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A growing body of evidence has emerged demonstrating a pathological link between oxidative stress and schizophrenia.
This evidence identifies oxidative stress as a convergence point or “central hub” for schizophrenia genetic and environmental
risk factors. Here we review the existing experimental and translational research pinpointing the complex dynamics of
oxidative stress mechanisms and their modulation in relation to schizophrenia pathophysiology. We focus on evidence
supporting the crucial role of either redox dysregulation, N-methyl-D-aspartate receptor hypofunction, neuroinflammation or
mitochondria bioenergetics dysfunction, initiating “vicious circles” centered on oxidative stress during neurodevelopment.
These processes would amplify one another in positive feed-forward loops, leading to persistent impairments of the maturation
and function of local parvalbumin-GABAergic neurons microcircuits and myelinated fibers of long-range macrocircuitry. This is
at the basis of neural circuit synchronization impairments and cognitive, emotional, social and sensory deficits characteristic
of schizophrenia. Potential therapeutic approaches that aim at breaking these different vicious circles represent promising
strategies for timely and safe interventions. In order to improve early detection and increase the signal-to-noise ratio for
adjunctive trials of antioxidant, anti-inflammatory and NMDAR modulator drugs, a reverse translation of validated circuitry
approach is needed. The above presented processes allow to identify mechanism based biomarkers guiding stratification of
homogenous patients groups and target engagement required for successful clinical trials, paving the way towards precision
medicine in psychiatry.
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Schizophrenia research faces many challenges due to the
disease complexity and heterogeneity at various levels, from
genetic, pathophysiology to clinical phenomenology and stages.
Early detection and intervention [1] requires mechanism-based
reliable biomarkers that capture circuitry dysfunction, allowing
better patient stratification, disease progression monitoring and
treatment. To this goal, it is essential that experimental research
on animal models is coupled with translational clinical observa-
tions [2]. This review reports attempts to uncover mechanisms
underlying schizophrenia pathophysiology at molecular, circui-
try, system and cognitive levels, and identify novel preventive
and therapeutic measures.
A longstanding pathophysiological approach to schizophrenia

emphasizes the role of abnormal neurodevelopment in relation to
long-term alterations of neural circuits that lead to the emergence
of disease symptoms [3, 4]. Prominent theories associated with the
pathogenesis of schizophrenia include dopamine, glutamate/
NMDA [5, 6], neuroimmune/neuroinflammatory [7], mitochondrial
hypotheses [8], and excessive microglia-mediated synaptic pruning
[9, 10], while deficits in gamma-aminobutyric acid (GABA) system
and myelination are well documented [11, 12]. Oxidative stress

(OxS) has emerged as a “central hub” in schizophrenia pathophy-
siology given the converging evidence from environmental
and genetic studies. They link this physiological process to cardinal
pathological features of the disease including alterations in
both parvalbumin-expressing GABAergic neurons (PV neurons)
(microcircuits) and myelinated macrocircuits [13, 14].
Here, we propose the hypothesis that a dysfunction during

development in either NMDAR-mediated signaling, neuroimmune
regulation, mitochondria function could initiate “vicious circles”
centered on redox dysregulation/OxS, leading to persistent
anomalies of PV neurons and oligodendrocytes and ultimately
to neural synchronization, cognitive, emotional, social and sensory
deficits characteristic of schizophrenia (Fig. 1). The concept
of OxS-driven PV neuron impairment is supported by our
recent study assessing prefrontal PV interneurons in a range of
animal models carrying genetic and/or environmental risk factors
of schizophrenia affecting glutamatergic, dopaminergic, immune
and redox signaling [15]. The present paper expands this by
reviewing the experimental and clinical evidence pinpointing the
complex dynamics of OxS mechanisms and their modulation in
relation to schizophrenia pathophysiology.
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INTERACTIONS BETWEEN REDOX DYSREGULATION AND
OXIDATIVE STRESS
The redox balance between reactive oxygen species (ROS) and
antioxidant systems is critical in the brain, which displays a high
oxidative metabolism, as compared to other organs. Maintenance of
redox homeostasis typically involves the delicate regulation of ROS
by redox systems, with evidence that the glutathione (GSH/GSSG),
thioredoxin and cysteine/cystine redox systems are differentially
modulated under dynamic and non-equilibrium redox conditions
[16]. These systems control redox signaling (i.e.Nrf2 redox-signaling
pathway) and redox-sensing within cells. Notably, redox-sensing
cysteine residues (i.e., thiol switches) provide an orthogonal
control system to modulate activity of cellular and physiological
mechanisms [17]. Severe and chronic unbalance between ROS
and antioxidant systems would lead to oxidative damage on
proteins, lipids and DNA with drastic irreversible effects. However, a
slight redox dysregulation would lead to reversible oxidation of the
thiol switch on redox-sensitive proteins, leading to their functional
modifications. This can alter receptor-(NMDAR) and kinase-mediated
signaling (Fyn kinase), metalloprotease (MMP9) activity, thus
affecting neurotransmission, and cellular proliferation, differentia-
tion, maturation in case of transient redox dysregulation during
development [18]. Below, we will focus on the critical role of GSH,
without discarding that OxS could also result from dysregulation of
other antioxidant systems (thioredoxin [19], peroxiredoxin, sulfor-
edoxin [20]).
Since our first observations on alterations of GSH metabolism

in cerebrospinal fluid of schizophrenic patients in the nineties
[21, 22], evidence that redox dysregulation plays a major role in
psychosis has gained prominence. Data accumulated over the
last decades point to increased OxS (increased lipid and protein
oxidation) and alterations in antioxidant defence systems
(vitamin C and E, catalase and superoxide dismutase) in blood,
plasma cerebrospinal fluid and post-mortem samples of schizo-
phrenia patients [18, 23–27]. Various genes directly involved in
antioxidant systems have been associated with risk for schizo-
phrenia. They include the catalytic (GCLC) [28] and modulatory
(GCLM) [29] subunits of glutamate-cysteine ligase (rate-limiting
synthesizing enzyme of GSH), glutathione-S-transferase [30, 31],
superoxide dismutase-1 [32], nitric oxide synthase [33, 34].

