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Genetic common variants associated with cerebellar volume
and their overlap with mental disorders: a study on 33,265
individuals from the UK-Biobank
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Interest in the cerebellum is expanding given evidence of its contributions to cognition and emotion, and dysfunction in various
psychopathologies. However, research into its genetic architecture and shared influences with liability for mental disorders is
lacking. We conducted a genome-wide association study (GWAS) of total cerebellar volume and underlying cerebellar lobe volumes
in 33,265 UK-Biobank participants. Total cerebellar volume was heritable (h2SNP= 50.6%), showing moderate genetic homogeneity
across lobes (h2SNP from 35.4% to 57.1%; mean genetic correlation between lobes rg ≈ 0.44). We identified 33 GWAS signals
associated with total cerebellar volume, of which 6 are known to alter protein-coding gene structure, while a further five mapped to
genomic regions known to alter cerebellar tissue gene expression. Use of summary data-based Mendelian randomisation further
prioritised genes whose change in expression appears to mediate the SNP-trait association. In total, we highlight 21 unique genes
of greatest interest for follow-up analyses. Using LD-regression, we report significant genetic correlations between total cerebellar
volume and brainstem, pallidum and thalamus volumes. While the same approach did not result in significant correlations with
psychiatric phenotypes, we report enrichment of schizophrenia, bipolar disorder and autism spectrum disorder associated signals
within total cerebellar GWAS results via conditional and conjunctional-FDR analysis. Via these methods and GWAS catalogue, we
identify which of our cerebellar genomic regions also associate with psychiatric traits. Our results provide important insights into
the common allele architecture of cerebellar volume and its overlap with other brain volumes and psychiatric phenotypes.
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INTRODUCTION
The cerebellum has historically been ascribed solely to a role in
movement coordination, however, increasing evidence has under-
lined its relevance in cognition and emotion [1], with expansive
functional connectivity with non-motor cortical regions [2–4] and
activity during a wide-range of cognitive tasks [5]. Lesions during
cerebellar development not only lead to motor alterations but also
to cognitive and emotional deficits [6], and represent the second
highest risk factor for autism spectrum disorder (ASD) [7].
Cerebellar anatomical alterations have also been identified in
most other neurodevelopmental/psychiatric disorders, with parti-
cularly strong cerebellar-specific evidence in schizophrenia [8], but
also in attention deficit hyperactivity disorder (ADHD) [9] and
mood disorders [10], general liability to clinical mental disorders
[11] and adolescent psychopathology [12].
Cerebellar volume reductions have also been reported in

unaffected relatives of people with schizophrenia, bipolar disorder
and depression, being also the only structure commonly reduced
across all three disorders [13] and suggesting cerebellar volume
reductions to be associated with genetic risk for mental disorders.
Indeed, analysing shared altered genetic expression across these

three disorders as well as ADHD and ASD shows strong cerebellar
tissue enrichment [14].
Twin studies show cerebellar volume to be heritable (h2=

33.6–86.4%) [15], but little is known about its polymorphic
architecture. In this study, we aim to undertake an in-depth
investigation of the common variant influences of total cerebellar
volume, their association with altered cerebellar gene expression,
genetic overlap with other cortical and subcortical anatomical
phenotypes, and importantly, with several of these psychiatric
disorders shown to be associated with cerebellar anatomical
abnormalities (i.e. ASD, ADHD, schizophrenia, bipolar disorder and
depression). While a recent omnibus-GWAS study [16] using an
overlapping sample to ours, included 30 cerebellar volume
metrics, none of these corresponded to total cerebellar volume
and did not explore genetic association with mental disorders.

METHODS
Total cerebellar volume measure generation
This study utilises T1-weghted structural brain magnetic resonance
imaging (MRI) image derived phenotypes (IDPs) data for ~40,000
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individuals from UK Biobank (http://www.ukbiobank.ac.uk/) (Supplemen-
tary Methods). The generation and semi-automated quality control of
these IDPs by UK Biobank has been described previously [17]. Our research
group accessed the data in two batches, each containing approximately
half of the total sample (henceforth wave 1 and wave 2), which we
analysed separately before being meta-analysed.
We generated a summated total cerebellar grey-matter volume measure

from the 28 cerebellar lobule IDPs [18], aside from Crus I vermis due to its
small size [19]. To explore the reliability of UK Biobank’s cerebellar volume
measures, for the 1273 participants in our study who have been scanned
twice by UK Biobank within a 5-year interval (with these second scans not
included in our main analyses), between-scan intraclass correlation
indicated a high test-retest reliability of our cerebellar volume metric
(ICC= 0.92). Following outlier removal, we obtained residual total
cerebellar volume values after correction for covariates of age, sex, head
motion, date of scan and imaging centre attended, and head and table
position in the scanner (see Supplementary Methods for details). We scaled
these values, with beta values reflecting differences in standard deviations
(SD) of residual cerebellar volume.

