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sequencing data uncovers structural variants associated with
multiple mental disorders in African American patients
Yichuan Liu1, Hui-Qi Qu 1, Frank D. Mentch1, Jingchun Qu1, Xiao Chang 1, Kenny Nguyen1, Lifeng Tian1, Joseph Glessner 1,
Patrick M. A. Sleiman1,2,3 and Hakon Hakonarson 1,2,3,4,5✉

© The Author(s) 2021

Mental disorders present a global health concern, while the diagnosis of mental disorders can be challenging. The diagnosis is even
harder for patients who have more than one type of mental disorder, especially for young toddlers who are not able to complete
questionnaires or standardized rating scales for diagnosis. In the past decade, multiple genomic association signals have been
reported for mental disorders, some of which present attractive drug targets. Concurrently, machine learning algorithms, especially
deep learning algorithms, have been successful in the diagnosis and/or labeling of complex diseases, such as attention deficit
hyperactivity disorder (ADHD) or cancer. In this study, we focused on eight common mental disorders, including ADHD, depression,
anxiety, autism, intellectual disabilities, speech/language disorder, delays in developments, and oppositional defiant disorder in the
ethnic minority of African Americans. Blood-derived whole genome sequencing data from 4179 individuals were generated,
including 1384 patients with the diagnosis of at least one mental disorder. The burden of genomic variants in coding/non-coding
regions was applied as feature vectors in the deep learning algorithm. Our model showed ~65% accuracy in differentiating patients
from controls. Ability to label patients with multiple disorders was similarly successful, with a hamming loss score less than 0.3,
while exact diagnostic matches are around 10%. Genes in genomic regions with the highest weights showed enrichment of
biological pathways involved in immune responses, antigen/nucleic acid binding, chemokine signaling pathway, and G-protein
receptor activities. A noticeable fact is that variants in non-coding regions (e.g., ncRNA, intronic, and intergenic) performed equally
well as variants in coding regions; however, unlike coding region variants, variants in non-coding regions do not express genomic
hotspots whereas they carry much more narrow standard deviations, indicating they probably serve as alternative markers.
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INTRODUCTION
Mental disorders are a global health concerns with depression and
anxiety disorders costing the global economy of $1 trillion in lost
productivity each year [1]. In the United States, serious mental
disorders cost the society $193.2 billion each year [2]. Over 13.1
million adults in United States experienced serious mental illness in
2019, and 7.7 million minors (aged 6–17) experienced a mental
disorder in 2016 based on statistics from the Centers for Disease
Control and Prevention and the National Alliance of Mental illness.
Meanwhile, suicide is the second leading cause of death among
people aged 10–34 according to the National Institution of Mental
Health. Accurate diagnosis is the first and most important step
when encountering mental disorders to ensure appropriately
tailored therapies; however, the average delay between onset of
mental disorder symptoms and treatment is 11 years [3], and
the misdiagnosis rate is disappointing [4, 5]. In past few decades,
protocols, such as the Diagnostic and Statistical Manual of Mental
Disorders (DSM), have improved the mental disorder diagnosis
accuracy and efficiency significantly, but unlike many other

diseases, objective screening methodologies and lab tests are still
lacking for mental disorders due in part to the underlying disease
heterogeneity. Also, co-occurrence of different types of mental
disorders, e.g., attention deficit hyperactivity disorder (ADHD) and
autism [6], make the diagnosis even more challenging. Therefore,
alternative diagnostic methods are warranted and could serve
as additional reference in the diagnosis of patients with multiple
co-occurring types of disorders.
Structural variation in the human genome shows strong

association with mental disorders and certain variations have
already been leveraged as drug targets [7]. Non-coding structural
variants impacting long non-coding RNAs (lncRNAs) have been
shown to influence the entire cell cycle by interacting with DNA,
RNA, and proteins [8]. The resulting regulatory effects will result in
alternation of gene expression in many complex diseases,
including but not limited to cancers, Alzheimer’s disease,
cardiovascular issues, neuronal disorders, immune responses,
and hereditary diseases [9, 10]. Variation and dysregulation in
lncRNAs may thus contribute to human complex diseases and
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may themselves be potential therapeutic targets, e.g., H19,
HOTAIR, LUNAR1, MALAT1, NEAT1, MaTARs in cancer [11] and
PVT1 in diabetic nephropathy [9]. Mutations in untranslated
region (UTR)/intronic regions may also be potential therapeutic
targets since they may lead to protein instability [12] or alternative
splicing in genes that are critical in signaling pathways, such as
tumorigenesis [13]. Meanwhile, machine learning models, espe-
cially deep learning algorithms, have been shown to be of
potential value in stratifying mental disorders. Researchers have
applied machine learning or deep learning algorithms in mental
disorders, usually based on one of these four types of feature
vectors, i.e., clinical data, genetic/genomic data, vocal and visual
expression data, and social media data [14]. Many studies
using genetic/genomic data have focused on prioritizing the
susceptibility genes and pathways for mental disorders [15, 16].