Genetic variations within some of these genes exert strong
functional effects on phenotypes. Thus, carriers of the high-risk
GCLC genotype (GAG trinucleotide repeat polymorphism) exhibit
lower GSH levels in fibroblasts when challenged with OxS [28],
and lower prefrontal GSH levels compared with GCLC low-risk
genotypes [13, 28, 35, 36]. Additional research has revealed
epigenetic alterations in GSH genes in at-risk individuals who
later converted to psychosis [37].
Using in-vivo magnetic resonance spectroscopy, we first

reported decreased GSH levels in prefrontal cortex (PFC) of drug
naive patients [22]. In line with these findings, recent work
has revealed lower levels of GSH in anterior cingulate cortex and
thalamus of schizophrenia patients [38, 39]. Although some
studies with small numbers of subjects did not observe such
decrease [40, 41], recent meta-analyses support a GSH deficit in
anterior cingulate cortex [42, 43]. Interestingly, in early psychosis
patients, low prefrontal GSH levels were associated with high-risk
GCLC genotypes, highlighting GCLC polymorphisms should be
considered in pathology studies of cerebral GSH [36]. In first
episode psychosis, higher GSH prefrontal levels were associated
with favorable prognosis [44]. Reduced levels of GSH in post-
mortem brains of schizophrenia patients have also been reported
[45–47]. In this context, several groups have assessed peripheral
blood GSH levels as a window to understand what occurs in the
brain [36, 48], although it remains unclear whether the reported
changes in peripheral GSH levels are a reflection of the brain ones
(see also caveats of plasma GSH levels analysis in [18] supple-
ment). Recently, we have demonstrated a negative correlation
between high GSH peroxidase (GPx) activity in red blood cells and
low brain GSH levels in male early psychosis patients [36]. As such,
blood GPx activity may reflect central oxidative status, although
these findings require validation in larger cohorts.

VULNERABILITY OF PV NEURONS TO REDOX DYSREGULATION
PV neurons in schizophrenia
One of the most consistent pathological findings in schizophrenia
are anomalies in PV neurons and their associated extracellular
matrix, the perineuronal net (PNN) [49]. Primarily reported in
PV interneurons of the hippocampus (reduced number of
PV-immunoreactive neurons) [50, 51] and dorsolateral PFC (i.e.
abnormal PNN, decreased PV and GAD67 expression) [52],
anomalies have been also observed in other cortical and
subcortical regions [53–58], and cerebellum [59]. Abnormal
function of these diverse PV neurons affects high-frequency
(gamma) neuronal synchronization within brain regions and
cortico-thalamic network dynamic [60, 61], impacting sensory
processing, attention, working memory, learning, social behavior,
fear processing, motor coordination and learning, and contribut-
ing to hyperdopaminergia related to positive symptoms [62–69].
As estrogen interacts extensively with PV neurons [70], the drop
in this hormone at menopause could also possibly contribute via
altered function of these neurons to the increased incidence of
late-onset schizophrenia in women. Thus, PV neuron dysfunction
appears to be a core of schizophrenia pathophysiology. All these
PV neurons are GABAergic inhibitory neurons that can generate
action potentials at very high frequency. Therefore, they require
considerable energy to sustain intense neuronal activity as during
high-frequency synchronization. In this perspective, hemody-
namic signals correlate positively with high gamma oscillations
[71]. Optimal functional performance of mitochondria [72] is
essential to support such strong demand for adenosine tripho-
sphate (ATP) produced by oxidative phosphorylation [73]. This
metabolic process can generate ROS through electron leak, thus
making PV neurons particularly vulnerable to redox imbalance.
One cannot exclude that other micro-circuit-related GABAergic
neurons, including the somatostatin ones [74] as well as
pyramidal cells [75] could be directly or indirectly affected.

