Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Immediate Communication
  • Published:

The schizophrenia-associated variant in SLC39A8 alters protein glycosylation in the mouse brain

Abstract

A missense mutation (A391T) in SLC39A8 is strongly associated with schizophrenia in genomic studies, though the molecular connection to the brain is unknown. Human carriers of A391T have reduced serum manganese, altered plasma glycosylation, and brain MRI changes consistent with altered metal transport. Here, using a knock-in mouse model homozygous for A391T, we show that the schizophrenia-associated variant changes protein glycosylation in the brain. Glycosylation of Asn residues in glycoproteins (N-glycosylation) was most significantly impaired, with effects differing between regions. RNAseq analysis showed negligible regional variation, consistent with changes in the activity of glycosylation enzymes rather than gene expression. Finally, nearly one-third of detected glycoproteins were differentially N-glycosylated in the cortex, including members of several pathways previously implicated in schizophrenia, such as cell adhesion molecules and neurotransmitter receptors that are expressed across all cell types. These findings provide a mechanistic link between a risk allele and potentially reversible biochemical changes in the brain, furthering our molecular understanding of the pathophysiology of schizophrenia and a novel opportunity for therapeutic development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A391T alters brain N-glycans in a region-dependent manner.
Fig. 2: RNAseq analysis identifies minimal gene expression changes in the cortex and cerebellum of A391T mice.
Fig. 3: A391T mouse cortex has altered N-glycosylation of one-third of glycoproteins originating from all cell types.

Similar content being viewed by others

Data availability

The data generated during this study are included in this published article and its supplementary information files, and available from the corresponding author on reasonable request. Raw MS glycomics data files are available through GlycoPOST [69] with the dataset identifier GPST000213. The RNAseq data discussed in this publication have been deposited in NCBI’s Gene Expression Omnibus [70, 71] and are accessible through GEO Series accession number GSE184516. The MS data were deposited at the ProteomeXchange Consortium [72] via the PRIDE partner repository and are available with the identifier PXD021632.

References

  1. Marder SR, Cannon TD. Schizophrenia. N Engl J Med. 2019;381:1753–61.

    Article  CAS  PubMed  Google Scholar 

  2. Owen MJ, Sawa A, Mortensen PB. Schizophrenia. Lancet Lond Engl. 2016;388:86–97.

    Article  Google Scholar 

  3. Millan MJ, Andrieux A, Bartzokis G, Cadenhead K, Dazzan P, Fusar-Poli P, et al. Altering the course of schizophrenia: progress and perspectives. Nat Rev Drug Discov. 2016;15:485–515.

    Article  CAS  PubMed  Google Scholar 

  4. Enna SJ, Bennett JP, Burt DR, Creese I, Snyder SH. Stereospecificity of interaction of neuroleptic drugs with neurotransmitters and correlation with clinical potency. Nature. 1976;263:338–41.

    Article  CAS  PubMed  Google Scholar 

  5. van Rossum JM. The significance of dopamine-receptor blockade for the mechanism of action of neuroleptic drugs. Arch Int Pharmacodyn Ther. 1966;160:492–4.

    PubMed  Google Scholar 

  6. Howes O, McCutcheon R, Stone J. Glutamate and dopamine in schizophrenia: an update for the 21st century. J Psychopharmacol. 2015;29:97–115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Avramopoulos D. Recent advances in the genetics of schizophrenia. Mol Neuropsychiatry. 2018;4:35–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sullivan PF, Geschwind DH. Defining the genetic, genomic, cellular, and diagnostic architectures of psychiatric disorders. Cell 2019;177:162–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Smoller JW, Andreassen OA, Edenberg HJ, Faraone SV, Glatt SJ, Kendler KS. Psychiatric genetics and the structure of psychopathology. Mol Psychiatry. 2019;24:409–20.

    Article  PubMed  Google Scholar 

  10. Lee PH, Anttila V, Won H, Feng Y-CA, Rosenthal J, Zhu Z, et al. Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell. 2019;179:1469–1482.e11.

    Article  CAS  Google Scholar 

  11. Gottesman II, Shields J. A polygenic theory of schizophrenia. Proc Natl Acad Sci USA. 1967;58:199–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.

    Article  PubMed Central  CAS  Google Scholar 

  13. Schizophrenia Working Group of the Psychiatric Genomics Consortium, Ripke S, Walters JT, O’Donovan MC. Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia. medRxiv. 2020. https://doi.org/10.1101/2020.09.12.20192922.

  14. Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N, et al. Schizophrenia risk from complex variation of complement component 4. Nature. 2016;530:177–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Presumey J, Bialas AR, Carroll MC. Complement system in neural synapse elimination in development and disease. Adv Immunol. 2017;135:53–79.