For studies predicting disease phenotype, the majority are limited
to a specific disease type, such as bipolar disorder [17] or ADHD
[18]. On the other hand, it is common that a patient may be
diagnosed with more than one type of mental disorders, while
studies in African American (AA) are also lacking.
In this study, we analyzed blood whole genome sequencing

(WGS) data from 4179 ethnic minority individuals (AA), including
1384 patients with the diagnosis of at least one of the eight
common mental disorders where we created a multi-layer
perceptron (MLP) neuronal network using coding/non-coding
structural variation burdens from different genomic regions as
feature vectors. This was done to address two questions: first,
whether the model could differentiate mental disorder patients
and controls; second, whether we could label correctly patients
with different types of disorders, especially patients with multiple
diagnosis of mental disorders. The accuracy of the prediction was
evaluated using two-fold random shuffle tests and our results
support a powerful labeling capacity of the deep learning
algorithm with non-coding structural variation demonstrating
particular robustness to the classification.

METHODS
Patient cohorts
The patients selected in this study are from the Center for Applied
Genomics (CAG) at The Children’s Hospital of Philadelphia (CHOP), and the
WGS was generated through the NHLBI Trans-Omics for Precision Medicine
(TOPMed) WGS Program (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-
bin/study.cgi?study_id=phs001661.v2.p1). All 4179 AA patients were
selected from the CAG biobank, including 1384 patients with a diagnosis
of at least one of eight mental disorders (Fig. 1 and Supplementary
Table 1). The patients were approached during regular hospital visits at
multiple clinics, including emergency room, ambulatory settings, surgical,
general pediatrics, and specialty pediatric practices. The patients recruited
were in the age range of 0–21 years, obtaining healthcare at CHOP.
Parental consent was obtained for individuals under 18 years old and
assent was also obtained for subjects aged 7–17 years. The consent
allowed samples to be analyzed using the genomic technologies herein, to
address the research questions proposed. Parents can opt-in to permit
regular updates of their child’s electronic health record data (EHR) and to
be re-contacted for future study, which essentially everyone did.

Electronic health record (EHR) data extractions
The CAG at CHOP maintains a de-identified extract of clinical data from the
CHOP EHR database for consented patients. This database contains
longitudinal information about visits, diagnoses, medical history, prescrip-
tions, procedures, and lab tests. For this study the mental health status
of de-identified individuals was classified based on the International
Classification of Diseases (ICD) codes (ICD-9 and ICD-10) associated with
clinical visits and entered in the medical history record.

Whole genome sequencing (WGS) data processing and
variation detection
The WGS variant call format files were extracted from the TOPMED
database directly. Based on the description, the DNA was isolated from
whole blood, and DNA quantity and sex discordance have been checked
in the quality assessments. Libraries for WGS were created using the
Illumina’s TruSeq DNA PCR-Free Library Preparation Kit. WGS was
performed on the Illumina HiSeq X Ten platform with paired end 150
bp reads. The bcl2fastq v2 15.0 package was used to generate individual
FASTQ files. The alignment pipeline can be found at https://github.com/
CCDG/Pipeline-Standardization/blob/master/PipelineStandard.md. The
common variants that have minor allele frequency greater than 0.05 in
AA ethnicity based on the Exome Aggregation Consortium database [19]
have been removed.

Genomics feature vectors selections for deep learning models
The human genome was divided into 587 pieces (~5M bp/piece) based on
the GRCh38 genomic coordinates. The occurrence classified seven
different types of variation, including nonsynonymous single nucleotide
variants (SNV), frameshift SNV, SNVs in UTR, non-coding RNA SNV, SNV in

Fig. 1 Phenotype summary of 4179 African American individuals
from the NHLBI Trans-Omics for Precision Medicine (TOPMed)
project. a Age distribution of patients: the majority ~95% are
children under 18 years old. b Number of patients with correspond-
ing eight diagnosis, including ADHD, depression, anxiety, autism,
intellectual disabilities, speech/language disorder, delays in devel-
opments, and ODD, being noted that one patient could have
multiple diagnosis. c Distribution of patients’ diagnosis, ranged
from controls (no diagnosed mental disorders) to maximum six
diagnoses.
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intronic region, SNV in intergenic region, and SNV producing a stop codon,
for each genomic piece. The genomic pieces were subsequently applied as
a feature vector in the deep learning model. The processes were repeated
for all individuals in the study. A random forest algorithm was applied to
reduce the number of feature vectors by computing relative importance or
contribution of each genomic piece in the prediction, then we scaled the
relevance down so that the sum of all scores is 1. Feature vectors with zero
relative importance were removed for different types of variants.
Technically, the random forest model uses “gini” to measure the quality
of a split, while the minimum number of samples required to split an
internal node equals 2, and nodes are expanded until all leaves are pure or
until all leaves contain less than 2. The number of features to consider
when looking for the best split equals the square root(num_features) and
the number of trees in the forest equals 500. The modeling codes are
based on the Scikit-learn package (version 0.21.3, https://scikit-learn.org/)
in Python language. Feature vectors with the highest weights were
considered as hotspots, and drug target genes within the hotspot regions
were explored through the Integration of the Drug–Gene Interaction
Database [20]. Only FDA-approved medications were considered.