Fig. 1 Schematic representation of the concept proposed in this
paper, showing the reciprocal interaction between mitochondria,
NMDAR, neuro-immune system, dopamine on one hand and
the complex redox regulation/oxidative stress (OxS) on the other.
Irrespectively of which is the primary affected system via genetic or
environmental factors, this will trigger during development sub-
sequent vicious circles of OxS that can feed on one another and
drive durably parvalbumin (PV) neurons and myelin impairments
that culminate in the neural synchronization and cognitive deficits
characteristic of schizophrenia.
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Preclinical evidence
Cumulating evidence indicates that PV neurons are indeed
vulnerable to redox dysregulation—stemming from a compro-
mised antioxidant system or ROS overproduction. Although most
preclinical studies have focused on hippocampal and prefrontal PV
interneurons, PV neurons are also affected by redox dysregulation
in other regions, including thalamus reticular nucleus [56, 76],
amygdala [77], globus pallidus [77], inferior colliculus [78]. Overall,
PV neurons are impacted when antioxidant systems (e.g., GSH,
selenoprotein P, catalase, superoxide dismutase) are compromised
[78–80]. In a transgenic mouse expressing low GSH levels (Gclm
KO), we found reduced number of prefrontal and hippocampal PV-
immunoreactive interneurons together with diminished high-
frequency neuronal synchronization [81, 82], reduced number of
PV-immunoreactive neurons in thalamus reticular nucleus together
with altered firing properties [56], thus demonstrating the
functional consequence of a redox dysregulation. In Gclm KO
mice and other models involving a weakened antioxidant capacity,
the OxS is more prominent in PV neurons as compared to other
types of GABAergic or principal neurons [78–80]. Notably, OxS
precedes PV neuron deficits [82] and is accompanied by a
weakening of the PNN enwrapping them [77, 81, 82]. These
alterations are reversed by the antioxidant N-acetyl-cysteine (NAC),
confirming the causal role of OxS. Other works found that
superoxide overproduction by NADPH oxidase (NOX) has deleter-
ious effects on PV neurons, with evidence that NOX inhibition
prevents PV neuron impairment induced by either NMDAR
antagonist [76] or social isolation [83].
Remarkably, we further showed that PV neuron deficit in

anterior cingulate cortex is associated with OxS in a variety of
animal models carrying genetic and/or environmental risks
relevant to diverse etiological aspects of schizophrenia [15].
Specifically, OxS correlates negatively with the integrity of PV
neurons and their PNN [15]. Overall redox dysregulation/OxS
appear as a common pathological mechanism leading to PV
neuron-associated network anomalies in schizophrenia (Fig.1).

Developmental perspective
PV neurons are more susceptible to a redox dysregulation
resulting in OxS during postnatal development rather than later
in life [81, 84]. Indeed, a transient GSH deficit induced by
L-buthionine-(S,R)-sulfoximine during early postnatal life causes
long-term reduction of PV neuron density in anterior cingulate
cortex [85–87]. Likewise, a permanent reduction of PV neuron
density in anterior cingulate cortex of Gclm KO mice occurs
following the administration of GBR-12909 (dopamine re-uptake
inhibitor leading to excess extracellular dopamine level that
generates ROS through its catabolism) during postnatal develop-
ment, but not adulthood [81]. The vulnerability of immature PV
neurons has been associated with the absence of yet fully mature
PNN [81]. Indeed, PNN plays a key role in protecting PV neurons
from OxS [81], but also in promoting their maturation. The
maturation and integrity of PV neurons require incorporation of
the non-cell autonomous homeobox protein Otx2 via its binding
to the PNN [88, 89]. Thus, PV neurons during early postnatal
development are less protected from OxS that also disrupts PNN
formation, leading to long-term impairment of PV maturation and
stabilization of synapses within their networks. The OxS-induced
degradation of aggrecan-enriched PNN is mediated by metallo-
proteinases, including MMP9 [90, 91]. Of note, the mRNA
expression pattern in PV neurons of schizophrenia patients
indicate an immature state [92], including altered expression of
genes regulating cell cycle and apoptosis [93]. Reduced expression
of PV appears mediated in part by epigenetic mechanisms [94, 95].
The implication of redox dysregulation/OxS in the abnormal

development of PV neurons has been further corroborated in
neurodevelopmental animal models of schizophrenia that do not
involve direct manipulation of the redox system. Adult rats with a

neonatal ventral hippocampal lesion display OxS, reduced number
of PV-immunoreactive interneurons, and weakened PNN in medial
PFC which could be prevented through juvenile and adolescence
treatment with NAC, or ebselen [84]. Likewise, early postnatal
injection of ketamine leads in adulthood to OxS and decreased
number of prefrontal PV-immunoreactive interneurons that is
precluded by adolescent NAC treatment [80]. Finally, adult rats
that have received the mitotoxin Methylazoxymethanol Acetate
(MAM) during late gestation show deficits in hippocampal and
prefrontal PV neurons, weakened PNN, and impaired neuronal
synchronization alongside with OxS and decreased brain GSH
levels [15, 96–98]. Moreover, OxS induced by a prenatal stress
slows down the migration of inhibitory interneuron progenitors, a
migration that can be accelerated by antioxidants [99]. Altogether,
these indicate that OxS during development disrupts maturation
and function of PV neuron-associated networks.

Critical period of plasticity
Given that aperture and closure of the critical period of plasticity
involves PV neuron maturation in conjunction with PNN and
myelin formation—all of which are sensitive to disturbances in
redox homeostasis — a redox dysregulation may disrupt critical
periods during neurodevelopment. Thus, the neocortex of mice
remains plastic beyond its typical critical period when redox
dysregulation is restricted to PV neurons [100]. We therefore
speculate that PV neuron-specific regulation of redox state may
play a role in balancing plasticity and stability of cortical networks
during development, relevant to distractibility, basic symptoms
and disorders of the self-perception known to be central to the
phenomenology of schizophrenia. Furthermore, the vulnerability
to stresses is linked to the critical period [101] which is
characterized by immature and not yet fully formed PNN unable
to protect PV neurons from OxS-induced damage [81]. That is, mis-
timed developmental trajectories of brain plasticity stemming
from redox dysregulation may confer susceptibility to environ-
mental stresses and risk for neurodevelopmental disorders such as
schizophrenia [102].

