Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of sensorimotor gating via Disc1/Huntingtin-mediated Bdnf transport in the cortico-striatal circuit

Abstract

Sensorimotor information processing underlies normal cognitive and behavioral traits and has classically been evaluated through prepulse inhibition (PPI) of a startle reflex. PPI is a behavioral dimension deregulated in several neurological and psychiatric disorders, yet the mechanisms underlying the cross-diagnostic nature of PPI deficits across these conditions remain to be understood. To identify circuitry mechanisms for PPI, we performed circuitry recording over the prefrontal cortex and striatum, two brain regions previously implicated in PPI, using wild-type (WT) mice compared to Disc1-locus-impairment (LI) mice, a model representing neuropsychiatric conditions. We demonstrated that the corticostriatal projection regulates neurophysiological responses during the PPI testing in WT, whereas these circuitry responses were disrupted in Disc1-LI mice. Because our biochemical analyses revealed attenuated brain-derived neurotrophic factor (Bdnf) transport along the corticostriatal circuit in Disc1-LI mice, we investigated the potential role of Bdnf in this circuitry for regulation of PPI. Virus-mediated delivery of Bdnf into the striatum rescued PPI deficits in Disc1-LI mice. Pharmacologically augmenting Bdnf transport by chronic lithium administration, partly via phosphorylation of Huntingtin (Htt) serine-421 and its integration into the motor machinery, restored striatal Bdnf levels and rescued PPI deficits in Disc1-LI mice. Furthermore, reducing the cortical Bdnf expression negated this rescuing effect of lithium, confirming the key role of Bdnf in lithium-mediated PPI rescuing. Collectively, the data suggest that striatal Bdnf supply, collaboratively regulated by Htt and Disc1 along the corticostriatal circuit, is involved in sensorimotor gating, highlighting the utility of dimensional approach in investigating pathophysiological mechanisms across neuropsychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The prefrontal cortex and dorsomedial striatum in sensorimotor gating.
Fig. 2: Sensorimotor gating in Disc1 LI mice.
Fig. 3: Deficits in corticostriatal Bdnf transport in Disc1 LI mice.
Fig. 4: Lithium-mediated augmentation of Bdnf transport can rescue PPI deficits in Disc1 LI mice.
Fig. 5: Lithium upregulates Htt Ser-421 phosphorylation and enhances assembly of the Bdnf transport machinery in Disc1 LI mice.

Similar content being viewed by others

References

  1. First MB. The importance of developmental field trials in the revision of psychiatric classifications. Lancet Psychiatry. 2016;3:579–84.

    Article  PubMed  Google Scholar 

  2. Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry. 2010;167:748–51.

    Article  PubMed  Google Scholar 

  3. Swerdlow NR, Braff DL, Masten VL, Geyer MA. Schizophrenic-like sensorimotor gating abnormalities in rats following dopamine infusion into the nucleus accumbens. Psychopharmacology. 1990;101:414–20.

    Article  CAS  PubMed  Google Scholar 

  4. Braff DL, Geyer MA, Swerdlow NR. Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology. 2001;156:234–58.

    Article  CAS  PubMed  Google Scholar 

  5. Swerdlow NR, Paulsen J, Braff DL, Butters N, Geyer MA, Swenson MR. Impaired prepulse inhibition of acoustic and tactile startle response in patients with Huntington’s disease. J Neurol Neurosurg Psychiatry. 1995;58:192–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Amann LC, Gandal MJ, Halene TB, Ehrlichman RS, White SL, McCarren HS, et al. Mouse behavioral endophenotypes for schizophrenia. Brain Res Bull. 2010;83:147–61.

    Article  PubMed  Google Scholar 

  7. Fradley RL, O’Meara GF, Newman RJ, Andrieux A, Job D, Reynolds DS. STOP knockout and NMDA NR1 hypomorphic mice exhibit deficits in sensorimotor gating. Behavioural Brain Res. 2005;163:257–64.

    Article  CAS  Google Scholar 

  8. Niwa M, Jaaro-Peled H, Tankou S, Seshadri S, Hikida T, Matsumoto Y, et al. Adolescent stress-induced epigenetic control of dopaminergic neurons via glucocorticoids. Science. 2013;339:335–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Svenningsson P, Tzavara ET, Carruthers R, Rachleff I, Wattler S, Nehls M, et al. Diverse psychotomimetics act through a common signaling pathway. Science. 2003;302:1412–5.

    Article  CAS  PubMed  Google Scholar 

  10. Baldan Ramsey LC, Xu M, Wood N, Pittenger C. Lesions of the dorsomedial striatum disrupt prepulse inhibition. Neuroscience. 2011;180:222–8.