Deep learning parameters and random shuffled two-fold tests
MLP from the Scikit-learn package (version 0.21.3) was applied as the deep
learning model based on seven different types of variants. Two types of
prediction have been made including binary labeling of patients
diagnosed with mental disorders versus controls, and multiple labeling
for patients with at least one type of mental disorders, including ADHD,
depression, anxiety, autism, intellectual disabilities, speech/language
disorder, delays in developments, and oppositional defiant disorder
(ODD). Thus, each of 1384 patient’s phenotype becomes a 1 × 8 binary
matrix instead of a binary value and each column corresponds to one of
eight disorders as described above. Parameters for the deep learning
model, including maximum iterations, alpha value in L2 regularization,
activation functions, solvers, learning rate, number of layers, and numbers
of neurons per layer, were optimized using “gp_minimize” function from
the scikit-optimize 0.7.2 python library.
In order to test the predictive abilities for selected features, we applied a

two-fold shuffle testing. More specifically, 1384 patients and 2795 controls
were split into 1:1 ratio for 50 rounds randomly for case–control labeling,
with one set used as training data and the other one used as independent
test set. The genomic feature vectors were selected as described in the

previous paragraph for training data, then the deep learning model
described above is applied to label whether the sample is a mental
disorder patient or control in the testing data. Similarly, for multiple
labeling of 1384 patients with at least one diagnosis, these samples were
split into 1:1 ratio for 50 rounds randomly, instead of generating a binary
value labeling, the prediction output is a 1 × 8 matrix, while each column
corresponds to one of the eight disorders, and value 1 represents existence
of the disorder.

RESULTS
Phenotype prediction accuracy for mental disorders versus
controls in 4179 African American (AA) individuals using two-
fold shuffle tests
As described in the Method section, two-fold shuffle testing was
applied to assess the mental disorders’ prediction, based on 50
rounds of two-fold random shuffle tests of genetic variants.
Reduced feature vectors, which were based on the random forest
algorithm, showed a reproducible prediction accuracy at 65% in
classifying mental disorder patients versus controls using the deep
learning model (Table 1) with optimized parameters as described
in the Method section. A notable observation is that structural
variants in non-coding regions, such as variants in non-coding
RNAs, intronic and intergenic regions, showed similar level of
predictive accuracy compared to structural variants in coding
regions, including nonsynonymous SNV, frameshift SNVs, and
SNVs producing stop codons.

Phenotype prediction accuracy for patients with multiple
diagnosis in 1384 African American (AA) individuals using
two-fold shuffle tests
Unlike labeling of patients versus controls, which is a binary
question, labeling patients with multiple diagnosis is a multi-
labeling question. More specifically, instead of having a binary
value representing presence/absence of the disorders, the
phenotype of each patient is a 1 × 8 binary matrix, with each
column corresponding to one type of disorders in the order of

Table 1. Prediction accuracy summary (mean ± standard deviation).

Variation types Prediction accuracy (single
diagnosis mental disorder
vs controls)

Prediction accuracy
(mental disorder vs
controls)

Prediction accuracy
(hamming loss among 8
disorders)

Prediction accuracy
(exactly matches among
8 disorders)

Nonsynonymous SNVs 71.7 ± 1.34% 64.5 ± 1.2% 0.28 ± 0.011 8.8 ± 1.1%

Frameshift SNVs 70.8 ± 1.61% 64 ± 1.4% 0.30 ± 0.007 8.4 ± 0.91%

Stop codon SNV 71.49 ± 1.69% 65.1 ± 0.97% 0.28 ± 0.004 7.2 ± 0.69%

SNVs in UTR region 72.4 ± 1.44% 65.5 ± 1.1% 0.31 ± 0.009 7.6 ± 1.2%

SNVs in ncRNA 72.6 ± 1.52% 65.7 ± 1.3% 0.29 ± 0.009 8.1 ± 1.4%

SNVs in intronic regions 72.8 ± 1.29% 65.7 ± 1.1% 0.28 ± 0.008 8.1 ± 0.98%

SNVs in intergenic regions 73.1 ± 1.23% 64.6 ± 1.1% 0.30 ± 0.006 9.3 ± 0.90%

Table 2. Prediction accuracy for specific disorders in patients with at least one diagnosis based on coding variants.

Nonsynonymous SNVs Frameshift SNVs Stop codon

Disorder Precision Recall Precision Recall Precision Recall

ADHD 39.4 ± 2.7% 40.5 ± 5.1% 39.8 ± 2.8% 39.1 ± 3.3% 31.3 ± 40.2% 0.08 ± 0.27%

Speech/language disorders 30.3 ± 3.4% 30.6 ± 5.2% 32.6 ± 3.1% 30.9 ± 4.2% 0.0 ± 0.0% 0.0 ± 0.0%

Developmental delays 36.8 ± 2.1% 37.1 ± 4.2% 36.4 ± 2.8% 36.2 ± 4.3% 33.6 ± 1.2% 90.1 ± 1.9%

Depression 25.9 ± 3.1% 23.6 ± 4.4% 26.3 ± 3.4% 24.8 ± 3.6% 19.9 ± 6.5% 3.7 ± 1.5%

