Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatial and temporal dynamics of HDACs class IIa following mild traumatic brain injury in adult rats

Abstract

The fundamental role of epigenetic regulatory mechanisms involved in neuroplasticity and adaptive responses to traumatic brain injury (TBI) is gaining increased recognition. TBI-induced neurodegeneration is associated with several changes in the expression-activity of various epigenetic regulatory enzymes, including histone deacetylases (HDACs). In this study, PET/CT with 6-([18F]trifluoroacetamido)−1- hexanoicanilide ([18F]TFAHA) to image spatial and temporal dynamics of HDACs class IIa expression-activity in brains of adult rats subjected to a weight drop model of diffuse, non-penetrating, mild traumatic brain injury (mTBI). The mTBI model was validated by histopathological and immunohistochemical analyses of brain tissue sections for localization and magnitude of expression of heat-shock protein-70 kDa (HSP70), amyloid precursor protein (APP), cannabinoid receptor-2 (CB2), ionized calcium-binding adapter protein-1 (IBA1), histone deacetylase-4 and −5 (HDAC4 and HDAC5). In comparison to baseline, the expression-activities of HDAC4 and HDAC5 were downregulated in the hippocampus, nucleus accumbens, peri-3rd ventricular part of the thalamus, and substantia nigra at 1–3 days post mTBI, and remained low at 7–8 days post mTBI. Reduced levels of HDAC4 and HDAC5 expression observed in neurons of these brain regions post mTBI were associated with the reduced nuclear and neuropil levels of HDAC4 and HDAC5 with the shift to perinuclear localization of these enzymes. These results support the rationale for the development of therapeutic strategies to upregulate expression-activity of HDACs class IIa post-TBI. PET/CT (MRI) with [18F]TFAHA can facilitate the development and clinical translation of unique therapeutic approaches to upregulate the expression and activity of HDACs class IIa enzymes in the brain after TBI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PET/CT images of the rat brain at 20–30 min post [18F]TFAHA administration obtained at baseline, 1–3 days, and 7–8 days post-TBI.
Fig. 2: Changes in [18F]TFAHA accumulation in different structures of the rat brain at baseline and different days post TBI in peri-3rd ventricular thalamic gray matter (PTG), n. accumbens, hippocampus, and substantia nigra.
Fig. 3: Expression of HDAC4 in the rat hippocampus at baseline, 1–3 days, and 7–8 days post-TBI, visualized by IHC.
Fig. 4: Expression of HDAC4 and HDAC5 in the paraventricular thalamic nucleus in the rat brain.
Fig. 5: Expression of HDAC5 in the rat hippocampus at baseline, 1–3 days, and 7-8 days post-TBI, visualized by IHC.
Fig. 6: The ratio of cytoplasmic vs nuclear localization/expression levels of HDAC4 and HDAC5 in different structures of the rat brain.

Similar content being viewed by others

References

  1. Peterson AB, Xu L, Daugherty J, Breiding MJ. Surveillance report of traumatic brain injury-related emergency department visits, hospitalizations, and deaths. Center for Disease Control and Prevention; United States: U.S. Department of Health and Human Services, 2019.

  2. Hammond FM, Giacino JT, Nakase Richardson R, Sherer M, Zafonte RD, Whyte J, et al. Disorders of consciousness due to traumatic brain injury: functional status ten years post-injury. J Neurotrauma. 2019;36:1136–46.

    Article  PubMed  Google Scholar 

  3. Holzer KJ, Carbone JT, DeLisi M, Vaughn MG. Traumatic brain injury and coextensive psychopathology: New evidence from the 2016 Nationwide Emergency Department Sample (NEDS). J Psychiatry Res. 2019;114:149–52.

    Article  Google Scholar 

  4. MacGregor AJ, Dougherty AL, Galarneau MR. Injury-specific correlates of combat-related traumatic brain injury in operation Iraqi freedom. J Head Trauma Rehabil. 2011;26:312–18.

    Article  PubMed  Google Scholar 

  5. Rigg JL, Mooney SR. Concussions and the military: Issues specific to service members. PMR. 2011;3:S380–6.

  6. Hoge CW, McGurk D, Thomas JL, Cox AL, Engel CC, Castro CA. Mild traumatic brain injury in U.S. soldiers returning from Iraq. N Engl J Med. 2008;358:453–63.