RECIPROCAL INTERACTIONS BETWEEN MITOCHONDRIAL
DYSFUNCTION AND REDOX DYSREGULATION/OXIDATIVE
STRESS
Cumulating evidence exists linking mitochondrial dysfunction
and oxidative phosphorylation generating ROS to schizophrenia
[103–109]. In-vivo 31P-magnetic resonance spectroscopy revealed
direct and compelling evidence for brain bioenergetics abnorm-
ality in schizophrenia patients [110]. This includes altered
expression of mitochondria-related genes in prefrontal layer-III-
PV neurons [111] and of the oxidative phosphorylation pathway
resulting in OxS in interneurons derived from induced pluripotent
stem cells [112]. Acute metabolic stress induced by environ-
mental factors (infection and psychosocial stress) known to be
associated with schizophrenia can trigger pervasive OxS in
neurons [113], leading to mitochondrial dysfunction, which in
turn, generates more ROS and neuronal damage. PV neurons
have high mitochondrial content, due to the energy
demand required to sustain their fast-spiking characteristics. This
renders them particularly susceptible to OxS and mitochondrial
damage [114].

Preclinical evidence
Mice with a deletion of the 22q11.2 locus containing most
proteins expressed in mitochondria [19] show increased cytoplas-
mic 8-oxo-2’-deoxyguanosine (suggesting mitochondrial DNA
oxidation), reduced number of PV-immunoreactive interneurons,
and weakened PNN in anterior cingulate cortex [15]. High 8-oxo-
2’-deoxyguanosine alongside with PV neuron defects is a common
pathological feature in many animal models relevant to
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schizophrenia [15]. Following the blockade of NMDARs during
early postnatal life, mitochondria in prefrontal PV interneurons
show reduced membrane potential and contain high ROS levels
[80]. Moreover, mitochondria can act in concert with parvalbumin
through homeostatic mechanisms to regulate Ca2+ signaling,
buffering and sequestration. Thus, parvalbumin modulates mito-
chondrial volume and dynamics by altering fusion, fission and
mitophagy [115]. In PFC of Gclm KO mice, we identified a novel
molecular mechanism linking mitochondria and OxS-induced PV
neuron impairments. OxS induces upregulation of the microRNA
miR-137 in PV neurons, leading to decreased COX6A2, a subunit of
cytochrome c oxidase complex IV specific to PV neurons, and
to impaired mitophagy with accumulation of damaged mitochon-
dria [116]. Remarkably, the mitochondria-targeted antioxidant,
mitoquinone mesylate (MitoQ), rescues this entire pathological
process.

Clinical evidence
Similar alterations of miR-137, COX6A2, and mitophagy markers
were identified in plasma of early psychosis patients. Exosomal
miR-137 were increased, while COX6A2 and mitophagy markers
decreased. Moreover, higher exosomal miR-137 and lower
COX6A2 levels were associated with weaker EEG 40-Hz auditory
steady-state response. As auditory steady-state response requires
proper PV neuron-related networks [116], these suggest that
alterations of combined miR-137/COX6A2 plasmatic exosomal
levels represent a proxy marker of impairments of cortical PV
neuron microcircuits. These findings allowed to stratify early
psychosis patients in two subgroups: (a) patients “with mitochon-
drial dysfunction” characterized by exosomal high miR-137 and
low COX6A2, presumably representing PV neuron dysfunction
associated with mitochondria and (b) patients “without mitochon-
drial dysfunction” having miR-137 and COX6A2 levels within the
healthy control range. Compared to patients “without mitochon-
drial dysfunction”, those “with mitochondrial dysfunction” exhibit
impaired auditory steady-state response, worse psychopathologi-
cal status, neuro-cognitive performance and global and social
functioning. In this context, it should be noted the robust genetic
association between miR-137 polymorphisms and schizophrenia
in large-scale GWAS studies [117].
Altogether, these results suggest that exosome-based miR-137

and COX6A2 levels are biomarkers of a PV neuron energy
metabolism deficit and gamma oscillation alterations leading to
an excitatory/inhibitory imbalance related to various schizophre-
nia symptoms and functional outcome. This study paves the way
for biomarker-guided treatment targeting mitochondrial impair-
ments in a specific subgroup of patients. It also allows monitoring
the effect of an intervention relying on both peripheral and central
markers. Thus, future stratified clinical trials with mitochondria-
targeted antioxidants are warranted. These novel findings high-
light a compromised mitochondrial function in PV neurons of
schizophrenia patients that may critically act in a feed-forward
regulatory loop contributing to their OxS-driven deficits (Fig. 1).