Genotyping and quality control
A description of UK-Biobank’s genetic-data collection, quality control and
imputation processes can be found elsewhere (http://www.ukbiobank.ac.
uk/scientists-3/genetic-data/). We applied additional quality controls
independently to each wave’s genotypes (Supplementary Methods),
including restriction to unrelated individuals of British/Irish ancestry
(>96% sample) (Supplementary Fig. 1). Following local processing, from
initial samples of 21,390 and 26,541 participants with genetic-data in wave
1 and wave 2,19,170 and 22,808 participants remained, with 7,003,604 and
6,935,580 genetic markers, respectively.

Genome-wide association study (GWAS)
After merging genetic and cerebellar volume data, we conducted two
separated GWASs using PLINK (v1.9) [20] including 17,818 participants in
wave 1 (age mean[min,max]= 63[45,80]yrs, 53% female) and 15,447
participants in wave 2 (age mean [min, max]= 65 [48,81] yrs, 53% female)
(Supplementary Table 1). The first ten genetic PCs were inputted in these
analyses to account for any potential remaining population structure.

SNP-based heritability (h2SNP)
Lower-bound estimates of narrow-sense single nucleotide polymorphism
(SNP)-based heritability (h2SNP) for each wave were calculated using GCTA-
GREML (Genome-wide complex trait analysis—genome-based restricted
maximum likelihood) (64 bit; v1.26.0) [21, 22] on the raw genotypes and
including covariates of the first 10 genetic principal components.

Identification of independent GWAS signals
Regional GWAS signals were refined using GCTA-COJO [21, 23] to identify
independent index/lead SNPs (Supplementary Methods). Extended-LD
regions are provided (r2 > 0.2 with index SNP and p < 0.05 association).
LocusZoom [24] was used to visually inspect these signal peaks
(Supplementary Fig. 2).

Comparison of GWASs from wave 1 and wave 2
Several methodologies were deployed to assess similarity between
summary statistics from both waves, including between-wave SNP
replication, LDSC [25] genetic correlation and PLINK [20] polygenic score
analyses (Supplementary Methods).

Meta-analysis
We meta-analysed the two waves’ GWASs using METAL (2011-03-25
release) [26], weighting effect sizes by the inverse of the standard errors
and retaining only the 6,193,476 markers present in both waves.
Independent index SNP identification and SNP-based heritability estimates
were calculated using the same methods as outlined above, creating a
merged wave dataset for SNPs’ LD structure and estimates of h2SNP (GCTA-
GREML).

Within cerebellum analysis—by lobe analysis
To investigate the homogeneity of cerebellar volume genetic architecture,
we ascertained the GCTA-GREML h2SNP and LDSC between-lobe genetic

correlation estimates for 7 cerebellar lobes based on demarcations of
primary, horizontal and posterolateral fissures: anterior (I-V), superior
posterior (VI-Crus I), inferior posterior (Crus II-IX) and flocculonodular (X)
hemispheres and vermal regions of the latter three (Supplementary
Methods).

Functional annotation and cerebellar gene expression
We physically mapped the extended-LD regions of each index SNP (r2 > 0.2
to Index SNP) to nearby transcripts and functionally annotated index SNPs
and high LD proxy SNPs (r2 > 0.8 to index SNP) for SNP consequences using
several methods (Supplementary Methods). We additionally mapped these
proxy SNPs to GTEx-v7 expression quantitative trait loci (cis-eQTL), focusing
on directly relevant cerebellar-labelled tissues, but also including analyses
in other brain and whole-blood tissues. Use of Summary data-based
Mendelian Randomisation (SMR) [27, 28] allowed for assessing mediation
via altered cerebellar gene expression of our meta-GWAS identified SNP-
cerebellar volume associations, and separation of pleiotropic associations
from those caused by linkage within the genomic region (Supplementary
Methods).