Anxiety 18.1 ± 4.1% 13.7 ± 6.1% 20.6 ± 3.4% 18.9 ± 4.1% 15.1 ± 2.3% 14.9 ± 2.9%

ODD 13 ± 11.1% 6.1 ± 5.1% 20.6 ± 5.9% 14.6 ± 4.7% 17.4 ± 9.7% 2.5 ± 1.5%

Autism 11.9 ± 7.1% 6.1 ± 4.8% 15.8 ± 4.5% 13.2 ± 4.6% 11.2 ± 2.6% 12.2 ± 3.4%

Intellectual disabilities 20.3 ± 3.8% 19.4 ± 5.3% 21.4 ± 2.9% 18.8 ± 4.4% 0.0 ± 0.0% 0.0 ± 0.0%
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ADHD, speech/language disorders, developmental delays, depres-
sion, anxiety, ODD, autism, and intellectual disabilities. As a result,
the accuracy of prediction is more complicated to present. We
applied hamming loss, which is considered a standard accuracy
representative that is frequently applied for binary multiple
labeling question to measure the prediction accuracy. The
hamming loss is the fraction of labels that are incorrectly
predicted, which is ranged from 0 to 1, while lesser value of
hamming loss indicates a better classifier. As shown in Table 1, the
hamming loss score is less than 0.3, indicating high fractions of
correct labeling. Meanwhile, we also calculated the exact matches
of phenotype labeling, to determine if a patient diagnosed for
ADHD, autism, and ODD, has a predictive phenotype that is
exactly the same as the diagnosis. The accuracy ranged from 7 to
10% depending on the variant types. Considering random guess
accuracy for the phenotype is 1/256 (~0.4%), the deep learning
model has superior prediction capacity compared to random
guesses. The accuracy and the recall for eight different disorders
are shown in Tables 2 and 3 for coding and non-coding variants,
respectively.

Genomics regions with high weights based on the deep
learning model
The weight or the contribution of each genomic region (feature
vector) is based on the 4179 AA individuals and calculated using
the Random Forest algorithm, as described in the Method section.
The genomics regions (as feature vectors) containing variants that
showed non-uniformed weights in both prediction models
(case–control and multiple labeling) and the weights of variants
in coding regions have larger standard deviations than that of
variants in non-coding regions. In other words, genomic regions
with non-coding variants (UTR/ncRNA/intronic/intergenic) show
more uniformed weight distribution compared to regions with
coding region variants (Fig. 2). This suggests that variants in non-
coding regions mainly serve as biomarkers of genetic susceptibility
of mental disorders, conferred by functional genetic variants in
each region. In addition, different chromosomes show alternative
patterns of weights, and a notable fact is that the coding hotspots
were almost same between case–control classification and multiple
labeling models (Fig. 3). This is in contrast to the patterns of
hotspots that are not matched for non-coding variants between
the two models (Fig. 4). Enrichment analysis was performed based
on gene hotspots (>1% weight) using the DAVID Bioinformatics
platform [21]. Training the models in computer clusters will only
take a few hours (less than 1 day on a standard PC). The
computational time includes mainly feature vector extractions and
parameter optimizations. In the feature vector extraction step, the
programs must scan through the WGS data to annotate and
categorize the SNVs, therefore consuming a huge amount of
computational time and resources (about 5 days on clusters).
Parameter optimization using the “gp_minimize” function from
the scikit-optimize 0.7.2 python library takes about 3 days since
many parameters, especially number of neuros and layers, need to
be tested.

DISCUSSION
Accurate diagnosis of mental disorders can be difficult, and even
more challenging in patients who suffer comorbid conditions
with more than one type of mental disorders. Although guide-
lines and standards based on the DSM are helping, the
misdiagnosis rate is still high. An assessment of 840 patients in
2011 showed that the misdiagnosis rates reached 65.9% for major
depressive disorder, 92.7% for bipolar disorder, 85.8% for panic
disorder, 71.0% for generalized anxiety disorder, and 97.8% for
social anxiety disorder [5]. A more recent study showed that 51%
of schizophrenia had primary diagnosis in the consultation clinic
different from the following visits [22], and the misdiagnosis ofTa
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Fig. 2 Boxplots for weights of 587 genomic regions (feature vectors). a In prediction of cases versus controls. b In multiple labeling for 1384
mental disorder patients.

Fig. 3 Feature vector weight distribution of three different types of structural variants (nonsynonymous SNVs, frameshift SNVs, and stop
codon SNVs) cross 22 autosomes. a In prediction of cases versus controls, b In multiple labeling for 1384 mental disorder patients. Red dash
line is the value if the genomic regions are uniformly weighted.

Y. Liu et al.

1473

Molecular Psychiatry (2022) 27:1469 – 1478



ADHD is also high, including both over and under estimations
[23]. The misdiagnosis could result in prescription of wrong
medications that can lead to side effects from the medication
without any of the benefits, then further worsen the condition
as a consequence [24]. The difficulties in diagnosing mental
disorders are further complicated by comorbid symptoms
heterogeneity, and lack of objective standards like imaging/lab
testing methodologies that are commonly useful for other
diseases. For young patients, especially toddlers under 3 years
of age who are not able to finish any writing tests for mental
disorders, the delay and misdiagnosis rates are even more
serious. This is unfortunate as early intervention is critical for
many types of severe mental disorders. For example, a previous
study shows that early intervention before 30 months of age
could significantly improve IQ, an adaptive behavior in autism
[25]. As a result, objective alternative approaches could serve as
independent references to aid the clinicians to reduce the
misdiagnosis rate and make correct decisions for young patients
and toddlers. Over the past 15–20 years, structural variants in the
genome, including both coding/non-coding regions, have been
identified and used as biomarkers in informing the diagnosis and
treatment course of mental disorders [26, 27]. In this study we
combed genomic variants identified from 4179 AA, with 22% of
patients under age 3 years (Fig. 1a) and applied as feature vectors
in two MLP deep learning models, which label mental disorder
patients versus controls, and patients with multiple mental
disorders, respectively.
Among the 4179 AA individuals, we selected 1384 patients who

were diagnosed with at least one of eight common mental
disorders: ADHD, depression, anxiety, autism, intellectual disabil-
ities, speech/language disorder, delays in developments, and ODD
(Fig. 1b). In the first prediction model of mental disorders versus
controls, the prediction model showed average accuracy around
65% based on 50 rounds of two-fold random shuffle tests for