  16. Yilmaz M, Yalcin E, Presumey J, Aw E, Ma M, Whelan CW, et al. Overexpression of schizophrenia susceptibility factor human complement C4A promotes excessive synaptic loss and behavioral changes in mice. Nat Neurosci. 2021;24:214–24.

    Article  CAS  PubMed  Google Scholar 

  17. Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al., editors. Essentials of glycobiology. 3rd ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2015.

  18. Varki A. Biological roles of glycans. Glycobiology. 2017;27:3–49.

    Article  CAS  PubMed  Google Scholar 

  19. Mealer RG, Williams SE, Daly MJ, Scolnick EM, Cummings RD, Smoller JW. Glycobiology and schizophrenia: a biological hypothesis emerging from genomic research. Mol Psychiatry. 2020. https://doi.org/10.1038/s41380-020-0753-1.

  20. Ramakrishnan B, Ramasamy V, Qasba PK. Structural snapshots of β-1,4-galactosyltransferase-I along the kinetic pathway. J Mol Biol. 2006;357:1619–33.

    Article  CAS  PubMed  Google Scholar 

  21. Breton C, Šnajdrová L, Jeanneau C, Koča J, Imberty A. Structures and mechanisms of glycosyltransferases. Glycobiology. 2006;16:29R–37R.

    Article  CAS  PubMed  Google Scholar 

  22. Chang A, Singh S, Phillips GN, Thorson JS. Glycosyltransferase structural biology and its role in the design of catalysts for glycosylation. Curr Opin Biotechnol. 2011;22:800–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Park JH, Hogrebe M, Grüneberg M, DuChesne I, von der Heiden AL, Reunert J, et al. SLC39A8 deficiency: a disorder of manganese transport and glycosylation. Am J Hum Genet. 2015;97:894–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Park JH, Hogrebe M, Fobker M, Brackmann R, Fiedler B, Reunert J, et al. SLC39A8 deficiency: biochemical correction and major clinical improvement by manganese therapy. Genet Med. 2017. https://doi.org/10.1038/gim.2017.106.

  25. Boycott KM, Beaulieu CL, Kernohan KD, Gebril OH, Mhanni A, Chudley AE, et al. Autosomal-recessive intellectual disability with cerebellar atrophy syndrome caused by mutation of the manganese and zinc transporter gene SLC39A8. Am J Hum Genet. 2015;97:886–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Riley LG, Cowley MJ, Gayevskiy V, Roscioli T, Thorburn DR, Prelog K, et al. A SLC39A8 variant causes manganese deficiency, and glycosylation and mitochondrial disorders. J Inherit Metab Dis. 2017;40:261–9.

    Article  CAS  PubMed  Google Scholar 

  27. Aguet F, Barbeira AN, Bonazzola R, Brown A, Castel SE, Jo B, et al. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369:1318–30.

    Article  CAS  Google Scholar 

  28. Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45:580–5.

    Article  CAS  Google Scholar 

  29. Saunders A, Macosko EZ, Wysoker A, Goldman M, Krienen FM, de Rivera H, et al. Molecular diversity and specializations among the cells of the adult mouse brain. Cell. 2018;174:1015–1030.e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li M, Wu D-D, Yao Y-G, Huo Y-X, Liu J-W, Su B, et al. Recent positive selection drives the expansion of a schizophrenia risk nonsynonymous variant at SLC39A8 in Europeans. Schizophr Bull. 2016;42:178–90.

    PubMed  Google Scholar 

  31. Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone C, et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019;47:D1005–D1012.

    Article  CAS  PubMed  Google Scholar 

  32. Hill WD, Marioni RE, Maghzian O, Ritchie SJ, Hagenaars SP, McIntosh AM, et al. A combined analysis of genetically correlated traits identifies 187 loci and a role for neurogenesis and myelination in intelligence. Mol Psychiatry. 2019;24:169–81.

    Article  CAS  PubMed  Google Scholar 

  33. Pickrell JK, Berisa T, Liu JZ, Ségurel L, Tung JY, Hinds DA. Detection and interpretation of shared genetic influences on 42 human traits. Nat Genet. 2016;48:709–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kaufmann T, van der Meer D, Doan NT, Schwarz E, Lund MJ, Agartz I, et al. Common brain disorders are associated with heritable patterns of apparent aging of the brain. Nat Neurosci. 2019;22:1617–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Luo Q, Chen Q, Wang W, Desrivières S, Quinlan EB, Jia T, et al. Association of a schizophrenia-risk nonsynonymous variant with putamen volume in adolescents: a voxelwise and genome-wide association study. JAMA Psychiatry. 2019;76:435.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ng E, Lind PM, Lindgren C, Ingelsson E, Mahajan A, Morris A, et al. Genome-wide association study of toxic metals and trace elements reveals novel associations. Hum Mol Genet. 2015;24:4739–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zang Z-S, Xu Y-M, Lau ATY. Molecular and pathophysiological aspects of metal ion uptake by the zinc transporter ZIP8 (SLC39A8). Toxicol Res. 2016;5:987–1002.