RECIPROCAL INTERACTIONS BETWEEN NMDA-RECEPTOR
(NMDAR) HYPOFUNCTION AND REDOX DYSREGULATION/
OXIDATIVE STRESS
Compelling evidence supports the hypothesis of a hypofunction of
NMDARs as one mechanism contributing to psychosis and
schizophrenia pathology [6, 118, 119]. Genetic risk factors related
to NMDARs or associated proteins [20, 120, 121] suggest that
hypofunction of NMDARs and mediated signaling pathways could
disrupt normal brain maturation, thus contributing to the
emergence of schizophrenia. The pathological mechanisms asso-
ciated with NMDAR dysfunction during early postnatal develop-
ment have been unveiled by series of preclinical studies pointing
to the involvement of OxS [20]. Transient blockade of NMDARs by

antagonists during early postnatal life causes at adulthood
behavioral phenotypes relevant to schizophrenia [122–124]. Such
perinatal functional disruption of NMDARs causes a persistent
oxidative state of GSH and prominent OxS in prefrontal PV neurons
[80]. This has a long-term impact on PV neurons [125, 126]. But,
NAC alleviates both behavioral anomalies [123] and PV neuron
impairments [80]. Notably, mice lacking the NADH-oxidase-2, an
enzyme that produces superoxide, are resilient to perinatal
ketamine-induced PV neurons defects [126]. A genetic model of
NMDAR hypofunction relevant to schizophrenia, the D-serine
racemase KO mouse which show altered neuronal oscillations
[127], also have reduced number of prefrontal PV interneurons
together with OxS [15], both of which can be prevented by an
early-life NAC treatment (coll. with Joe Coyle, unpublished).
Collectively, these indicate that a disruption of NMDAR function
during postnatal development affects normal maturation of PV
neurons via mechanisms related to OxS [20, 126]. Cortical PV
interneurons undergo an early postnatal and activity-dependent
switch of the GluN2 subunit composition of NMDARs, with GluN2A
becoming more numerous than GluN2B subunits during the time
of maturation of these neurons [128, 129]. We have shown that a
genetic deletion of GluN2A delays the maturation of prefrontal PV
interneurons and PNN, but also reduces the expression of genes
coding for enzymes related to GSH and peroxiredoxin systems [130].
Thus, functional deletion of GluN2A renders PV interneurons
susceptible to an oxidative insult during their critical period of
maturation leading to long-lasting PV neuron/PNN anomalies and
reduced high-frequency neuronal synchrony that are prevented by
NAC [130]. Likewise, a specific deletion of the obligatory
GluN1 subunit of NMDARs in forebrain interneurons, mostly
composed of PV interneurons, leads to increased OxS in PV neurons
following social isolation. This is associated with reduced expression
of genes involved in several antioxidant systems [131]. Indeed,
synaptic NMDAR activity boosts intrinsic antioxidant defenses via
transcriptional control of thioredoxin/peroxiredoxin [132] and GSH
systems, and enhances the synthesis, recycling and utilization of
GSH [133]. This suggests that neurons use NMDAR-mediated
signaling to adjust the strength of antioxidant defenses accordingly
to their activity and metabolic demand, a phenomenon particularly
vital for fast-spiking PV neurons. Noteworthy, deletion of GluN1 also
causes reduced expression of the transcriptional coactivator PGC1-
alpha, which is highly expressed in PV interneurons and is a positive
regulator of the expression of genes implicated in mitochondrial
function and antioxidant defence [131].
On the other side, oxidative conditions negatively and reversibly

modulate NMDAR activity via extracellular redox-sensitive sites
located on GluN1-GuN2A receptors [134, 135] and inhibition of
CaMKII activity [136]. Notably, GSH deficiency induces NMDAR
hypofunction and long-term potentiation impairment [137]. Overall,
the reciprocal interactions between NMDAR hypofunction and redox
dysregulation/OxS can perpetuate vicious feed-forward mechanisms
particularly deleterious for the maturation and function of PV
neurons (Fig. 1).

RECIPROCAL INTERACTIONS BETWEEN NEURO-
INFLAMMATION AND REDOX DYSREGULATION/OXIDATIVE
STRESS
OxS and inflammation are reciprocally interconnected [138] and
can activate each other. Increased inflammation was reported
both in brain and blood of schizophrenia patients [139, 140],
originated by complex interaction between genetic [9, 117]
and environmental risk factors such as perinatal infections [141]
and childhood trauma [142], triggering the release of pro-
inflammatory cytokines that in turn promote free radical produc-
tion. In Gclm KO mice, we have identified a vicious feed-forward
process between OxS and neuro-inflammation occurring early
during brain development, which underlies the long-lasting effect
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on PV neuron/PNN integrity [90]. This pathological mechanism
involves the following sequential steps: 1) activation of the redox-
sensitive metalloproteinase-9 (MMP9) by a redox dysregulation; 2)
shedding of the receptor for advanced glycation end-products
(RAGE) into a soluble part and an intracellular domain which
translocates to the nucleus; 3) activation of the nuclear factor-kB;
and 4) secretion of pro-inflammatory cytokines leading to
microglia activation and further ROS production which in turn
perpetuates OxS-mediated processes from the juvenile stage to
adulthood. Blockade of MMP9 activation during the PV neuron
maturation period (early peripuberty) prevents RAGE shedding,
microglia activation and OxS, and allows normal maturation of
PNN and PV neurons. Translation of these findings to early
psychosis patients revealed elevated soluble RAGE (sRAGE) in the
plasma of patients compared to healthy controls [90], an effect
reversed by NAC [143]. In early psychosis patients with high-risk
GCLC genotypes, this increased level of circulating sRAGE was
associated with low GABA levels in PFC, potentially implying a
central inhibitory/excitatory imbalance linked to shedding of RAGE
and highlighting the importance of the genetic vulnerability to
redox dysregulation [90]. These new findings set a precedent for
mechanistic biomarkers needed for early intervention in psychosis
and suggest that MMP9/RAGE pathway modulation may also lead
to promising drug targets. Summing up, these results support the
concept of reciprocal vicious feed-forward interaction processes
between microglia activation and OxS leading to PV neuron
impairments (Fig. 1).