variants in coding and non-coding regions (Table 1). The accuracy
is lower than the previous study labeling of ADHD versus control
(~80%) [18]. The main reason is likely due to the comorbid factors
when combining eight disorders together as cases that cause
significant increase in genetic heterogeneity.
The second prediction model clarified a more interesting

question, which is whether we could predict the diagnosis for
patients with multiple disorders. In other words, a single patient
could belong to multiple categories. Hamming loss, which is the
fraction of labels that are incorrectly predicted and frequently
applied as accuracy standards for multiple labeling question, was
applied as the measure of multiple labeling accuracy (Table 1). As
shown by 50 rounds of two-fold random shuffle tests, the
hamming loss score is less than 0.3, meaning that at least 70% of
binary values in the phenotype matrix are labeled correctly. An
alternative approach of accuracy level in the second prediction
model is to calculate the exact matches between predicted value
and real phenotype. The exact match rate is 7.2~9.3%. The
accuracy level is relatively low related to multiple potential factors.
The first reason is the limited number of patients with multiple
diagnosis, while only 662 patients have more than two diagnosis
and 274 patients have more than three diagnoses (Fig. 1c).
Therefore, there may not be enough training data for the models
to learn from. Secondly, the sample size for some disorders is
small, for example, the labeling accuracies for ODD and autism are
much lower than other disorders (Tables 2 and 3), meanwhile the
sample size for these two are the smallest among all disorders
(Fig. 1b). Thirdly, different mental disorders may share genetic
risks [28]. Of note, the classification accuracy from random guess
for a patient to be correctly classified into one or more of the eight
types of disorder is 1/256 (0.4%). In contrast, the labeling from our
model is vastly superior and serves as a proof-of-concept that the
information could be used to serve as additional references in
clinical diagnosis and decision making.

Fig. 4 Feature vector weight distribution of four different types of structural variants (SNVs in UTR regions, ncRNA, intronic regions, and
intergenic regions) cross 22 autosomes. a In prediction of cases versus controls. b In multiple labeling for 1384 mental disorder patients. Red
dash line is the value if the genomic regions are uniformly weighted.
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Structural variants in non-coding regions, including UTR, ncRNA,
intronic, and intergenic regions, showed no worse prediction
abilities than variants in coding regions. However, the weight
patterns are different for coding/non-coding variants. The weights of
genomic coding variants showed much larger standard deviation
than variants in non-coding regions for the two prediction models
(Fig. 2). Lack of highly weighted genomic regions (hotspots) for non-
coding variants indicates that non-coding variants are likely to
function as genomic alternative, instead of causative, compared to
coding variants. Also, the weight patterns in 22 chromosomes are
highly similar between the two prediction models of coding variants
(Fig. 3), but visually different for non-coding variants (Fig. 4). These
results indicate that the impact of coding variants are very similar in
the eight types of mental disorders, but the regulatory effects from
non-coding variants could be essentially different among different
disorders.
Enrichment analysis for genes in hotspots, which have weight

greater than 1%, was performed (Table 4). The top hotspot at
chr19:50000001-55000000 was identified in both categories of
stop codon and frameshift SNVs and showed significant enrich-
ment (p < 0.05) in genes involving immune response, regulation of
transcription/nucleic acid binding, pathways of osteoclast differ-
entiation, and antigen processing/presentation. Previous study
reported that schizophrenia, bipolar disorder, and major depres-
sion are characterized by several immune-inflammatory altera-
tions outside the brain [29]. In the prediction for mutations on
RNA-binding protein target sites, previous results also suggest that
binding site dysregulation is a principal contributor to individuals’
risk of developing psychiatric disorders [30]. Osteoporosis was
found to co-occur with schizophrenia [31], and auto-antibodies
showed higher prevalence in schizophrenia patients’ brain
tissues than controls [32]. In addition, another hotspot on
chr17:35000001-40000000 contains 33 genes with stop codon
SNVs, enriched in chemotaxis biological processes and chemokine
activity/signaling pathways. Chemokines were highlighted of
novel brain-specific functions and may present novel diagnostic
and/or therapeutic targets in psychiatric disorders [33]. Genes in

the genomic region at chr11:55000001-60000000 contain stop
codon SNVs that are significantly enrichment in G-protein coupled
receptor signaling pathway and olfactory transduction. G-protein-
coupled receptors were reported to play critical roles in
depression, bipolar disorder, and schizophrenia, as well as their
treatments [34]. Association has also been reported between
olfactory processing and bipolar disorder, major depression, and
anxiety [35]. Genes within these hotspots were further explored
for potential interactions with FDA-approved medications (Table 5
and Supplementary Table 2). Medications that may be used to
treat mental disorders and medications that may cause unwanted
drug effects and have supportive animal/clinical evidence are
highlighted. For example, CEPT interacts with the statin family
(e.g., Cerivastatin, Mevastatin, etc.). Previous studies suggested
that the adjuvant treatment with a statin may be beneficial for
patients with depression and schizophrenia who were prescribed
psychotropic drugs [36, 37]. Risperidone, interacting with TNF, as
an adjunctive therapy for treatment-resistant depression, may
improve rate of response and remission based on clinical evidence
[38, 39]. MMP2 interacts with paclitaxel, a commonly used
chemotherapy medication, and induces anxiety-like behavior in
mouse [40]. Oral dexamethasone for 4 days, which interacts with
SERPINE1, was significantly more effective than placebo in a
randomized, double-blind study of outpatients with depression
[41]. Vasopressin, another chemical interacting with SERPINE1, was
shown to be related to increased risk of stress disorder [42].
Therefore, the hotspots identified in this study may promote
the development of treatments/preventions, as well as new
drug discoveries, in addition to their roles as biomarkers for the
prediction of mental disorders.
In summary, our deep learning model showed promising

accuracy to differentiate patients versus controls, as well as the
potential of labeling patients with multiple disorders. As shown by
our study, genetic variants in non-coding regions (e.g., ncRNA,
intronic, and intergenic) have comparable labeling capacities to
variants in coding regions. However, unlike coding region variants,
non-coding variants do not have genomic hotspots and show