    Article  CAS  PubMed  Google Scholar 

  11. Schwabe K, Koch M. Role of the medial prefrontal cortex in N-methyl-D-aspartate receptor antagonist induced sensorimotor gating deficit in rats. Neurosci Lett. 2004;355:5–8.

    Article  CAS  PubMed  Google Scholar 

  12. Blackwood DH, Fordyce A, Walker MT, St Clair DM, Porteous DJ, Muir WJ. Schizophrenia and affective disorders-cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am J Hum Genet. 2001;69:428–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brandon NJ, Sawa A. Linking neurodevelopmental and synaptic theories of mental illness through DISC1. Nat Rev Neurosci. 2011;12:707–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tomoda T, Sumitomo A, Jaaro-Peled H, Sawa A. Utility and validity of DISC1 mouse models in biological psychiatry. Neuroscience. 2016;321:99–107.

    Article  CAS  PubMed  Google Scholar 

  15. Tanaka M, Ishizuka K, Nekooki-Machida Y, Endo R, Takashima N, Sasaki H, et al. Aggregation of scaffolding protein DISC1 dysregulates phosphodiesterase 4 in Huntington’s disease. J Clin Investig. 2017;127:1438–50.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bae BI, Xu H, Igarashi S, Fujimuro M, Agrawal N, Taya Y, et al. p53 mediates cellular dysfunction and behavioral abnormalities in Huntington’s disease. Neuron. 2005;47:29–41.

    Article  CAS  PubMed  Google Scholar 

  17. Menalled LB, Chesselet MF. Mouse models of Huntington’s disease. Trends Pharmacol Sci. 2002;23:32–39.

    Article  CAS  PubMed  Google Scholar 

  18. Gauthier LR, Charrin BC, Borrell-Pages M, Dompierre JP, Rangone H, Cordelieres FP, et al. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell. 2004;118:127–38.

    Article  CAS  PubMed  Google Scholar 

  19. Manning EE, van den Buuse M. BDNF deficiency and young-adult methamphetamine induce sex-specific effects on prepulse inhibition regulation. Front Cell Neurosci. 2013;7:92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Altar CA, Cai N, Bliven T, Juhasz M, Conner JM, Acheson AL, et al. Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature 1997;389:856–60.

    Article  CAS  PubMed  Google Scholar 

  21. Altar CA, DiStefano PS. Neurotrophin trafficking by anterograde transport. Trends Neurosci. 1998;21:433–7.

    Article  CAS  PubMed  Google Scholar 

  22. Conner JM, Lauterborn JC, Gall CM. Anterograde transport of neurotrophin proteins in the CNS-a reassessment of the neurotrophic hypothesis. Rev Neurosci. 1998;9:91–103.

    Article  CAS  PubMed  Google Scholar 

  23. Shahani N, Seshadri S, Jaaro-Peled H, Ishizuka K, Hirota-Tsuyada Y, Wang Q, et al. DISC1 regulates trafficking and processing of APP and Abeta generation. Mol Psychiatry. 2015;20:874–9.

    Article  CAS  PubMed  Google Scholar 

  24. Seshadri S, Faust T, Ishizuka K, Delevich K, Chung Y, Kim SH, et al. Interneuronal DISC1 regulates NRG1-ErbB4 signalling and excitatory-inhibitory synapse formation in the mature cortex. Nat Commun. 2015;6:10118.

    Article  CAS  PubMed  Google Scholar 

  25. Dzirasa K, Fuentes R, Kumar S, Potes JM, Nicolelis MA. Chronic in vivo multi-circuit neurophysiological recordings in mice. J Neurosci Methods. 2011;195:36–46.

    Article  PubMed  Google Scholar 

  26. Sumitomo A, Yukitake H, Hirai K, Horike K, Ueta K, Chung Y, et al. Ulk2 controls cortical excitatory-inhibitory balance via autophagic regulation of p62 and GABAA receptor trafficking in pyramidal neurons. Hum Mol Genet. 2018;27:3165–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Feierstein CE, Quirk MC, Uchida N, Sosulski DL, Mainen ZF. Representation of spatial goals in rat orbitofrontal cortex. Neuron. 2006;51:495–507.

    Article  CAS  PubMed  Google Scholar 

  28. Zuccato C, Cattaneo E. Role of brain-derived neurotrophic factor in Huntington’s disease. Prog Neurobiol. 2007;81:294–330.

    Article  CAS  PubMed  Google Scholar 

  29. Taya S, Shinoda T, Tsuboi D, Asaki J, Nagai K, Hikita T, et al. DISC1 regulates the transport of the NUDEL/LIS1/14-3-3epsilon complex through kinesin-1. J Neurosci: Off J Soc Neurosci. 2007;27:15–26.