OXIDATIVE STRESS, DOPAMINE DYSREGULATION AND PV
NEURON IMPAIRMENT IN THE VENTRAL HIPPOCAMPUS
Research using 18F-dopa Positron Emission Tomography (PET)
indicates that clinical high-risk subjects who convert to psychosis
show elevated presynaptic dopamine function in the striatum
[144] at baseline, and a progressive increase in striatal dopamine
function as they transition [145]. This increased dopaminergic
neurotransmission would result in un-sequestered dopamine that
can be neurotoxic through its metabolism to form ROS such as
hydrogen peroxide and quinones [146, 147]. The ensuing OxS has
been implicated in damage to neuronal processes in vitro [148],
consistent with the reduction of dendritic spines observed in
schizophrenia [149, 150].
Preclinical studies (in MAM rat model or via selective manipulation

of PV neurons) have highlighted that PV neuron impairment in
ventral hippocampus/subiculum or thalamus reticular nucleus result
in overactive ventral-subiculum leading to an increased number of
active dopaminergic neurons in the ventral-tegmental-area, which in
turn drive elevated dopamine neurotransmission in the mesolimbic
system [67, 151–153] (Fig. 1). Indeed, as evidenced by the pioneer
works of Grace and collaborators, an increased ventral hippocampal
activity causes the nucleus accumbens to strongly inhibit the ventral
pallidum, which in turn increases the number of spontaneously
active ventral-tegmental-area dopamine neurons [151, 154]. Inter-
estingly in MAM rats, OxS-induced impairments of PV neurons in
thalamus reticular nucleus [56] lead to the disinhibition of the
multisynaptic excitatory pathway “infralimbic-cortex/reuniens/ven-
tral-subiculum”, contributing to the ventral-subiculum hyperactivity
and the consequent dopamine hyperactivity [153]. NAC treatment
prevented the PV deficits in thalamus reticular nucleus and
dopamine dysfunction, suggesting that early antioxidant treatment
might contribute to dopamine normalization in schizophrenia.

MACROCIRCUIT DYSFUNCTION AND REDOX DYSREGULATION
IN RELATION TO DISRUPTED MYELINATION AND WHITE
MATTER INTEGRITY DIFFUSION PROPERTIES
In addition to PV neurons, oligodendrocytes are highly sensitive to
altered redox state [155]. Brain diffusion MRI studies show spatially

widespread white-matter (WM) abnormalities [156, 157] whose
severity increases as the disease progresses [158]. However, from a
topological point of view, WM alterations tend to concentrate
within fibers interconnecting hub regions and comprising the rich
club [159]. The rich club is an organizational property of the brain
network that results from a propensity of central brain regions or
“hubs” to be more likely interconnected among each other than
expected by chance, providing faster routes of transfer and
efficient integration of information between remote and sepa-
rated brain regions [160]. Interestingly, these hub regions which
process large amounts of information have high metabolic
requirements, are characterized by the co-expression of genes
regulating oxidative metabolism, and might be particularly
sensitive to OxS [161]. WM abnormalities typically result from
dystrophic alterations of oligodendrocytes at the ultrastructural,
genetic, epigenetic and molecular levels [162–164]. Similarly to
PV neurons, oligodendrocytes have a high metabolism to build
and maintain the myelin sheets around the axons [165] and
express elevated antioxidant enzymes (catalase and GPx) to
prevent lipid peroxidation [166]. In addition, these glial cells
contain elevated levels of iron needed as co-factor for many
enzymes implicated in myelin synthesis. These glial cells are
therefore particularly vulnerable to OxS. Environmental risk
factors for schizophrenia generating OxS affect maturation
and maintenance of oligodendrocyte integrity [167]. Thus, a
dysregulated homeostasis between energy metabolism and
antioxidant machinery may have deleterious effects on the
maturation, structural and functional integrity of WM [155]. Of
note, oligodendrocytes of schizophrenia patients have reduced
volume and number of mitochondria [164].
From a developmental perspective, cellular redox state plays a

vital role in maintaining the balance between proliferation and
differentiation of oligodendrocyte precursor cells in the developing
CNS, with a more oxidized state associated with their differentiation
whereas a reduced state promotes their proliferation [168–170].
Thus, a redox dysregulation resulting from a GSH deficit modulates
the switch from cell proliferation to early differentiation via alteration
of the Fyn kinase pathway and impairs late differentiation [168, 171].
ROS can also inhibit the mTOR-P70S6K signaling cascade leading to
decreased protein synthesis for proliferation and differentiation
[172]. Of note, post-mortem analysis suggests impaired differentia-
tion of oligodendrocyte precursors in schizophrenia [173]. Likewise,
we found that mice with a GSH deficit (Gclm KO) exhibit reduced
numbers of mature oligodendrocytes and myelin markers, suggest-
ing that dysregulation of Fyn kinase pathway may underlie these
anomalies [168]. In this context, the regulation of Fyn mRNA and
protein expression is impaired in fibroblasts from schizophrenia
patients with genetic risk for GSH deficit [168]. The importance of
GSH is further supported by the positive correlation between
patients GSH levels in PFC and structural WM diffusion properties in
the cingulum bundle [168]. Other evidence linking GSH deficit
to WM stems from a 14 T diffusion MRI longitudinal study on Gclm
KO mice. This revealed reduced fractional anisotropy within
the fornix/fimbria accompanied by a slower conduction velocity
along nerve fibers [174]. Similarly WM diffusion properties were
decreased in fornix of early psychosis patients, in correlation with a
smaller hippocampus volume and elevated blood oxidative status
marker [175].
As for PV neurons, complex reciprocal interactions between

