Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hippocampal acetylcholine modulates stress-related behaviors independent of specific cholinergic inputs

Abstract

Acetylcholine (ACh) levels are elevated in actively depressed subjects. Conversely, antagonism of either nicotinic or muscarinic ACh receptors can have antidepressant effects in humans and decrease stress-relevant behaviors in rodents. Consistent with a role for ACh in mediating maladaptive responses to stress, brain ACh levels increase in response to stressful challenges, whereas systemically blocking acetylcholinesterase (AChE, the primary ACh degradative enzyme) elicits depression-like symptoms in human subjects, and selectively blocking AChE in the hippocampus increases relevant behaviors in rodents. We used an ACh sensor to characterize stress-evoked ACh release, then used chemogenetic, optogenetic and pharmacological approaches to determine whether cholinergic inputs from the medial septum/diagonal bands of Broca (MSDBB) or ChAT-positive neurons intrinsic to the hippocampus mediate stress-relevant behaviors in mice. Chemogenetic inhibition or activation of MSDBB cholinergic neurons did not result in significant behavioral effects, while inhibition attenuated the behavioral effects of physostigmine. In contrast, optogenetic stimulation of septohippocampal terminals or selective chemogenetic activation of ChAT-positive inputs to hippocampus increased stress-related behaviors. Finally, stimulation of sparse ChAT-positive hippocampal neurons increased stress-related behaviors in one ChAT-Cre line, which were attenuated by local infusion of cholinergic antagonists. These studies suggest that ACh signaling results in maladaptive behavioral responses to stress if the balance of signaling is shifted toward increased hippocampal engagement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ACh levels increase in hippocampus in response to stress.
Fig. 2: Effects of optogenetic stimulation of hippocampal terminal fields on anxiety-related behaviors following ChR2 infusion in the medial septum of C57BL/6 J mice.
Fig. 3: Behavioral effects of retrograde infusion of a Cre-dependent DREADD construct into the hippocampus of ChAT-Cre mouse lines.
Fig. 4: Stimulation of hippocampal ChAT-positive interneurons increases stress-relevant behavioral responses.
Fig. 5: Cholinergic receptor antagonists infused into the hippocampus decrease the effect of DREADD-mediated stimulation of hippocampal ChAT-Cre-expressing neurons.

Similar content being viewed by others

Code availability

All code used to analyze fiber photometry data is described in [24, 51, 52] and is available in online repositories and upon request.

References

  1. Saricicek A, Esterlis I, Maloney KH, Mineur YS, Ruf BM, Muralidharan A, et al. Persistent beta2*-nicotinic acetylcholinergic receptor dysfunction in major depressive disorder. Am J psychiatry. 2012;169:851–9.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hannestad JO, Cosgrove KP, DellaGioia NF, Perkins E, Bois F, Bhagwagar Z, et al. Changes in the cholinergic system between bipolar depression and euthymia as measured with [123I]5IA single photon emission computed tomography. Biol psychiatry. 2013;74:768–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Esterlis I, Hannestad JO, Bois F, Sewell RA, Tyndale RF, Seibyl JP, et al. Imaging changes in synaptic acetylcholine availability in living human subjects. J Nucl Med. 2013;54:78–82.

    Article  PubMed  Google Scholar 

  4. Janowsky DS, el-Yousef MK, Davis JM, Sekerke HJ. A cholinergic-adrenergic hypothesis of mania and depression. Lancet. 1972;2:632–5.

    Article  CAS  PubMed  Google Scholar 

  5. Risch SC, Cohen RM, Janowsky DS, Kalin NH, Sitaram N, Gillin JC, et al. Physostigmine induction of depressive symptomatology in normal human subjects. Psychiatry Res. 1981;4:89–94.

    Article  CAS  PubMed  Google Scholar 

  6. Drevets WC, Zarate CA, Jr., Furey ML. Antidepressant effects of the muscarinic cholinergic receptor antagonist scopolamine: a review. Biol psychiatry 2012;73:1156–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Janowsky DS. Serendipity strikes again: scopolamine as an antidepressant agent in bipolar depressed patients. Curr Psychiatry Rep. 2011;13:443–5.

