 2014;350:46–55.

    Article  CAS  Google Scholar 

  30. Swayze EE, Siwkowski AM, Wancewicz EV, Migawa MT, Wyrzykiewicz TK, Hung G, et al. Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals. Nucleic Acids Res. 2007;35:687–700.

    Article  CAS  PubMed  Google Scholar 

  31. Baker BF, Lot SS, Condon TP, Cheng-Flournoy S, Lesnik EA, Sasmor HM, et al. 2′-O-(2-Methoxy)ethyl-modified Anti-intercellular Adhesion Molecule 1 (ICAM-1) oligonucleotides selectively increase the ICAM-1 mRNA level and inhibit formation of the ICAM-1 translation initiation complex in human umbilical vein endothelial cells. J Biol Chem. 1997;272:11994–12000.

    Article  CAS  PubMed  Google Scholar 

  32. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mercatelli D, Lopez-Garcia G, Giorgi FM. corto: a lightweight R package for gene network inference and master regulator analysis. Bioinformatics 2020;36:3916–7.

    Article  CAS  PubMed  Google Scholar 

  35. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics 2011;27:1739–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ahmed SH, Walker JR, Koob GF. Persistent increase in the motivation to take heroin in rats with a history of drug escalation. Neuropsychopharmacology 2000;22:413–21.

    Article  CAS  PubMed  Google Scholar 

  37. Moussawi K, Ortiz MM, Gantz SC, Tunstall BJ, Marchette RCN, Bonci A, et al. Fentanyl vapor self-administration model in mice to study opioid addiction. Sci Adv. 2020;6:eabc0413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McConnell SA, Brandner AJ, Blank BA, Kearns DN, Koob GF, Vendruscolo LF, et al. Demand for fentanyl becomes inelastic following extended access to fentanyl vapor self-administration. Neuropharmacology 2021;182:108355.

    Article  CAS  PubMed  Google Scholar 

  39. Lenoir M, Cantin L, Vanhille N, Serre F, Ahmed SH. Extended heroin access increases heroin choices over a potent nondrug alternative. Neuropsychopharmacology 2013;38:1209–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zinberg NE, Jacobson RC. The natural history of ‘chipping. Am J Psychiatry. 1976;133:37–40.

    Article  CAS  PubMed  Google Scholar 

  41. Yao M, Schulkin J, Denver RJ. Evolutionarily conserved glucocorticoid regulation of corticotropin-releasing factor expression. Endocrinology 2008;149:2352–60.

    Article  CAS  PubMed  Google Scholar 

  42. Bossé GD, Peterson RT. Development of an opioid self-administration assay to study drug seeking in zebrafish. Behav Brain Res. 2017;335:158–66.

    Article  PubMed  CAS  Google Scholar 

  43. Xie Z, Bailey A, Kuleshov MV, Clarke DJB, Evangelista JE, Jenkins SL, et al. Gene set knowledge discovery with Enrichr. Curr Protoc. 2021;1:e90.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, et al. Integrated analysis of multimodal single-cell data. Cell 2021;184:3573–.e29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hammerslag LR, Denehy ED, Carper B, Nolen TL, Prendergast MA, Bardo MT. Effects of the glucocorticoid receptor antagonist PT150 on stress-induced fentanyl seeking in male and female rats. Psychopharmacology. 2021;18 May:2021 https://doi.org/10.1007/s00213-021-05865-0.

    Article  CAS  Google Scholar 

  46. Goeders NE, Guerin GF, Schmoutz CD. The combination of metyrapone and oxazepam for the treatment of cocaine and other drug addictions. Adv Pharm. 2014;69:419–79.

    Article  CAS  Google Scholar 

  47. Mantsch JR, Goeders NE. Ketoconazole blocks the stress-induced reinstatement of cocaine-seeking behavior in rats: relationship to the discriminative stimulus effects of cocaine. Psychopharmacology. 1999;142:399–407.