    Article  CAS  Google Scholar 

  30. Flores R 3rd, Hirota Y, Armstrong B, Sawa A, Tomoda T. DISC1 regulates synaptic vesicle transport via a lithium-sensitive pathway. Neurosci Res. 2011;71:71–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Han M, Zhang JC, Yao W, Yang C, Ishima T, Ren Q, et al. Intake of 7,8-Dihydroxyflavone During Juvenile and Adolescent Stages Prevents Onset of Psychosis in Adult Offspring After Maternal Immune Activation. Sci Rep. 2016;6:36087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Baydyuk M, Russell T, Liao GY, Zang K, An JJ, Reichardt LF, et al. TrkB receptor controls striatal formation by regulating the number of newborn striatal neurons. Proc Natl Acad Sci USA. 2011;108:1669–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Baquet ZC, Gorski JA, Jones KR. Early striatal dendrite deficits followed by neuron loss with advanced age in the absence of anterograde cortical brain-derived neurotrophic factor. J Neurosci: Off J Soc Neurosci. 2004;24:4250–8.

    Article  CAS  Google Scholar 

  34. Zala D, Colin E, Rangone H, Liot G, Humbert S, Saudou F. Phosphorylation of mutant huntingtin at S421 restores anterograde and retrograde transport in neurons. Hum Mol Genet. 2008;17:3837–46.

    Article  CAS  PubMed  Google Scholar 

  35. Humbert S, Bryson EA, Cordelieres FP, Connors NC, Datta SR, Finkbeiner S, et al. The IGF-1/Akt pathway is neuroprotective in Huntington’s disease and involves Huntingtin phosphorylation by Akt. Dev Cell. 2002;2:831–7.

    Article  CAS  PubMed  Google Scholar 

  36. Enomoto A, Asai N, Namba T, Wang Y, Kato T, Tanaka M, et al. Roles of disrupted-in-schizophrenia 1-interacting protein girdin in postnatal development of the dentate gyrus. Neuron. 2009;63:774–87.

    Article  CAS  PubMed  Google Scholar 

  37. Kim JY, Duan X, Liu CY, Jang MH, Guo JU, Pow-anpongkul N, et al. DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212. Neuron. 2009;63:761–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Balu DT, Carlson GC, Talbot K, Kazi H, Hill-Smith TE, Easton RM, et al. Akt1 deficiency in schizophrenia and impairment of hippocampal plasticity and function. Hippocampus. 2012;22:230–40.

    Article  CAS  PubMed  Google Scholar 

  39. Luo DZ, Chang CY, Huang TR, Studer V, Wang TW, Lai WS. Lithium for schizophrenia: supporting evidence from a 12-year, nationwide health insurance database and from Akt1-deficient mouse and cellular models. Sci Rep. 2020;10:647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Beaulieu JM, Gainetdinov RR, Caron MG. Akt/GSK3 signaling in the action of psychotropic drugs. Annu Rev Pharmacol Toxicol. 2009;49:327–47.

    Article  CAS  PubMed  Google Scholar 

  41. Beaulieu JM, Marion S, Rodriguiz RM, Medvedev IO, Sotnikova TD, Ghisi V, et al. A beta-arrestin 2 signaling complex mediates lithium action on behavior. Cell. 2008;132:125–36.

    Article  CAS  PubMed  Google Scholar 

  42. Kamiya A, Kubo K, Tomoda T, Takaki M, Youn R, Ozeki Y, et al. A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development. Nat Cell Biol. 2005;7:1167–78.

    Article  PubMed  CAS  Google Scholar 

  43. Geyer MA. The family of sensorimotor gating disorders: comorbidities or diagnostic overlaps? Neurotox Res. 2006;10:211–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Javitt DC, Freedman R. Sensory processing dysfunction in the personal experience and neuronal machinery of schizophrenia. Am J Psychiatry. 2015;172:17–31.

    Article  PubMed  Google Scholar 

  45. Ong JC, Brody SA, Large CH, Geyer MA. An investigation of the efficacy of mood stabilizers in rodent models of prepulse inhibition. J Pharmacol Exp Ther. 2005;315:1163–71.

    Article  CAS  PubMed  Google Scholar 

  46. Curran G, Ravindran A. Lithium for bipolar disorder: a review of the recent literature. Expert Rev Neurother. 2014;14:1079–98.

    Article  CAS  PubMed  Google Scholar 

  47. Moulton CD, Hopkins CW, Bevan-Jones WR. Systematic review of pharmacological treatments for depressive symptoms in Huntington’s disease. Mov Disord: Off J Mov Disord Soc. 2014;29:1556–61.