Genetic correlation analysis
We used LDSC to estimate genetic correlations between our total cerebellar
volume meta-GWAS summary statistics and previously published GWAS
summary statistics from two studies that included different sub-regional
cerebellar measures [16, 29], cortical and subcortical anatomical measures
[30–32], anthropomorphic traits (http://www.nealelab.is/uk-biobank/), and
psychiatric disorders of schizophrenia, bipolar, major depression and ASD
and ADHD [33–37] (Supplementary Methods). We additionally ascertained
genetic overlap between cerebellar volume and these psychiatric disorders,
irrespective of direction of effect, using conditional and conjunctional false
discovery rate (FDR) analysis [38] (see Supplementary Methods). This
included analysis of genetic enrichment in our cerebellar GWAS using
stratified quantile–quantile (Q–Q) plots, and investigation of which of our
COJO-identified GWAS signals contained SNPs showing evidence for a
pleiotropic association with a psychiatric phenotype (conjunctional-FDR <
0.01). Finally, for our COJO proxy SNPs, we inspected GWAS catalogue for
previous reports of associations with these psychiatric traits, as well as for
any additional traits (Supplementary Methods).

RESULTS
Between-wave results’ reliability and validity
The GWASs of cerebellar volume identified 6 independent
genome-wide significant index SNPs in each wave (Fig. 1;
Supplementary Table 2A, B). Each showed high replication in the
alternate wave, with all six wave 2 SNPs replicated in wave 1 (p <
0.0083{0.05/6}) and all but one wave 1 index SNPs replicated in
wave 2. Four were genome-wide significant in both waves. SNP-
based heritability estimates were similar across waves (wave 1
h2SNP[standard error (SE)]= 46.8 [3.4]% and wave 2 h2SNP [SE]=
45.3 [3.9]%; lambda GC 1.12 [intercept 1.01] and 1.10 [intercept
1.01], respectively), with a very strong between-wave genetic
correlation (rg [SE]= 1.0 [0.1], p= 2.2 × 10−33). All polygenic scores
derived from one wave significantly predicted total cerebellar
volume in the opposing wave, with the most variance explained by
wave 1 GWAS derived polygenic scores being at a SNP inclusion
p-threshold (pT) <0.01 (19,210 SNPs, ΔR2= 1.9%, p= 5.3 × 10−118)
and at pT < 0.1 for wave 2 GWAS derived polygenic scores (146,489
SNPs, ΔR2= 1.3%, p= 3.9 × 10−100) (Supplementary Table 3).

Meta-analysis of GWAS results for wave 1 and wave 2
Given the high correlation between waves, we combined both
waves’ summary statistics in a meta-GWAS (n= 33,265, SNPs=
6,193,476) (Fig. 1). The SNP-based heritability estimate in the
combined sample was h2SNP [SE]= 50.6[2.0]% (lambda GC 1.18
[intercept 1.02]).

Cerebellar lobe analysis
SNP-based heritability estimates across individual lobes were
similar to the overall cerebellar heritability, except for the lower
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vermal flocculonodular lobe heritability estimate (h2SNP [SE]= 35.4
[1.9]%) (Supplementary Table 4). Between-lobe genetic correlation
was moderate for most (between lobes mean rg ≈ 0.44) and all
survived Bonferroni correction for the number of lobe-pairings
tested (p < 0.0024 {0.05/21}), being strongest between the inferior
posterior hemisphere and vermis (rg [95% CI]= 0.66 [0.60, 0.72],
p= 1.4 × 10−103) and weakest between the flocculonodular hemi-
sphere and vermis (rg [95% CI]= 0.19 [0.07, 0.30], p= 1.3 × 10−3)
(Fig. 2; Supplementary Table 4).