    Article  PubMed  Google Scholar 

  8. George TP, Sacco KA, Vessicchio JC, Weinberger AH, Shytle RD. Nicotinic antagonist augmentation of selective serotonin reuptake inhibitor-refractory major depressive disorder: a preliminary study. J Clin Psychopharmacol. 2008;28:340–4.

    Article  PubMed  CAS  Google Scholar 

  9. Mineur YS, Picciotto MR. Nicotine receptors and depression: revisiting and revising the cholinergic hypothesis. Trends Pharm Sci. 2010;31:580–6.

    Article  CAS  PubMed  Google Scholar 

  10. Mineur YS, Ernstsen C, Islam A, Lefoli Maibom K, Picciotto MR. Hippocampal knockdown of alpha2 nicotinic or M1 muscarinic acetylcholine receptors in C57BL/6J male mice impairs cued fear conditioning. Genes, brain, Behav. 2020;19:e12677.

    Article  CAS  Google Scholar 

  11. Tottenham N, Sheridan MA. A review of adversity, the amygdala and the hippocampus: a consideration of developmental timing. Front Hum Neurosci. 2009;3:68.

    PubMed  Google Scholar 

  12. Sapolsky RM. The possibility of neurotoxicity in the hippocampus in major depression: a primer on neuron death. Biol psychiatry. 2000;48:755–65.

    Article  CAS  PubMed  Google Scholar 

  13. Selden NR, Gitelman DR, Salamon-Murayama N, Parrish TB, Mesulam MM. Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain. 1998;121:2249–57.

    Article  PubMed  Google Scholar 

  14. Mesulam MM. Cholinergic pathways and the ascending reticular activating system of the human brain. Ann N. Y Acad Sci. 1995;757:169–79.

    Article  CAS  PubMed  Google Scholar 

  15. Drever BD, Riedel G, Platt B. The cholinergic system and hippocampal plasticity. Behavioural brain Res. 2011;221:505–14.

    Article  CAS  Google Scholar 

  16. Gilad GM. The stress-induced response of the septo-hippocampal cholinergic system. A vectorial outcome of psychoneuroendocrinological interactions. Psychoneuroendocrinology. 1987;12:167–84.

    Article  CAS  PubMed  Google Scholar 

  17. Gilad GM, Gilad VH, Tizabi Y. Aging and stress-induced changes in choline and glutamate uptake in hippocampus and septum of two rat strains differing in longevity and reactivity to stressors. International journal of developmental neuroscience: the official journal of the International Society for. Developmental Neurosci. 1990;8:709–13.

    Article  CAS  Google Scholar 

  18. Yamaguchi T, Danjo T, Pastan I, Hikida T, Nakanishi S. Distinct roles of segregated transmission of the septo-habenular pathway in anxiety and fear. Neuron. 2013;78:537–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Frotscher M, Vida I, Bender R. Evidence for the existence of non-GABAergic, cholinergic interneurons in the rodent hippocampus. Neuroscience. 2000;96:27–31.

    Article  CAS  PubMed  Google Scholar 

  20. Yi F, Catudio-Garrett E, Gabriel R, Wilhelm M, Erdelyi F, Szabo G, et al. Hippocampal “cholinergic interneurons” visualized with the choline acetyltransferase promoter: anatomical distribution, intrinsic membrane properties, neurochemical characteristics, and capacity for cholinergic modulation. Front synaptic Neurosci. 2015;7:4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Masiulis I, Yun S, Eisch AJ. The interesting interplay between interneurons and adult hippocampal neurogenesis. Mol Neurobiol. 2011;44:287–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kolisnyk B, Guzman MS, Raulic S, Fan J, Magalhaes AC, Feng G, et al. ChAT-ChR2-EYFP mice have enhanced motor endurance but show deficits in attention and several additional cognitive domains. J Neurosci. 2013;33:10427–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Robinson J, Manseau F, Ducharme G, Amilhon B, Vigneault E, El Mestikawy S, et al. Optogenetic activation of septal glutamatergic neurons drive hippocampal theta rhythms. J Neurosci. 2016;36:3016–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Crouse RB, Kim K, Batchelor HM, Girardi EM, Kamaletdinova R, Chan J et al. Acetylcholine is released in the basolateral amygdala in response to predictors of reward and enhances the learning of cue-reward contingency. Elife 2020;9:e57335.