    Article  CAS  Google Scholar 

  38. Fujishiro H, Himeno S. New Insights into the Roles of ZIP8, a cadmium and manganese transporter, and its relation to human diseases. Biol Pharm Bull. 2019;42:1076–82.

    Article  CAS  PubMed  Google Scholar 

  39. Nebert DW, Liu Z. SLC39A8 gene encoding a metal ion transporter: discovery and bench to bedside. Hum Genomics. 2019;13:51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Costas J. The highly pleiotropic gene SLC39A8 as an opportunity to gain insight into the molecular pathogenesis of schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2018;177:274–83.

    Article  CAS  PubMed  Google Scholar 

  41. Park JH, Mealer RG, Elias AF, Hoffmann S, Grüneberg M, Biskup S, et al. N-glycome analysis detects dysglycosylation missed by conventional methods in SLC39A8 deficiency. J Inherit Metab Dis. 2020. https://doi.org/10.1002/jimd.12306.

  42. Lin W, Vann DR, Doulias P-T, Wang T, Landesberg G, Li X, et al. Hepatic metal ion transporter ZIP8 regulates manganese homeostasis and manganese-dependent enzyme activity. J Clin Investig. 2017;127:2407–17.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mealer RG, Jenkins BG, Chen C-Y, Daly MJ, Ge T, Lehoux S, et al. The schizophrenia risk locus in SLC39A8 alters brain metal transport and plasma glycosylation. Sci Rep. 2020;10:13162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nakata T, Creasey EA, Kadoki M, Lin H, Selig MK, Yao J, et al. A missense variant in SLC39A8 confers risk for Crohn’s disease by disrupting manganese homeostasis and intestinal barrier integrity. Proc Natl Acad Sci USA. 2020. https://doi.org/10.1073/pnas.2014742117.

  45. Williams SE, Noel M, Lehoux S, Cetinbas M, Xavier RJ, Sadreyev RI, et al. Mammalian brain glycoproteins exhibit diminished glycan complexity compared to other tissues. Nat Commun. 2022;13:275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Terrillion CE, Kang B, Melia JMP. Behavioral phenotyping of Zip8 393T-KI mice for in vivo study of schizophrenia pathogenesis. BioRxiv. 2021. https://doi.org/10.1101/2021.10.18.464839.

  47. Tosches MA, Yamawaki TM, Naumann RK, Jacobi AA, Tushev G, Laurent G. Evolution of pallium, hippocampus, and cortical cell types revealed by single-cell transcriptomics in reptiles. Science 2018;360:881–8.

    Article  CAS  PubMed  Google Scholar 

  48. Wei M, McKitrick TR, Mehta AY, Gao C, Jia N, McQuillan AM, et al. Novel reversible fluorescent glycan linker for functional glycomics. Bioconjug Chem. 2019;30:2897–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schnaar RL, Gerardy-Schahn R, Hildebrandt H. Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. Physiol Rev. 2014;94:461–518.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nat Commun. 2017;8:1826.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Mi H, Muruganujan A, Casagrande JT, Thomas PD. Large-scale gene function analysis with the PANTHER classification system. Nat Protoc. 2013;8:1551–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Das RC, Heath EC. Dolichyldiphosphoryloligosaccharide-protein oligosaccharyltransferase; solubilization, purification, and properties. Proc Natl Acad Sci USA. 1980;77:3811–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shrimal S, Gilmore R. Oligosaccharyltransferase structures provide novel insight into the mechanism of asparagine-linked glycosylation in prokaryotic and eukaryotic cells. Glycobiology. 2019;29:288–97.

    Article  CAS  PubMed  Google Scholar 

  54. Bennett EP, Mandel U, Clausen H, Gerken TA, Fritz TA, Tabak LA. Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology. 2012;22:736–56.

    Article  CAS  PubMed  Google Scholar 

  55. Scott H, Panin VM. The role of protein N-glycosylation in neural transmission. Glycobiology 2014;24:407–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Live D, Wells L, Boons G-J. Dissecting the molecular basis of the role of the O-mannosylation pathway in disease: α-dystroglycan and forms of muscular dystrophy. ChemBioChem. 2013;14:2392–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li Y, Ma C, Li W, Yang Y, Li X, Liu J, et al. A missense variant in NDUFA6 confers schizophrenia risk by affecting YY1 binding and NAGA expression. Mol Psychiatry. 2021. https://doi.org/10.1038/s41380-021-01125-x.

  58. Li Y, Li S, Liu J, Huo Y, Luo X-J The schizophrenia susceptibility gene NAGA regulates dendritic spine density: further evidence for the dendritic spine pathology of schizophrenia. Mol Psychiatry. 2021. https://doi.org/10.1038/s41380-021-01261-4.