    Article  CAS  PubMed  Google Scholar 

  7. Schneiderman AI, Braver ER, Kang HK. Understanding sequelae of injury mechanisms and mild traumatic brain injury incurred during the conflicts in Iraq and Afghanistan: persistent postconcussive symptoms and posttraumatic stress disorder. Am J Epidemiol. 2008;167:1446–52.

    Article  PubMed  Google Scholar 

  8. Kennedy JE, Leal FO, Lewis JD, Cullen MA, Amador RR. Posttraumatic stress symptoms in OIF/OEF servicemembers with blast-related and non-blast-related mild TBI. NeuroRehabilitation. 2010;26:223–31.

    Article  PubMed  Google Scholar 

  9. Hill JJ, Mobo BHP, Cullen MR. Separating deployment-related traumatic brain injury and posttraumatic stress disorder in veterans: preliminary findings from the Veterans Affairs traumatic brain injury screening program. Am J Phys Med Rehabil. 2009;88:605–14.

    Article  PubMed  Google Scholar 

  10. Carlson KF, Nelson D, Orazem RJ, Nugent S, Cifu DX, Sayer NA. Psychiatric diagnoses among Iraq and Afghanistan war veterans screened for deployment-related traumatic brain injury. J Trauma Stress. 2010;23:17–24.

    Article  PubMed  Google Scholar 

  11. Belanger HG, Uomoto JM, Vanderploeg RD. The veterans health administration system of care for mild traumatic brain injury: costs, benefits, and controversies. J Head Trauma Rehabil. 2009;24:4–13.

    Article  PubMed  Google Scholar 

  12. Chodobski A, Zink BJ, Szmydynger-Chodobska J. Blood-brain barrier pathophysiology in traumatic brain injury. Transl Stroke Res. 2011;2:492–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hemphill MA, Dauth S, Yu CJ, Dabiri BE, Parker KK. Traumatic brain injury and the neuronal microenvironment: A potential role for neuropathological mechanotransduction. Neuron. 2015;85:1177–92.

    Article  CAS  PubMed  Google Scholar 

  14. VSSS Sajja, Hlavac N, VandeVord PJ. Role of glia in memory deficits following traumatic brain injury: Biomarkers of glia dysfunction. Front Integr Neurosci. 2016;10:7.

    Google Scholar 

  15. Wong VS, Langley B. Epigenetic changes following traumatic brain injury and their implications for outcome, recovery and therapy. Neurosci Lett. 2016;625:26–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shein NA, Shohami E. Histone deacetylase inhibitors as therapeutic agents for acute central nervous system injuries. Mol Med. 2011;17:448–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kiefer JC. Epigenetics in development. Dev Dyn. 2007;236:1144–56.

    Article  CAS  PubMed  Google Scholar 

  18. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;293:1089–93.

    Article  CAS  PubMed  Google Scholar 

  19. Majdzadeh N, Morrison BE, D’Mello SR. Class IIA HDACs in the regulation of neurodegeneration. Front Biosci. 2008;13:1072–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Seto E, Yoshida M. Erasers of histone acetylation: The histone deacetylase enzymes. Cold Spring Harb Perspect Biol. 2014;6:a018713, 1–26.

  21. Qureshi IA, Mehler MF. Understanding neurological disease mechanisms in the era of epigenetics. JAMA Neurol. 2013;70:703–10.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hahnen E, Hauke J, Tränkle C, Eyüpoglu IY, Wirth B, Blümcke I. Histone deacetylase inhibitors: possible implications for neurodegenerative disorders. Expert Opin Investig Drugs. 2008;17:169–84.

    Article  CAS  PubMed  Google Scholar 

  23. Jin K, Mao XO, Simon RP, Greenberg DA. Cyclic AMP response element-binding protein (CREB) and CREB binding protein (CBP) in global cerebral ischemia. J Mol Neurosci. 2001;16:49–56.