Annotation and mapping of genome-wide significant regions
from the meta-GWAS
We found 33 conditionally independent index SNPs associated
with total cerebellar volume (Table 1; Supplementary Fig. 2). All
index SNPs in each wave were present within the 33 meta-GWAS
index SNPs, all 33 meta-GWAS index SNPs were at least nominally
significant in each wave (p values ranging from 7 × 10−3 to 1.4 ×
10−21 for wave 1 and from 5.3 × 10−3 to 9.5 × 10−16 for wave 2)
and with all showing the same direction of effect across waves
(Supplementary Table 5).
Functional annotation of the 33 independent GWAS signals

(index SNPs and high LD partners r2 > 0.8) (Supplementary
Tables 6, 7A, B) identified 5 containing non-synonymous SNPs
leading to altered protein structure. Two of these were flagged as
likely deleterious: the missense variants rs1800562 within HFE and
rs13107325 within SLC39A8 transcripts. The other three non-
synonymous SNPs were flagged as tolerated/benign, being within
genes EIF2AK3, PPP2R4 (alias PTPA), and MYCL. A further
synonymous annotated SNP located within PAPPA gene was
within our strongest GWAS signal (rs72754248 Index SNP).
Six of the 33 GWAS signals mapped to genome-wide significant

cis-eQTLs in GTEx-v7 cerebellum and cerebellar hemisphere tissue
(index SNPs: rs7640903, rs55803832, rs546897, rs2572397,

rs6984592 & rs3118634), associating with 14 gene transcripts:
AF131216.5, AMT, CCDC71, GPX1, NCKIPSD, PPP2R4, PTK2, RP1-
199J3.5, RP11-247A12.2, RP11-247A12.7, RP11-481A20.10, RP11-
481A20.11, VCAN, and WDR6 (Supplementary Table 8A, B). When

Fig. 1 Manhattan and Q-Q plots for each wave GWAS and the meta-GWAS. Manhattan plots of associations with total cerebellar volume for
(A) wave 1 data release (n= 17,818), (B) wave 2 data release (n= 15,447), and (C) wave 1 + wave 2 combined METAL meta-analysis.For the
METAL plot, the 33 COJO-identified independent index SNPs are highlighted (diamond shape). In all cases, the dashed line indicates genome-
wide significance at p < 5 × 10−8. Quantile–quantile (Q–Q) plots for each GWAS are provided next to the Manhattan plot. For all plots, points
p > 5 × 10−3 (solid line) are removed for ease of interpretation.

Fig. 2 Genetic correlation between the seven cerebellar lobes. Tile
size and shade represent genetic correlation values (rg) between
lobes calculated using LDSC regression analysis. Diagonal values of
SNP-based heritability estimates calculated using GCTA-GREML. All
correlations passed Bonferroni correction p < 0.0024{0.05/21}. v
vermis.
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extending analyses to include all brain and whole-blood GTEx-v7
tissues, we found a further 3 GWAS signals mapping to whole-
blood eQTLs (AP3B2 at rs62012045, CCDC53 at rs5742632 and
REEP5 at rs3846716), moreover the marker rs2572397 revealed
additional eQTLs for ALG1L11P (Basal Ganglia) and RP11-981G7.6
(Spinal Cord Cervical C1) (Supplementary Table 8C). SMR analysis
found evidence for causal (or pleiotropic) relationships between
GWAS and cerebellar gene expression associations for 3 GWAS
signals namely at 5q14.2, 8p23.1 and 9q34.11 for 6 transcripts:
PPP2R4, RP11-247A12.2, RP11-247A12.7, VCAN, FAM86B3P and
FAM85B (Table 2). The strongest SMR association was observed
for VCAN, showing a clear relationship between total cerebellar
volume GWAS association signals and VCAN cerebellar gene
expression (Supplementary Fig. 3).

Genetic correlations
We found high positive genetic correlation above Bonferroni-
corrected significance threshold (p < 0.0014 {0.05/35}) between
our total cerebellum meta-GWAS summary statistics and those of
previously published regional cerebellar measures (left & right
hemispheres; IIV–V, VI–VII and VIII–IX vermal regions [29]: rg [95%
CI]= 0.91 [0.84, 0.97] and 0.91 [0.84, 0.98]; 0.44 [0.28, 0.60], 0.45
[0.32, 0.57] and 0.56 [0.46, 0.65], respectively; left and right
cerebellar regions [16]: rg [95% CI]= 0.88 [0.84, 0.93] and 0.99
[0.85, 0.93]; 27 cerebellar lobule regions excluding Crus I vermis
[16], rg mean [min, max]= 0.65 [0.41, 0.80]) (Supplementary
Table 9A). Of the 33 GWAS signals we identified, 28 reached
genome-wide significance in these previous works while 5 were
novel to the literature (Index SNPs rs6546070, rs6812830,
rs3846716, rs3118634 and rs529059). We also found positive
genetic correlation (p < 0.005 {0.05/10}) between our total
cerebellar volume measure and brainstem, pallidum and thalamus
volumes, as well as a trend towards a negative correlation with
cerebral cortical surface area but which fell short of our
Bonferroni-corrected significant threshold (Table 3A). We found
no genetic correlations (p < 0.0083 {0.05/6}) with any anthropo-
morphic measure, confirming the results not to simply be
reflecting general body size measures (Supplementary Table 9B).
We ascertained the genetic correlation between cerebellar