  59. Williams SE, Mealer RG, Scolnick EM, Smoller JW, Cummings RD Aberrant glycosylation in schizophrenia: a review of 25 years of post-mortem brain studies. Mol Psychiatry. 2020. https://doi.org/10.1038/s41380-020-0761-1.

  60. Mueller TM, Meador-Woodruff JH. Post-translational protein modifications in schizophrenia. Npj Schizophr. 2020;6:5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tseng WC, Reinhart V, Lanz TA, Weber ML, Pang J, Le KXV, et al. Schizophrenia-associated SLC39A8 polymorphism is a loss-of-function allele altering glutamate receptor and innate immune signaling. Transl Psychiatry. 2021;11:136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sunuwar L, Frkatović A, Sharapov S, Wang Q, Neu HM, Wu X, et al. Pleiotropic ZIP8 A391T implicates abnormal manganese homeostasis in complex human disease. JCI Insight. 2020;5:e140978.

    Article  PubMed Central  Google Scholar 

  63. Kwakye GF, Paoliello MMB, Mukhopadhyay S, Bowman AB, Aschner M. Manganese-induced Parkinsonism and Parkinson’s disease: shared and distinguishable features. Int J Environ Res Public Health. 2015;12:7519–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Madison JL, Wegrzynowicz M, Aschner M, Bowman AB. Gender and manganese exposure interactions on mouse striatal neuron morphology. Neurotoxicology. 2011;32:896–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Feldcamp L, Doucet J-S, Pawling J, Fadel MP, Fletcher PJ, Maunder R, et al. Mgat5 modulates the effect of early life stress on adult behavior and physical health in mice. Behav Brain Res. 2016;312:253–64.

    Article  CAS  PubMed  Google Scholar 

  66. Horning KJ, Caito SW, Tipps KG, Bowman AB, Aschner M. Manganese is essential for neuronal health. Annu Rev Nutr. 2015;35:71–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

    CAS  PubMed  Google Scholar 

  68. Anders S, Pyl PT, Huber W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9.

    Article  CAS  PubMed  Google Scholar 

  69. Watanabe Y, Aoki-Kinoshita KF, Ishihama Y, Okuda S. GlycoPOST realizes FAIR principles for glycomics mass spectrometry data. Nucleic Acids Res. 2021;49:D1523–D1528.

    Article  PubMed  Google Scholar 

  70. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res. 2013;41:D991–995.

    Article  CAS  PubMed  Google Scholar 

  72. Vizcaíno JA, Deutsch EW, Wang R, Csordas A, Reisinger F, Ríos D, et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol. 2014;32:223–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a foundation grant from the Stanley Center for Psychiatric Research at the Broad Institute of Harvard/MIT (awarded to RGM) and NIH grants P41GM103694 and R24GM137763 (awarded to RDC), and P30DK040561 (awarded to RIS). RGM is supported by T32MH112485 and a Dupont Warren Fellowship. CMW is supported by NIH NCI U01CA242098.

Author information

Authors and Affiliations

Authors

Contributions

RGM conceptualized the project, performed the bulk of experiments and analyses, and wrote the manuscript. SEW performed glycomics experiments and assisted with statistical analysis. MN performed quantitative glycan analyses and lectin blotting. BY and ADS performed glycoproteomic analysis. TN assisted in tissue harvest, genotyping, and mouse colony maintenance. DBG was involved in mouse generation. EAC was involved in mouse generation, genotyping, and colony maintenance. MC performed analysis of RNAseq data. RIS supervised RNAseq analysis. EMS initiated the project and coordinated collaborations. CMW supervised BY and ADS and oversaw glycoproteomic analysis. JWS co-supervised RGM and SEW, oversaw experimental analyses, and helped conceptualize the project. RJX provided mouse samples for analysis. RDC co-supervised RGM, SEW, and MN, oversaw experimental analyses, and helped conceptualize the project. All authors contributed feedback and edit to the manuscript.

Corresponding author

Correspondence to Robert G. Mealer.

Ethics declarations

Competing interests

RJX is a cofounder and equity holder of Celsius Therapeutics and Jnana Therapeutics and consultant to Novartis. These companies did not provide support for this work. JWS is a member of the Scientific Advisory Board of Sensorium Therapeutics and has received honoraria for an internal seminar at Biogen, Inc and Tempus Labs. These companies did not provide support for this work. The remaining authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mealer, R.G., Williams, S.E., Noel, M. et al. The schizophrenia-associated variant in SLC39A8 alters protein glycosylation in the mouse brain. Mol Psychiatry 27, 1405–1415 (2022). https://doi.org/10.1038/s41380-022-01490-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01490-1

This article is cited by

Search

Quick links