    Article  CAS  PubMed  Google Scholar 

  24. Rouaux C, Jokic N, Mbebi C, Boutillier S, Loeffler JP, Boutillier AL. Critical loss of CBP/p300 histone acetylase activity by caspase-6 during neurodegeneration. EMBO J. 2003;22:6537–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gibson CL, Murphy SP. Benefits of histone deacetylase inhibitors for acute brain injury: A systematic review of animal studies. J Neurochem. 2010;115:806–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dash PK, Orsi SA, Zhang M, Grill RJ, Patil S, Zhao J, et al. Valproate administered after traumatic brain injury provides neuroprotection and improves cognitive function in rats. PLoS ONE. 2010;5:e11383, 1–13.

  27. Kozikowski AP, Chen Y, Gaysin A, Chen B, D’Annibale MA, Suto CM, et al. Functional differences in epigenetic modulators - Superiority of mercaptoacetamide-based histone deacetylase inhibitors relative to hydroxamates in cortical neuron neuroprotection studies. J Med Chem. 2007;50:3054–61.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang B, West EJ, Van KC, Gurkoff GG, Zhou J, Zhang XM, et al. HDAC inhibitor increases histone H3 acetylation and reduces microglia inflammatory response following traumatic brain injury in rats. Brain Res. 2008;1226:181–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nikolian VC, Dennahy IS, Weykamp M, Williams AM, Bhatti UF, Eidy H, et al. Isoform 6-selective histone deacetylase inhibition reduces lesion size and brain swelling following traumatic brain injury and hemorrhagic shock in. J Trauma Acute Care Surg. 2019;86:232–9.

    Article  CAS  PubMed  Google Scholar 

  30. Golay J, Cuppini L, Leoni F, Micò C, Barbui V, Domenghini M, et al. The histone deacetylase inhibitor ITF2357 has anti-leukemic activity in vitro and in vivo and inhibits IL-6 and VEGF production by stromal cells. Leukemia. 2007;21:1892–1900.

    Article  CAS  PubMed  Google Scholar 

  31. Shein NA, Grigoriadis N, Alexandrovich AG, Simeonidou C, Lourbopoulos A, Polyzoidou E, et al. Histone deacetylase inhibitor ITF2357 is neuroprotective, improves functional recovery, and induces glial apoptosis following experimental traumatic brain injury. FASEB J. 2009;23:4266–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang H, Ni W, Jiang H, Lei Y, Su J, Gu Y, et al. Histone deacetylase inhibitor Scriptaid alleviated neurological dysfunction after experimental intracerebral hemorrhage in mice. Behav Neurol. 2018;2018:6583267. https://doi.org/10.1155/2018/6583267.

  33. Wang G, Shi Y, Jiang X, Leak RK, Hu X, Wu Y, et al. HDAC inhibition prevents white matter injury by modulating microglia/macrophage polarization through the GSK3β/PTEN/Akt axis. Proc Natl Acad Sci USA. 2015;112:2853–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang G, Jiang X, Pu H, Zhang W, An C, Hu X, et al. Scriptaid, a novel histone deacetylase inhibitor, protects against traumatic brain injury via modulation of PTEN and AKT pathway: scriptaid protects against TBI via AKT. Neurotherapeutics. 2013;10:124–42.

    Article  PubMed  CAS  Google Scholar 

  35. Lu J, Frerich JM, Turtzo LC, Li S, Chiang J, Yang C, et al. Histone deacetylase inhibitors are neuroprotective and preserve NGF-mediated cell survival following traumatic brain injury. Proc Natl Acad Sci USA. 2013;110:10747–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gaub P, Tedeschi A, Puttagunta R, Nguyen T, Schmandke A, Di Giovanni S. HDAC inhibition promotes neuronal outgrowth and counteracts growth cone collapse through CBP/p300 and P/CAF-dependent p53 acetylation. Cell Death Differ. 2010;17:1392–408.