Table 5. Genes in coding hotspots and their interacted medications.

Variation type Locus Genes/interacted medications

Frameshift SNVs chr11:55000001-60000000 TCN1 (cyanocobalamin); MED19 (alcohol)

Frameshift SNVs chr16:55000001-60000000 SLC12A3 (interacted with 18 medicines); CETP (tamoxifen, atorvastatin, simvastatin, pravastatin,
lovastatin, fluvastatin); MMP2 (cyclosporine, pravastatin, bevacizumab, vinblastine, filgrastim,
zileuton, paclitaxel, simvastatin, letrozole, streptozocin, acetazolamide, deferoxamine, ramipril)

Frameshift SNVs chr19:50000001-55000000 KIR2DS4 (methotrexate); KCNC3 (dalfampridine, guanidine hydrochloride); FPR1 (penicillin G
potassium, sulfinpyrazone); KLK1 (ecallantide); PRPF31 (metformin); CACNG6 (bepridil
hydrochloride, pregabalin, gabapentin enacarbil, gabapentin)

Frameshift SNVs chr6:30000001-35000000 HCG22 (triamcinolone); CCHCR1 (nevirapine); HSPA1L (carbamazepine); MUCL3 (carboplatin,
gemcitabine); EHMT2 (interacted with 189 medications); CDSN (carboplatin, gemcitabine); TCF19
(nevirapine); NOTCH4 (allopurinol); TAPBP (aspirin); ATAT1 (gemcitabine, carboplatin); COL11A2
(ocriplasmin, collagenase clostridium histolyticum); ZBTB22 (aspirin); TNF (interacted with
41 drug)

Frameshift SNVs chr7:100000001-105000000 SERPINE1 (cetrorelix, hydrochlorothiazide, epirubicin, captopril, orlistat, levothyroxine,
nimodipine, dexamethasone, defibrotide, citalopram, urokinase, fluoxetine, vasopressin); STAG3
(vemurafenib); ACHE (interacted with 28 medications); EPHB4 (vandetanib)

Stop codon chr11:55000001-60000000 TMX2 (alcohol)

Stop codon chr17:35000001-40000000 SLFN11 (niraparib, temozolomide, talazoparib); CCL3 (infliximab)

Stop codon chr19:1-5000000 TBXA2R (morphine, iloprost, furosemide, vinblastine, dinoprostone, cyclosporine, aspirin,
alprostadil); GRIN3B (felbamate, ketamine hydrochloride, esketamine, amantadine hydrochloride,
orphenadrine hydrochloride, acamprosate calcium, orphenadrine, orphenadrine citrate,
esketamine hydrochloride, memantine hydrochloride); PLIN3 (galsulfase, idursulfase); AMH
(testosterone); MKNK2 (erlotinib, gefitinib, sorafenib); PIP5K1C (alcohol)

Stop codon chr19:50000001-55000000 KIR2DS4 (methotrexate); KLK4 (ecallantide, bortezomib); CACNG6 (bepridil hydrochloride,
pregabalin, gabapentin enacarbil, gabapentin); PRPF31 (metformin); NDUFA3 (metformin
hydrochloride)
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much more narrow standard deviations, indicating they probably
serve as alternative proxy markers. Genes in genomic regions with
the highest weights showed enrichment in biological pathways
involved in immune responses, antigen/nucleic acid binding,
chemokine signaling pathway, and G-protein receptor activities,
which with future research may provide mechanistic insights into
these mental disorders based on genetic marker support.

DATA AVAILABILITY
The data have been uploaded to the database of Genotypes and Phenotypes (dbGaP,
https://www.ncbi.nlm.nih.gov/gap/) with the accession number phs001661.v2.p1.

REFERENCES
1. Chisholm D, Sweeny K, Sheehan P, Rasmussen B, Smit F, Cuijpers P, et al. Scaling-

up treatment of depression and anxiety: a global return on investment analysis.
Lancet Psychiatry. 2016;3:415–24.

2. Kessler RC, Heeringa S, Lakoma MD, Petukhova M, Rupp AE, Schoenbaum M, et al.
Individual and societal effects of mental disorders on earnings in the United
States: results from the national comorbidity survey replication. Am J Psychiatry.
2008;165:703–11.

3. Wang PS, Berglund PA, Olfson M, Kessler RC. Delays in initial treatment contact
after first onset of a mental disorder. Health Serv Res. 2004;39:393–415.

4. Singh T, Rajput M. Misdiagnosis of bipolar disorder. Psychiatry (Edgmont). 2006;
3:57–63.

5. Vermani M, Marcus M, Katzman MA. Rates of detection of mood and anxiety
disorders in primary care: a descriptive, cross-sectional study. Prim Care Com-
panion CNS Disord. 2011;13:PCC.10m01013.