volume and liability to psychiatric diagnoses. None showed
significant consistent genetic correlation across the genome with
cerebellar volume, even at nominal significance (Table 3B).
Stratified Q–Q plots, however, suggested a clear enrichment of
schizophrenia signal and, to a less degree, bipolar and ASD
associations within our total cerebellar volume variants (Supple-
mentary Fig. 4). No apparent relationship was seen with major
depressive disorder or ADHD. Conjunctional-FDR analysis revealed
8 of the 33 GWAS signals showing evidence for a pleiotropic
relationship with a psychiatric phenotype (5 with schizophrenia, 2
with bipolar, 1 with ASD, and 1 with ADHD), with one GWAS signal
(index SNP rs2572397) associating with more than one psychiatric
condition: being with decreased cerebellar volume, decreased
schizophrenia and increased ASD risk liability (Supplementary
Table 10). In total, the majority (7/9) of pleiotropic associations
were in opposing directions of effect to that of cerebellar volume.
Finally, we report 2 of our 33 COJO GWAS signals (rs13135092 and
rs1935951) as being previously associated with psychiatric traits of
schizophrenia, bipolar, ASD, and across- and between-psychiatric
disorder diagnoses (Supplementary Table 11A, B).

DISCUSSION
In this study we examined UK-Biobank brain imaging and
genotype data of 33,265 individuals to investigate common allele
influences on cerebellar volume. We found total cerebellar volume
is moderately heritable in our sample (h2SNP= 50.6%), identifying
33 independent genome-wide significant signals (index SNPs and
SNPs in LD) associated with this trait. We identified 6 withinTa
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protein-coding sections of the genome while another 5 associated
with cerebellar gene expression regulation. We found evidence for
pleiotropy of identified variants with schizophrenia, bipolar and
ASD. We did not, however, find significant genetic correlations
across the whole genome, suggesting a smaller subset of
pleiotropic regions and/or opposing direction of effects across
these regions.
Our main GWAS of total cerebellar volume identified 33 index

SNPs, of which 28 had been reported genome-wide significant
(p < 5e−8) in previous GWASes of sub-regional cerebellar volume
measures [16, 29]. The 5 other index SNPs had previously shown
subthreshold associations with some of those sub-regional
volumes, while reaching GWAS significance level for our
composite total volume measure. This overlap suggests an
important genetic homogeneity across cerebellar structures, as
previously indicated by cerebellar gene expression research [39],
and which is further substantiated by our findings of moderate-to-
high genetic correlation between our results and those of
previous sub-regional cerebellar GWASes, and also across the 7
cerebellar lobe volumes in which we divided the cerebellum
following demarcations of primary, horizontal and posterolateral
fissures.
We conducted follow-up analyses of each GWAS signal to

identify likely causal SNPs. One signal contained the synonymous
SNP rs35565319 in the IGF binging protein protease PAPPA
transcript, with previous reports of possible cerebellar-specific
interactional effects [40], high placenta expression and association
with adverse pregnancy outcomes [41, 42] and neuronal survival
[43]. Five other GWAS signals contained non-synonymous SNPs
altering protein structure. Of the two labelled as likely deleterious,
one was the rs13107325 variant within the metal cation symporter
SLC39A8 transcript, being previously associated with a wide-range
of traits including inferior posterior and flocculonodular lobule
[44], striatum and putamen volumes [44, 45], schizophrenia
[33, 45], neurodevelopmental outcomes and intelligence test
performance [46, 47] and numerous other factors [44, 48–50]
(http://www.nealelab.is/uk-biobank/). The other was the