    Article  CAS  PubMed  Google Scholar 

  37. Levenson JM, Sweatt JD. Epigenetic mechanisms in memory formation. Nat Rev Neurosci. 2005;6:108–18.

    Article  CAS  PubMed  Google Scholar 

  38. Vecsey CG, Hawk JD, Lattal KM, Stein JM, Fabian SA, Attner MA, et al. Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB: CBP-dependent transcriptional activation. J Neurosci. 2007;27:6128–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bradner JE, West N, Grachan ML, Greenberg EF, Haggarty SJ, Warnow T, et al. Chemical phylogenetics of histone deacetylases. Nat Chem Biol. 2010;6:238–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim MS, Akhtar M, Adachi M, Mahgoub M, Bassel-Duby R, Kavalali ET, et al. An essential role for histone deacetylase 4 in synaptic plasticity and memory formation. J Neurosci. 2012;32:10879–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cho Y, Sloutsky R, Naegle KM, Cavalli V. Injury-Induced HDAC5 nuclear export is essential for axon regeneration. Cell. 2013;155:894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sando R, Gounko N, Pieraut S, Liao L, Yates J, Maximov A. HDAC4 governs a transcriptional program essential for synaptic plasticity and memory. Cell. 2012;151:821–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Agis-Balboa RC, Pavelka Z, Kerimoglu C, Fischer A. Loss of HDAC5 impairs memory function: Implications for Alzheimer’s disease. J Alzheimer’s Dis. 2013;33:35–44.

    Article  CAS  Google Scholar 

  44. Saha P, Gupta R, Sen T, Sen N. Histone deacetylase 4 downregulation elicits post-traumatic psychiatric disorders through impairment of neurogenesis. J Neurotrauma. 2019;36:3284–96.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sagarkar S, Balasubramanian N, Mishra S, Choudhary AG, Kokare DM, Sakharkar AJ. Repeated mild traumatic brain injury causes persistent changes in histone deacetylase function in hippocampus: implications in learning and memory deficits in rats. Brain Res. 2019;1711:183–92.

    Article  CAS  PubMed  Google Scholar 

  46. Bonomi R, Mukhopadhyay U, Shavrin A, Yeh HH, Majhi A, Dewage SW, et al. Novel histone deacetylase class IIa selective substrate radiotracers for PET imaging of epigenetic regulation in the brain. PLoS ONE. 2015;10:e0133512, 1–19.

  47. Abd-Elfattah Foda MA, Marmarou A. A new model of diffuse brain injury in rats. Part II: Morphological characterization. J Neurosurg. 1994;80:301–13.

    Article  Google Scholar 

  48. Cernak I. Animal models of head trauma. NeuroRx. 2005;2:410–22.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bodnar CN, Roberts KN, Higgins EK, Bachstetter AD. A systematic review of closed head injury models of mild traumatic brain injury in mice and rats. J Neurotrauma. 2019;36:1683–706.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Folkerts MM, Berman RF, Muizelaar JP, Rafols JA. Disruption of MAP-2 immunostaining in rat hippocampus after traumatic brain injury. J Neurotrauma. 1998;15:349–63.

    Article  CAS  PubMed  Google Scholar 

  51. Kallakuri S, Cavanaugh JM, Özaktay AC, Takebayashi T. The effect of varying impact energy on diffuse axonal injury in the rat brain: a preliminary study. Exp Brain Res. 2003;148:419–24.

    Article  PubMed  Google Scholar 

  52. Li Y, Zhang L, Kallakuri S, Zhou R, Cavanaugh JM. Quantitative relationship between axonal injury and mechanical response in a Rodent head impact acceleration model. J Neurotrauma. 2011;28:1767–82.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kallakuri S, Bandaru S, Zakaria N, Shen Y, Kou Z, Zhang L, et al. Traumatic brain injury by a closed head injury device induces cerebral blood flow changes and microhemorrhages. J Clin Imaging Sci. 2015;5:52.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Li Y, Zhang L, Kallakuri S, Cohen A, Cavanaugh JM. Correlation of mechanical impact responses and biomarker levels: a new model for biomarker evaluation in TBI. J Neurol Sci. 2015;359:280–6.

    Article  CAS  PubMed  Google Scholar 

  55. Zakaria N, Kallakuri S, Bandaru, Cavanaugh JM. Temporal assessment of traumatic axonal injury in the rat corpus callosum and optic chiasm. Brain Res. 2012;1467:81–90.

    Article  CAS  PubMed  Google Scholar 

  56. Li Y, Zhang L, Kallakuri S, Zhou R, Cavanaugh JM. Injury predictors of traumatic axonal injury in a rodent head impact acceleration model. Stapp Car Crash J. 2011;55:25–47.