6. Polderman TJ, Hoekstra RA, Posthuma D, Larsson H. The co-occurrence of autistic
and ADHD dimensions in adults: an etiological study in 17,770 twins. Transl
Psychiatry. 2014;4:e435.

7. Elia J, Ungal G, Kao C, Ambrosini A, De Jesus-Rosario N, Larsen L, et al.
Fasoracetam in adolescents with ADHD and glutamatergic gene network variants
disrupting mGluR neurotransmitter signaling. Nat Commun. 2018;9:4.

8. Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs
and its biological functions. Nat Rev Mol Cell Biol. 2021;22:96–118.

9. Chen X, Yan CC, Zhang X, You ZH. Long non-coding RNAs and complex
diseases: from experimental results to computational models. Brief Bioinform.
2017;18:558–76.

10. Sparber P, Filatova A, Khantemirova M, Skoblov M. The role of long non-coding
RNAs in the pathogenesis of hereditary diseases. BMC Med Genomics. 2019;
12:42. Suppl 2

11. Arun G, Diermeier SD, Spector DL. Therapeutic targeting of long non-coding
RNAs in cancer. Trends Mol Med. 2018;24:257–77.

12. Preussner M, Gao Q, Morrison E, Herdt O, Finkernagel F, Schumann M, et al.
Splicing-accessible coding 3’UTRs control protein stability and interaction net-
works. Genome Biol. 2020;21:186.

13. Zhang Y, Qian J, Gu C, Yang Y. Alternative splicing and cancer: a systematic
review. Signal Transduct Target Ther. 2021;6:78.

14. Su C, Xu Z, Pathak J, Wang F. Deep learning in mental health outcome research: a
scoping review. Transl Psychiatry. 2020;10:116.

15. Khan A, Liu Q, Wang K. iMEGES: integrated mental-disorder GEnome score by
deep neural network for prioritizing the susceptibility genes for mental disorders
in personal genomes. BMC Bioinforma. 2018;19(Suppl 17):501.

16. Wang D, Liu S, Warrell J, Won H, Shi X, Navarro FCP, et al. Comprehensive
functional genomic resource and integrative model for the human brain. Science.
2018;362:eaat8464.

17. Sundaram L, Bhat RR, Viswanath V, Li X. DeepBipolar: identifying
genomic mutations for bipolar disorder via deep learning. Hum Mutat. 2017;
38:1217–24.

18. Liu Y, Qu HQ, Chang X, Nguyen K, Qu J, Tian L, et al. Deep learning prediction of
attention-deficit hyperactivity disorder in African Americans by copy number
variation. Exp Biol Med (Maywood). 2021;246:2317–23.

19. Karczewski KJ, Weisburd B, Thomas B, Solomonson M, Ruderfer DM, Kavanagh D,
et al. The ExAC browser: displaying reference data information from over 60 000
exomes. Nucleic Acids Res. 2017;45:D840–D845.

20. Freshour SL, Kiwala S, Cotto KC, Coffman AC, McMichael JF, Song JJ, et al. Inte-
gration of the Drug-Gene Interaction Database (DGIdb 4.0) with open crowd-
source efforts. Nucleic Acids Res. 2021;49:D1144–D1151.

21. Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths
toward the comprehensive functional analysis of large gene lists. Nucleic Acids
Res. 2009;37:1–13.

22. Coulter C, Baker KK, Margolis RL. Specialized consultation for suspected recent-
onset schizophrenia: diagnostic clarity and the distorting impact of anxiety and
reported auditory hallucinations. J Psychiatr Pract. 2019;25:76–81.

23. Ford-Jones PC. Misdiagnosis of attention deficit hyperactivity disorder: ‘Normal
behaviour’ and relative maturity. Paediatr Child Health. 2015;20:200–2.

24. Ferrando SJ, Eisendrath SJ. Adverse neuropsychiatric effects of dopamine
antagonist medications. Misdiagnosis Med Setting Psychosom. 1991;32:426–32.

25. Dawson G, Rogers S, Munson J, Smith M, Winter J, Greenson J, et al. Randomized,
controlled trial of an intervention for toddlers with autism: the Early Start Denver
Model. Pediatrics. 2010;125:e17–23.

26. Liu Y, Qu HQ, Chang X, Tian L, Qu J, Glessner J, et al. Machine
learning reduced gene/non-coding RNA features that classify schizophrenia
patients accurately and highlight insightful gene clusters. Int J Mol Sci. 2021;
22:3364.

27. Liu Y, Chang X, Qu HQ, Tian L, Glessner J, Qu J, et al. Rare recurrent variants in
noncoding regions impact Attention-Deficit Hyperactivity Disorder (ADHD) Gene
Networks in children of both African American and European American Ancestry.
Genes (Basel). 2021;12:310.

28. Pettersson E, Larsson H, Lichtenstein P. Common psychiatric disorders share the
same genetic origin: a multivariate sibling study of the Swedish population. Mol
Psychiatry. 2016;21:717–21.

29. Bennett FC, Molofsky AV. The immune system and psychiatric disease: a basic
science perspective. Clin Exp Immunol. 2019;197:294–307.

30. Park CY, Zhou J, Wong AK, Chen KM, Theesfeld CL, Darnell RB, et al. Genome-wide
landscape of RNA-binding protein target site dysregulation reveals a major
impact on psychiatric disorder risk. Nat Genet. 2021;53:166–73.