  25. Crawley JN. Behavioral phenotyping strategies for mutant mice. Neuron. 2008;57:809–18.

    Article  CAS  PubMed  Google Scholar 

  26. Chen E, Lallai V, Sherafat Y, Grimes NP, Pushkin AN, Fowler JP, et al. Altered baseline and nicotine-mediated behavioral and cholinergic profiles in chat-cre mouse lines. J Neurosci. 2018;38:2177–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cope ZA, Lavadia ML, Joosen AJM, van de Cappelle CJA, Lara JC, Huval A et al. Converging evidence that short-active photoperiod increases acetylcholine signaling in the hippocampus. Cogn, affect & behav neurosci. 2020;20:1173–83

  28. Picciotto MR, Higley MJ, Mineur YS. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron. 2012;76:116–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Neugebauer NM, Einstein EB, Lopez MB, McClure-Begley TD, Mineur YS, Picciotto MR. Morphine dependence and withdrawal induced changes in cholinergic signaling. Pharmacol, Biochem, Behav. 2013;109:77–83.

    Article  CAS  Google Scholar 

  30. Harrison V, Mackenzie, Ross S. Anxiety and depression following cumulative low-level exposure to organophosphate pesticides. Environ Res. 2016;151:528–36.

    Article  CAS  PubMed  Google Scholar 

  31. Jaga K, Dharmani C. The interrelation between organophosphate toxicity and the epidemiology of depression and suicide. Rev Environ Health. 2007;22:57–73.

    Article  CAS  PubMed  Google Scholar 

  32. Imperato A, Puglisi-Allegra S, Casolini P, Angelucci L. Changes in brain dopamine and acetylcholine release during and following stress are independent of the pituitary-adrenocortical axis. Brain Res. 1991;538:111–7.

    Article  CAS  PubMed  Google Scholar 

  33. Imperato A, Puglisi-Allegra S, Casolini P, Zocchi A, Angelucci L. Stress-induced enhancement of dopamine and acetylcholine release in limbic structures: role of corticosterone. Eur J Pharmacol. 1989;165:337–8.

    Article  CAS  PubMed  Google Scholar 

  34. Mineur YS, Obayemi A, Wigestrand MB, Fote GM, Calarco CA, Li AM, et al. Cholinergic signaling in the hippocampus regulates social stress resilience and anxiety- and depression-like behavior. Proc Natl Acad Sci USA. 2013;110:3573–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sternfeld M, Shoham S, Klein O, Flores-Flores C, Evron T, Idelson GH, et al. Excess “read-through” acetylcholinesterase attenuates but the “synaptic” variant intensifies neurodeterioration correlates. Proc Natl Acad Sci USA. 2000;97:8647–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Woolf NJ. Cholinergic systems in mammalian brain and spinal cord. Prog Neurobiol. 1991;37:475–524.

    Article  CAS  PubMed  Google Scholar 

  37. Di Liberto V, Frinchi M, Verdi V, Vitale A, Plescia F, Cannizzaro C, et al. Anxiolytic effects of muscarinic acetylcholine receptors agonist oxotremorine in chronically stressed rats and related changes in BDNF and FGF2 levels in the hippocampus and prefrontal cortex. Psychopharmacology. 2017;234:559–73.

    Article  PubMed  CAS  Google Scholar 

  38. Mineur YS, Mose TN, Blakeman S, Picciotto MR. Hippocampal alpha7 nicotinic ACh receptors contribute to modulation of depression-like behaviour in C57BL/6J mice. Br J Pharmacol. 2018;175:1903–14.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang Y, Jiang YY, Shao S, Zhang C, Liu FY, Wan Y, et al. Inhibiting medial septal cholinergic neurons with DREADD alleviated anxiety-like behaviors in mice. Neurosci Lett. 2017;638:139–44.