    Article  CAS  Google Scholar 

  48. Alda M. Lithium in the treatment of bipolar disorder: pharmacology and pharmacogenetics. Mol Psychiatry. 2015;20:661–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gerber DJ, Hall D, Miyakawa T, Demars S, Gogos JA, Karayiorgou M, et al. Evidence for association of schizophrenia with genetic variation in the 8p21.3 gene, PPP3CC, encoding the calcineurin gamma subunit. Proc Natl Acad Sci USA. 2003;100:8993–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Miyakawa T, Leiter LM, Gerber DJ, Gainetdinov RR, Sotnikova TD, Zeng H, et al. Conditional calcineurin knockout mice exhibit multiple abnormal behaviors related to schizophrenia. Proc Natl Acad Sci USA. 2003;100:8987–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pineda JR, Pardo R, Zala D, Yu H, Humbert S, Saudou F. Genetic and pharmacological inhibition of calcineurin corrects the BDNF transport defect in Huntington’s disease. Mol Brain. 2009;2:33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Ehinger Y, Bruyere J, Panayotis N, Abada YS, Borloz E, Matagne V, et al. Huntingtin phosphorylation governs BDNF homeostasis and improves the phenotype of Mecp2 knockout mice. EMBO Mol Med. 2020;12:e10889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR. Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology. 2001;156:117–54.

    Article  CAS  PubMed  Google Scholar 

  54. Ralph-Williams RJ, Lehmann-Masten V, Geyer MA. Dopamine D1 rather than D2 receptor agonists disrupt prepulse inhibition of startle in mice. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol. 2003;28:108–18.

    Article  CAS  Google Scholar 

  55. Rodrigues S, Salum C, Ferreira TL. Dorsal striatum D1-expressing neurons are involved with sensorimotor gating on prepulse inhibition test. J Psychopharmacol. 2017;31:505–13.

    Article  CAS  PubMed  Google Scholar 

  56. Wu YC, Hill RA, Gogos A, van den Buuse M. Sex differences and the role of estrogen in animal models of schizophrenia: interaction with BDNF. Neuroscience. 2013;239:67–83.

    Article  CAS  PubMed  Google Scholar 

  57. Chan CB, Ye K. Sex differences in brain-derived neurotrophic factor signaling and functions. J Neurosci Res. 2017;95:328–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wei YC, Wang SR, Xu XH. Sex differences in brain-derived neurotrophic factor signaling: functions and implications. J Neurosci Res. 2017;95:336–44.

    Article  CAS  PubMed  Google Scholar 

  59. Sullivan JM 3rd, Grant CA, Reker AN, Nahar L, Goeders NE, Nam HW. Neurogranin regulates sensorimotor gating through cortico-striatal circuitry. Neuropharmacology. 2019;150:91–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs Francis Lee, Nicola Cascella, Deqiang Jing and Ravi Tharakan for discussion. We thank Drs Melissa Landek-Salgado, Pamela Talalay and Ann West for critical reading and Ms Yukiko Lema for organizing the paper and figures. We also thank Freeman Hrabowski, Robert and Jane Meyerhoff, and the Meyerhoff Scholarship Program (KDz).

Funding

This work was supported by NIH (MH-094268 Silvio O. Conte center, and MH-092443) (to AS), as well as foundation grants of Stanley (to AS), RUSK/S-R (to AS), NARSAD/BBRF (to AS, and HJ-P) and MSCRF (to AS). This work was also supported by NIH (R37MH073853 and R21MH099479) (to KDz); and DOD/CDMRP (W81XWH-11-1-0269) (to TT). We have uploaded a prior version of this paper on bioRxiv preprint server: https://doi.org/10.1101/497446.

Author information

Authors and Affiliations

Authors

Contributions

HJ-P, KDz, ASa, and TT conceived the studies; HJ-P, SK, DH, ASu, S-HK, SZ, YH-T, DZ, JB, BMK, BH, RF, SN, and ZH carried out experiments and analyzed data; ANE contributed to the design of Disc1-LI mice; TH, WCW, KD, SM, NJB, MT, KI, MDH, and FS provided analytical tools; HJ-P, KDz, ASa, and TT wrote and edited the paper.

Corresponding authors

Correspondence to Kafui Dzirasa, Akira Sawa or Toshifumi Tomoda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaaro-Peled, H., Kumar, S., Hughes, D. et al. Regulation of sensorimotor gating via Disc1/Huntingtin-mediated Bdnf transport in the cortico-striatal circuit. Mol Psychiatry 27, 1805–1815 (2022). https://doi.org/10.1038/s41380-021-01389-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01389-3

Search

Quick links