31. Radaei F, Darvishi A, Gharibzadeh S. The correlation between osteoporosis
occurrences in both schizophrenia and Parkinson’s disease. Front Neurol.
2014;5:83.

32. Just D, Manberg A, Mitsios N, Stockmeier CA, Rajkowska G, Uhlen M, et al.
Exploring autoantibody signatures in brain tissue from patients with severe
mental illness. Transl Psychiatry. 2020;10:401.

33. Stuart MJ, Singhal G, Baune BT. Systematic review of the neurobiological
relevance of chemokines to psychiatric disorders. Front Cell Neurosci. 2015;
9:357.

34. Catapano LA, Manji HK. G protein-coupled receptors in major psychiatric disorders.
Biochim Biophys Acta. 2007;1768:976–93.

35. Kamath V, Paksarian D, Cui L, Moberg PJ, Turetsky BI, Merikangas KR. Olfactory
processing in bipolar disorder, major depression, and anxiety. Bipolar Disord.
2018;20:547–55.

36. Salagre E, Fernandes BS, Dodd S, Brownstein DJ, Berk M. Statins for the treatment
of depression: a meta-analysis of randomized, double-blind, placebo-controlled
trials. J Affect Disord. 2016;200:235–42.

37. Shen H, Li R, Yan R, Zhou X, Feng X, Zhao M, et al. Adjunctive therapy with statins
in schizophrenia patients: a meta-analysis and implications. Psychiatry Res.
2018;262:84–93.

38. Owenby RK, Brown LT, Brown JN. Use of risperidone as augmentation treatment
for major depressive disorder. Ann Pharmacother. 2011;45:95–100.

39. Reeves H, Batra S, May RS, Zhang R, Dahl DC, Li X. Efficacy of risperidone aug-
mentation to antidepressants in the management of suicidality in major
depressive disorder: a randomized, double-blind, placebo-controlled pilot study.
J Clin Psychiatry. 2008;69:1228–36.

40. Toma W, Kyte SL, Bagdas D, Alkhlaif Y, Alsharari SD, Lichtman AH, et al. Effects of
paclitaxel on the development of neuropathy and affective behaviors in the
mouse. Neuropharmacology. 2017;117:305–15.

41. Arana GW, Santos AB, Laraia MT, McLeod-Bryant S, Beale MD, Rames LJ, et al.
Dexamethasone for the treatment of depression: a randomized, placebo-con-
trolled, double-blind trial. Am J Psychiatry. 1995;152:265–7.

42. Neumann ID, Landgraf R. Balance of brain oxytocin and vasopressin: implications
for anxiety, depression, and social behaviors. Trends Neurosci. 2012;35:649–59.

ACKNOWLEDGEMENTS
Sample collection and biobanking for this study was supported by Institutional
Development Funds from the Children’s Hospital of Philadelphia to the Center for
Applied Genomics. The TOPMed acknowledgments can be found at https://www.
nhlbiwgs.org/acknowledgements.

AUTHOR CONTRIBUTIONS
Conceptualization: HH and YL; literature search: YL; data preparation and analysis: YL,
H-QQ, FDM, JQ, and CX; data interpretation: YL, H-QQ, CX, KN, JQ, LT, JG, PMAS, and
HH; original draft writing: YL, FDM, and HQ; review and revision: YL, H-QQ, and HH;
supervision: HH.

Y. Liu et al.

1477

Molecular Psychiatry (2022) 27:1469 – 1478

https://www.ncbi.nlm.nih.gov/gap/
https://www.nhlbiwgs.org/acknowledgements
https://www.nhlbiwgs.org/acknowledgements


FUNDING
The study was supported by Institutional Development Funds from the Children’s
Hospital of Philadelphia to the Center for Applied Genomics, The Children’s Hospital
of Philadelphia Endowed Chair in Genomic Research to HH.

COMPETING INTERESTS
The authors declare no competing interests.

ETHICAL APPROVAL
We confirm that all methods were carried out in accordance with relevant guidelines
and regulations and all experimental protocols were approved by the Children’s
Hospital of Philadelphia (CHOP) Institutional Review Board (IRB). Informed consent
was obtained from all subjects or, if subjects are under 18, from a parent and/or legal
guardian with assent from the child if 7 years or older.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41380-021-01418-1.

Correspondence and requests for materials should be addressed to Hakon
Hakonarson.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2021

Y. Liu et al.

1478

Molecular Psychiatry (2022) 27:1469 – 1478

https://doi.org/10.1038/s41380-021-01418-1
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Application of deep learning algorithm on whole genome sequencing data uncovers structural variants associated with multiple mental disorders in African American patients
	Introduction
	Methods
	Patient cohorts
	Electronic health record (EHR) data extractions
	Whole genome sequencing (WGS) data processing and variation detection
	Genomics feature vectors selections for deep learning models
	Deep learning parameters and random shuffled two-fold tests

	Results
	Phenotype prediction accuracy for mental disorders versus controls in 4179 African American (AA) individuals using two-fold shuffle tests
	Phenotype prediction accuracy for patients with multiple diagnosis in 1384 African American (AA) individuals using two-fold shuffle tests
	Genomics regions with high weights based on the deep learning model

	Discussion
	References
	Acknowledgements
	ACKNOWLEDGMENTS
	Author contributions
	Funding
	Competing interests
	Ethical approval
	ADDITIONAL INFORMATION