rs1800562 variant (alias Cys282Tyr) within the homoeostatic iron
regulator HFE transcript, with associations with reduced putamen
volume and striatal T2star signal [44], and iron and mineral
regulation [44, 51, 52]. The other three non-synonymous SNPs
included those within translation initiation factor kinase (EIF2AK3),
proto-oncogene transcription factor (MYCL) and protein phospha-
tase 2A activator (PPP2R4 alias PTPA) protein-coding regions. The
novel PTPA finding agrees with previous work of the role of
phosphatase 2A controlling cell growth and division, regulating
dendritic spine morphology [53] and whose dysfunction is a
known cause of spinocerebellar ataxia [54].
We also mapped 6 of GWAS signal regions with cis-eQTLs

altering expression of 14 gene transcripts. Expanding the cis-eQTL
analysis to additional brain regions and whole blood, we identified
a further 3 GWAS signals mapping to 5 cis-eQTLs. SMR further
investigated possible cerebellar expression mediation of SNP-trait
associations for six gene transcripts at 3 GWAS signal regions,
including again the PPP2R4/PTPA transcript. The strongest SMR
association was with VCAN, encoding the extracellular matrix
protein Versican, which plays crucial roles in nervous system
development [55, 56]. The pseudogenes FAM86B3P and FAM85B
were also identified from the SMR analysis, with FAM85B and the
other non-coding gene cis-eQTLs for RP11-481A20.10 and RP11-
481A20.11 in the same region having been indicated in mood
instability and schizophrenia [57, 58]. While a higher confidence
can be placed on SMR identified genes, its requirement for
multiple cis-eQTL signals within a genomic region means genes
with poorer coverage might be omitted, therefore both cis-eQTL-
only and SMR identified genes should be considered for future
follow-up work.
In total, therefore, from 732 unique gene transcripts over-

lapping with the extended-LD regions of our 33 index SNPs,
functional annotation and cerebellar tissue gene expression
mapping refined this to a list of 21 gene transcripts particularly
warranting further interrogation (Supplementary Table 12).
Through inspection of GWAS Catalogue, we identified 2 GWAS

signals (rs13135092 and rs1935951) previously associated with

Table 3. Genetic correlation of total cerebellar volume with (A) brain-based phenotypes and (B) brain-related phenotypes previously associated with
cerebellar anatomy/function.

h2SNP (%) h2SNP SE (%) rg 95% Confidence
intervals

p pBonferroni

(A) Brain-based phenotypes

Brainstem 31.7 3.4 0.47 0.37 0.58 1.02E−18 1.02E−17

Pallidum 16.9 2.3 0.31 0.19 0.43 0.00000045 0.0000045

Thalamus 16.0 2.1 0.24 0.12 0.36 0.0000645 0.000645

Cortical surface area 35.3 3.2 −0.14 −0.25 −0.04 0.007 0.07

Amygdala 8.4 1.9 −0.18 −0.37 0.01 0.07 0.67

Hippocampus 13.0 2.7 −0.14 −0.29 0.02 0.08 0.84

Caudate 28.6 2.6 −0.07 −0.18 0.04 0.20 1.00

Accumbens 20.2 2.3 −0.07 −0.20 0.06 0.29 1.00

Putamen 28.6 2.8 0.01 −0.10 0.11 0.88 1.00

Cortical thickness 26.5 2.2 −0.01 −0.11 0.10 0.91 1.00

(B) Brain-related phenotypes

Schizophrenia disorder 42.1 1.5 −0.04 −0.10 0.02 0.18 0.90

Bipolar disorder 34.6 1.9 −0.04 −0.12 0.04 0.33 1.00

Attention Deficit Hyperactivity Disorder (ADHD) 22.7 1.7 −0.07 −0.17 0.03 0.18 0.90