redox dysregulation/OxS, mitochondria, neuroinflammation, and
NMDAR function may generate vicious effects for oligodendro-
cytes (Fig. 1). The differentiation and integrity of oligodendrocytes
require a coordinated regulation of metabolic needs and redox
balance to prevent the deleterious effect of OxS, also triggered by
neuroinflammation. Oligodendrocytes are vulnerable to early-life
neuroinflammation [176, 177] leading to impaired myelination
[167, 172, 178, 179]. As immune targets and regulators,
oligodendrocytes are engaged in multiple cross-talks with
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microglia that include responses to stress which can lead to
myelin damages, but also mechanisms of repair [180].
NMDAR dysfunction may also lead to alterations of WM

diffusion properties. Indeed, stimulation of NMDARs, expressed
in immature and mature oligodendrocytes, promote the matura-
tion of these cells and myelination around axons [181–183], up-
regulates their energy metabolism, increases mitochondria
motility within myelin sheath, and glycolytic support to the axons
[184, 185]. Thus, a dysfunction of NMDARs on oligodendrocytes,
which remains speculative in schizophrenia, affects myelination
and proper regulation of the energy coupling between oligoden-
drocytes and axons. This could be especially detrimental for fast-
spiking neurons such as PV interneurons whose axons are strongly
myelinated [186, 187].

A FOCUS ON REDOX DYSREGULATION IN RELATION TO
CHILDHOOD TRAUMA
Evidence supporting the interplay of genetic and environmental
factors in relation to liability for schizophrenia stems from human
and animal studies. Traumatic experiences occurring during the
critical time of childhood and adolescence favors the develop-
ment of psychiatric disorders associated with psychosis and
cognitive impairments [188, 189]. Supported by studies on
animal models, some symptoms and cognitive deficits may be
directly associated to the deleterious impact of these environ-
mental stresses on PV neurons and oligodendrocytes through
the action of OxS. In rats, stress during adolescence, but not
adulthood, leads to long-term hyperactivity of the dopaminergic
system that is relevant to positive symptoms [190] and is
concomitant to deficits of hippocampal PV interneuron-networks
[101]. Our data suggests this is due to a high vulnerability of PV
interneurons to OxS during childhood and adolescence as
opposed to adulthood [81]. Early-life stress increases OxS in
prefrontal and hippocampal PV interneurons [191]. Goodwill
et al. (2018) [192] also show that early-life stress causes long-
term decreased PV expression and density of PV neurons in
orbitofrontal cortex which result in impaired rule-reversal
learning. Early-life induced persistent decrease of PV expression
in PFC is due to HDAC1-dependent epigenetic mechanisms [94].
Likewise, prepubertal stress exacerbates the effects of a previous
maternal immune challenge leading to significant OxS, deficits in
PV neurons and PNN in PFC [15].
Prenatal stress as well as trauma during childhood and

adolescence also affect WM properties [193–195]. However, the
impact of stress during these developmental periods on
oligodendrocytes is not fully documented. In mice, social isolation
through childhood and adolescence, known to affect PV neurons
through OxS [83], has also persistent effect on oligodendrocyte
morphology and density, and causes reduced expression of
myelin-associated proteins and myelin thickness [196]. Altogether,
this suggests that redox dysregulation/OxS play a role on the
impact of childhood traumatic experiences in patients suffering
from schizophrenia.
With this in mind, we assessed a cohort of early psychosis patients

in which some had been exposed to severe childhood trauma
(sexual and physical abuse). Interestingly, exposure to trauma
(particularly when exposed before age of 12 years) is associated with
severe positive, negative and depressive symptoms, bad functional
and social outcome [197]. This was in contrast to early psychosis
patients exposed to trauma after 12 years of age who mostly
suffered from negative symptoms and had a similar functional
outcome to the non-trauma-exposed early psychosis patients
[197, 198]. Among early psychosis patients exposed to childhood
trauma, we recently identified two separate groups. One group with
high peripheral oxidation status (high GPx activity) displayed smaller
hippocampal volumes and more severe symptoms, while the other
group with lower oxidation status (low GPx activity) showed better

cognition and regulation of GSH- and thioredoxin/peroxiredoxin-
systems [199]. These results suggest that maintained regulation of
various antioxidant systems allows compensatory mechanisms for
mitigating long-term neuroanatomical and clinical impacts. The
redox marker profile may thus be useful to define treatment
strategies at early stages of psychosis.