    Article  CAS  PubMed  Google Scholar 

  48. Shaham Y, Funk D, Erb S, Brown TJ, Walker CD, Stewart J. Corticotropin-releasing factor, but not corticosterone, is involved in stress-induced relapse to heroin-seeking in rats. J Neurosci. 1997;17:2605–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. McGinn MA, Tunstall BJ, Schlosburg JE, Gregory-Flores A, George O, de Guglielmo G, et al. Glucocorticoid receptor modulators decrease alcohol self-administration in male rats. Neuropharmacology 2021;188:108510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stashi E, York B, O’Malley BW. Steroid receptor coactivators: servants and masters for control of systems metabolism. Trends Endocrinol Metab. 2014;25:337–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bian C, Zhang D, Guo Q, Cai W, Zhang J. Localization and sex-difference of steroid receptor coactivator-1 immunoreactivities in the brain of adult female and male mice. Steroids 2011;76:269–79.

    Article  CAS  PubMed  Google Scholar 

  52. Dalm S, Karssen AM, Meijer OC, Belanoff JK, de Kloet ER. Resetting the stress system with a mifepristone challenge. Cell Mol Neurobiol. 2019;39:503–22.

    Article  CAS  PubMed  Google Scholar 

  53. Rasmussen K, White DA, Acri JB. NIDA’s medication development priorities in response to the opioid crisis: ten most wanted. Neuropsychopharmacol. 2019;44:657–9.

    Article  Google Scholar 

  54. Gatta E, Grayson DR, Auta J, Saudagar V, Dong E, Chen Y, et al. Genome-wide methylation in alcohol use disorder subjects: implications for an epigenetic regulation of the cortico-limbic glucocorticoid receptors (NR3C1). Mol Psychiatry. 2021;26:1029–41.

  55. Morice C, Baker DG, Patel MM, Nolen TL, Nowak K, Hirsch S, et al. A randomized trial of safety and pharmacodynamic interactions between a selective glucocorticoid receptor antagonist, PT150, and ethanol in healthy volunteers. Sci Rep. 2021;11:9876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Block TS, Kushner H, Kalin N, Nelson C, Belanoff J, Schatzberg A. Combined analysis of mifepristone for psychotic depression: plasma levels associated with clinical response. Biol Psychiatry. 2018;84:46–54.

    Article  CAS  PubMed  Google Scholar 

  57. Scharner J, Aznarez I. Clinical applications of single-stranded oligonucleotides: current landscape of approved and in-development therapeutics. Mol Ther. 2021;29:540–54.

    Article  CAS  PubMed  Google Scholar 

  58. Martens M, Ammar A, Riutta A, Waagmeester A, Slenter DN, Hanspers K, et al. WikiPathways: connecting communities. Nucleic Acids Res. 2021;49:D613–D621.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the NIDA Intramural Research Program. We thank the NIDA drug supply program and NIDA Intramural Research Program pharmacy for providing and dispensing heroin and methadone. Human tissue was obtained from the National Institutes of Health NeuroBioBank at the University of Miami Brain Endowment Bank and University of Pittsburgh Brain Tissue Donation Program. The authors thank Shiliang Zhang and Rong Ye from the NIDA Confocal and Electron Microscopy Core for their expert technical assistance, Lauren Brick from NIDA media for figure preparation, Brandon Harvey for providing PC12 cells, and Michael Arends for proofreading the manuscript. SAC, JCMV, MAM, JMB, CR, MM, GFK, and LFV were supported by the NIDA Intramural Research Program. ROM was supported by a grant from the National Institute on Alcohol Abuse and Alcoholism (AA026075). VRC received support from NIDA (DA048882). PPS received support from NIDA (DA043268). GDB received a Canadian Institutes of Health Research fellowship. Crh-Cre rats can be obtained from the Rat Resource and Research.

Author information

Authors and Affiliations

Authors

Contributions

SAC, KL, ROM, RTP, FR, SE, PPS, MM, MLH, GFK and LFV designed the experiments. SAC, JCMV, MAM, JMB, VRC, GDB, AJH, and FMJ conducted the experiments. SAC, JCMV, MAM, JMB, VRC, GDB, DM, FMG, YF, AJH, FMJ, PPS, MLH and LFV performed the data analysis. SAC, GFK and LFV wrote the manuscript with the help of all authors.

Corresponding author

Correspondence to Leandro F. Vendruscolo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carmack, S.A., Vendruscolo, J.C.M., Adrienne McGinn, M. et al. Corticosteroid sensitization drives opioid addiction. Mol Psychiatry 27, 2492–2501 (2022). https://doi.org/10.1038/s41380-022-01501-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01501-1

Search

Quick links