    Article  CAS  PubMed  Google Scholar 

  40. Manvich DF, Webster KA, Foster SL, Farrell MS, Ritchie JC, Porter JH, et al. The DREADD agonist clozapine N-oxide (CNO) is reverse-metabolized to clozapine and produces clozapine-like interoceptive stimulus effects in rats and mice. Sci Rep. 2018;8:3840.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Packer AM, Roska B, Hausser M. Targeting neurons and photons for optogenetics. Nat Neurosci. 2013;16:805–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Degroot A, Treit D. Anxiety is functionally segregated within the septo-hippocampal system. Brain Res. 2004;1001:60–71.

    Article  CAS  PubMed  Google Scholar 

  43. Menard J, Treit D. Lateral and medial septal lesions reduce anxiety in the plus-maze and probe-burying tests. Physiol Behav. 1996;60:845–53.

    Article  CAS  PubMed  Google Scholar 

  44. Moor E, DeBoer P, Westerink BH. GABA receptors and benzodiazepine binding sites modulate hippocampal acetylcholine release in vivo. Eur J Pharmacol. 1998;359:119–26.

    Article  CAS  PubMed  Google Scholar 

  45. Pisanello M, Pisano F, Sileo L, Maglie E, Bellistri E, Spagnolo B, et al. Tailoring light delivery for optogenetics by modal demultiplexing in tapered optical fibers. Sci Rep. 2018;8:4467.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Disney AA, Higley MJ. Diverse spatiotemporal scales of cholinergic signaling in the neocortex. J Neurosci. 2020;40:720–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bello SM, Perry MN, Smith CL. Know your model: a knockout does not always make a null. Lab Anim (NY). 2020;49:59–60.

    Article  Google Scholar 

  48. Saunders A, Granger AJ, Sabatini BL. Corelease of acetylcholine and GABA from cholinergic forebrain neurons. Elife 2015;4:e06412.

  49. Trudeau LE, El, Mestikawy S. Glutamate cotransmission in cholinergic, GABAergic and monoamine systems: contrasts and commonalities. Front Neural Circuits. 2018;12:113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Harris JA, Hirokawa KE, Sorensen SA, Gu H, Mills M, Ng LL, et al. Anatomical characterization of Cre driver mice for neural circuit mapping and manipulation. Front Neural Circuits. 2014;8:76.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bruno CA, O’Brien C, Bryant S, Mejaes JI, Estrin DJ, Pizzano C, et al. pMAT: An open-source software suite for the analysis of fiber photometry data. Pharmacol, Biochem, Behav. 2021;201:173093.

    Article  CAS  Google Scholar 

  52. Jean-Richard-Dit-Bressel P, Clifford CWG, McNally GP. Analyzing event-related transients: confidence intervals, permutation tests, and consecutive thresholds. Front Mol Neurosci. 2020;13:14.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

These studies were supported by National Institutes of Health grants MH077681, MH105824 and DA033945 from the National Institutes of Health and a NARSAD Distinguished Investigator grant from the Brain and Behavior Research Foundation. This work was funded in part by the State of Connecticut, Department of Mental Health and Addiction Services, but this publication does not express the views of the Department of Mental Health and Addiction Services or the State of Connecticut. We thank the National Institutes of Health Drug Supply Program for providing CNO.

Author information

Authors and Affiliations

Authors

Contributions

YSM designed, carried out and contributed to all experiments, analyzed data, and wrote the manuscript. TNM, AI, CNM, DCT, MB conducted DREADD experiments, histology, and analyses; LV, RCB conducted optogenetics experiments, histology, and analyses; IME and CO conducted fiber photometry experiments, histology, and analyses; WZ carried out electrophysiological recordings and analyses. MRP designed the study, analyzed outcomes, and wrote the manuscript. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Marina R. Picciotto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mineur, Y.S., Mose, T.N., Vanopdenbosch, L. et al. Hippocampal acetylcholine modulates stress-related behaviors independent of specific cholinergic inputs. Mol Psychiatry 27, 1829–1838 (2022). https://doi.org/10.1038/s41380-021-01404-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01404-7

This article is cited by

Search

Quick links