Autism spectrum disorder (ASD) 19.5 1.5 −0.10 −0.22 0.02 0.10 0.50

Major Depressive Disorder 7.8 0.5 −0.02 −0.10 0.08 0.61 1.00

h2SNP SNP-based heritability estimates (on the observed scale), SE standard error, rg genetic correlation, p uncorrected p values, pBonferronni p values adjusted for
the number of tests performed regions/traits tested (10 and 6, respectively).
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schizophrenia, and the former also with bipolar disorder, ASD and
PGC cross-psychiatric disorder associations. Furthermore, using
conjunctional-FDR analysis—leveraging genomic pleiotropy to
indicate pleiotropic regions which might be below genome-wide
significance for each psychiatric GWAS—we not only confirm
psychiatric associations at these 2 GWAS signals with schizo-
phrenia, but also identified 6 other GWAS signals with evidence
for psychiatric pleiotropy (rs7530673 and rs1278519 with bipolar
disorder; rs7640903 with ADHD; rs3118634 and rs62012045 with
schizophrenia; rs2572397 with schizophrenia and ASD). Of these 8
GWAS signals, 6 followed the expected opposing direction of
effect as would be predicted from case/control studies [8, 11], e.g.
associating with increased psychiatric risk liability and decreased
cerebellar size, whereas rs13135092 and rs2572397 showed the
same direction of effect for both traits. Related to this, while we
found evidence for enrichment of our cerebellar GWAS for
schizophrenia, bipolar disorder and ASD using stratified Q–Q
plots, in accordance with the majority of other structural brain
phenotype GWASs [30, 32], we did not find a whole-genome level
correlation when using LDSC, indicating regional heterogeneity of
effect directions. These results highlight the benefit of using
multiple methods to investigate genetic overlap between traits, as
previously stressed [38, 59].
We found strong genetic correlation between our total

cerebellar volume GWAS and those of the brainstem, pallidum
and thalamus [32] but not other subcortical structures, cortical
surface area or thickness [30–32]. These results agree with
previous reports of a particular clustering of these three
subcortical volumes [32, 60] and contrast to the significant
phenotypic correlations amongst most subcortical volumes [32].
Importantly, the gene expression profile of cerebellar grey matter
is quite distinct [39]. This shared common architecture, therefore,
could be explained by cerebellar white matter connectivity
between these regions. The major cerebellar input and output
nuclei located within the brainstem and thalamus, respectively.
Cerebellar-pallidal interactions are known to occur within the
cortex, thalamus and via direct connections [61–63], with joint
roles in sensorimotor regulation, learning and reward [61]. The
common allele overlap found across these four brain structures,
therefore, warrants further research into the neurobiological
underpinnings of this potential network and its role in psycho-
pathology, particularly given the association between cerebel-
lothalamic and cerebellar-basal ganglia connectivity dysfunction
in individuals with schizophrenia [64, 65].
There are several features of the study design to consider when

interpreting the results presented. While the UK Biobank’s
homogenous data collection and processing helps decrease
methodological variation, the cohort does not represent the
general UK population, deviating in important socioeconomic and
demographic measures [66]. We further limited our analyses to
participants with ancestry similar to a British and Irish reference
(>96% sample), limiting the extrapolation of our results to other
ancestries. Regarding the imaging data, while visual inspection of
each segmentation was not possible due to the cohort size, we
believe the UK Biobank’s semi-automated image artefact detec-
tion, our removal of outlier measures, confirmation of reliability of
cerebellar measures in individuals with repeat scans, and
correction for potential noise due to participants’ head motion
and position within the scanner improve the validity of our
cerebellar measures. The UK Biobank’s IDPs, however, are not
optimised for the cerebellum, which can lead to poorer
registration and segmentation of individuals lobules [67]. For this
reason, as well as the high correlation between lobules and its
conserved cytoarchitecture, our main analyses focused on total
cerebellar volume. Lack of access to raw genotypes for the
psychiatric phenotype GWASs prevented the use of methods such
as bivariate GCTA-GREML which could have brought further
insight into their genetic relationship with cerebellar volume.

In conclusion, we provide a genome-wide association study of
the common genetic variation underlying human cerebellar
volume. We find a moderate-to-high heritability for cerebellar
volume, with relatively consistent heritability across lobes, and
sharing common allele influences with brainstem, pallidal and
thalamic volumes. We report enrichment for schizophrenia,
bipolar and ASD signals, but not for major depression and ADHD.
As a guide for future functional studies, we identify 33
independent index SNPs associated with cerebellar volume and
21 unique candidate genes for follow-up work: 6 protein-coding
variants and 14 cerebellar tissue cis-eQTL associations, with 6 (4
common with the latter) showing potential causal relationships
with gene expression. Overall, these results advance our knowl-
edge on the common allele architecture of the cerebellum and
pave the way to further research into the neurobiological basis of
its anatomy, and associations with psychiatric conditions.
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