FROM BENCH TO BEDSIDE: A FOCUS ON CLINICAL TRIALS
WITH N-ACETYL-CYSTEINE (NAC)
New treatment strategies are increasingly interested in antiox-
idant compounds such as NAC [200–202]. NAC is reported to have
beneficial effects on negative symptoms [203–205] and cognition
[205–207] in patients with chronic schizophrenia and with first
psychotic episode [208, 209]. It also improved EEG mismatch
negativity [210] and local synchronization [211]. In a recent
randomized controlled trial on early psychosis patients, we
observed that a 6-month NAC add-on treatment significantly
increased the levels of GSH in PFC, suggesting a good drug-target
engagement [209]. NAC improved neurocognitive-processing
speed in correlation with negative symptoms. Interestingly, our
study found that NAC could also improve positive symptoms but
only in early psychosis patients exhibiting a high blood oxidative
status [209]. We have also shown for the first time that NAC
administration to early psychosis patients improved WM diffusion
properties in fornix. This improvement was correlated with brain
GSH increase [212]. In addition, NAC ameliorated low-level
auditory processing [213] and resting-state functional connectivity
within the cingulum bundle [214]. A single dose monotherapy
with NAC reduced medial frontal resting-state functional con-
nectivity [215]. Taken together, these findings open the gateway
to biomarker-guided therapy. Nonetheless, further longitudinal
studies of antioxidant treatment in larger cohorts of biomarker
selected patients, controlled by target engagement, are required.

POTENTIAL INTERVENTIONS FOR BREAKING THE VICIOUS
CIRCLES OF OXIDATIVE STRESS
Interventions/drugs that aim at breaking the different vicious
circles causing persistent OxS represent promising strategies to
reduce the deleterious effects on PV neurons and myelin-forming
oligodendrocytes [14], and therefore mitigate the emergence or
severity of the disorder. In this context, one should consider
compounds with both anti-oxidative and anti-inflammatory
properties (e.g. NAC, sulforaphane, omega-3 polyunsaturated fatty
acids) [216], molecules targeting specifically mitochondria (e.g.
MitoQ), and positive modulators of NMDAR-mediated signaling
(e.g. D-serine, sarcosine, benzoate, glycine transporter inhibitors)
[217]. The efficacy of these different compound categories may
however differ from patients to patients, according to the timing
of initiation during neurodevelopment of the vicious feedforward
processes that are primarily triggered and the disease stages
(prodrome, first episode or chronic). Biomarker-based approaches,
targeting validated mechanisms, will be essential to identify
individuals more likely to respond to a specific drug in future
clinical trials (Fig. 2).
A question remains: could interventions that manipulate OxS

mechanisms be applied for patients exposed to childhood trauma in
real world clinic setting? In Gclm KO mice, we recently showed that
the sequential combination of NAC treatment and environmental
enrichment applied during the juvenile and adolescent periods
respectively normalizes the integrity and function of PV neuron/PNN
networks induced by an additional oxidative insult during child-
hood, that mimics childhood adverse events that would induce OxS
[143]. NAC, via inhibition of OxS-induced MMP9/RAGE pathway,
interrupts the deleterious feedforward mechanism that maintains
persisting high OxS levels and neuroinflammation, allowing PVI/PNN
maturation (see chapter 5). A subsequent environmental enrichment
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during adolescence promotes the final maturation of PV neurons,
providing a long-term neuroprotection to PV neuron/PNN networks.
Translating to early psychosis patients, a 6-month NAC treatment
reduces plasma sRAGE in association with increased prefrontal
GABA, improvement of working memory, processing speed and
positive symptoms, suggesting similar neuroprotective mechanisms
[143]. Thus, by analogy, in real world clinic, patients exposed to
early-life insults may benefit from a biomarker (sRAGE/MMP9)-
guided antioxidant treatment combined with the equivalent of
“environmental enrichment”, which could include physical training,
nutrition, social activities and psychotherapy.

CONCLUSION
Collectively the above data support the view that the various
genetic and environmental factors impinging on one or more
pathological mechanisms involved in schizophrenia, namely
anomalies in mitochondria and energy metabolism, NMDAR
hypofunction, neuroinflammation will ultimately impair redox
regulation leading to OxS and its deleterious consequence on PV
neurons and oligodendrocytes. As shown for PV neurons, a redox
dysregulation can in turn further promote NMDAR hypofunction,
mitochondrial impairment, and neuroinflammation in feed-
forward vicious circles that perpetuate the persistence of OxS
and long-term impact on these highly metabolic cells. Eventually,
a primary dysfunction of NMDARs, or neuroinflammation, or
mitochondrial dysfunction, or impaired regulation of antioxidant
systems could involve in turn the other vicious circles, all
converging to common deleterious impacts on PV neurons and
oligodendrocytes during neurodevelopment (Fig. 1). In addition to
psychotic disorders and schizophrenia, the proposed mechanisms

may also be applied to other psychiatric diseases including autism
and bipolar disorder.
By adopting the reverse translation of validated circuitry-

relevant human endpoints approach [2], we provide convincing
proof-of-concept for targeting OxS through antioxidant-based
strategies in individuals with schizophrenia and underscore the
importance of “breaking” the various vicious circles associated
with OxS as means to prevent the propagation of processes that
may precede the onset of disease. To improve early detection
and increase the signal-to-noise ratio for adjunctive trials of
antioxidants, anti-inflammatory and NMDAR modulator drugs,
the above presented processes allow to identify mechanism-
based biomarkers guiding stratification of homogenous patients
groups and target engagement required for successful clinical
trials, paving the way towards precision medicine in psychiatry
[90, 116, 143, 209, 212]. Presently, it is not easy to interfere with
the genetic component of the disease nor fully prevent the
impact of environmental factors. Thus, acting early during
development on the vicious circles leading to lasting OxS might
be a rewarding strategy to reduce its consequences on key
functions of micro- and macro-circuits impairments and their
clinical manifestations.
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