    PubMed  Google Scholar 

  57. Li Y, Zhang L, Kallakuri S, Zhou R, Cvanaugh JM. Quantitative relationship between axonal injury and mechanical response in a rodent head impact acceleration model. J Neurotrauma. 2011;28:1767–82.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Beaumont A, Fatouros P, Gennarelli T, Corwin F, Marmarou A. Bolus tracer delivery measured by MRI confirms edema without blood-brain barrier permeability in diffuse traumatic brain injury. Acta Neurochir Suppl. 2006;96:171–4.

    Article  CAS  PubMed  Google Scholar 

  59. Beaumont A, Marmarou C, Marmarou A. The effects of human corticotrophin releasing factor on motor and cognitive deficit after impact acceleration injury. Neurol Res. 2000;22:665–73.

    Article  CAS  PubMed  Google Scholar 

  60. Chen X, Chen Y, Xu Y, Gao Q, Shen Z, Zheng W. Microstructural and neurochemical changes in the rat brain after diffuse axonal injury. J Magn Res Imaging. 2019;49:1069–77.

    Article  Google Scholar 

  61. Song Y, Qian Y, Su W, Liu X, Huang J, Gong Z, et al. Differences in pathological changes between two rat models of severe traumatic brain injury. Neural Regen Res. 2019;14:1796–804.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Li S, Sun Y, Shan D, Feng B, Xing J, Duan Y, et al. Temporal profiles of axonal injury following impact acceleration traumatic brain injury in rats – a comparative study with diffusion tensor imaging and morphological analysis. Int J Leg Med. 2013;127:159–67.

    Article  Google Scholar 

  63. Goda M, Isono M, Fujiki M, Kobayashi H. Both MK801 and NBQX reduce the neuronal damage after impact-acceleration brain injury. J Neurotrauma. 2002;19:1445–56.

    Article  PubMed  Google Scholar 

  64. Wang H, Ma Y. Experimental models of traumatic axonal injury. J Clin Neurosci. 2010;17:157–62.

    Article  PubMed  Google Scholar 

  65. Marmarou CR, Prieto R, Taya K, Young HF, Marmarou A. Marmarou weight drop injury model. In: Chen J, Xu ZC, Xu XM, Zhang JH, editors. Animal models of acute neurological injuries. Springer Protocols Handbooks. Totowa, New Jersey, USA: Humana Press; 2009. p. 393–407.

  66. Marmarou A, Abd-Elfattah Foda MA, Van den Brink W, Campbell J, Kita H, Demetriadou K. A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics. J Neurosurg. 1994;80:291–300.

    Article  CAS  PubMed  Google Scholar 

  67. Guo H, Renaut RA, Chen K. An input function estimation method for FDG-PET human brain studies. Nucl Med Biol. 2007;34:483–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Watson C, Paxinos G. The rat brain in stereotaxic coordinates. San Diego: Academic Press; 2006.

  69. Logan J, Fowler JS, Volkow ND, Wang G, Ding Y, Alexoff DL. Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab. 1996;16:834–40.

    Article  CAS  PubMed  Google Scholar 

  70. Laws MT, Bonomi RE, Kamal SR, Gelovani DJ, Llaniguez J, Potukutchi S, et al. Molecular imaging HDACs class IIa expression-activity and pharmacologic inhibition in intracerebral glioma models in rats using PET/CT/(MRI) with [18F]TFAHA. Sci Rep. 2019;9:3595.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ. et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(-)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab.1990;10:740–7.

    Article  CAS  PubMed  Google Scholar 

  72. Murakami N, Yamaki T, Iwamoto Y, Sakakibara T, Kobori N, Fushiki S, et al. Experimental brain injury induces expression of amyloid precursor protein, which may be related to neuronal loss in the hippocampus. J Neurotrauma. 1998;15:993–1003.

    Article  CAS  PubMed  Google Scholar 

  73. Zhang MH, Zhou XM, Cui JZ, Wang KJ, Feng Y, Zhang HA. Neuroprotective effects of dexmedetomidine on traumatic brain injury: Involvement of neuronal apoptosis and HSP70 expression. Mol Med Rep. 2018;17:8079–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kim JY, Kim N, Zheng Z, Lee JE, Yenari MA. The 70 kDa heat shock protein protects against experimental traumatic brain injury. Neurobiol Dis. 2013;58:289–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jassam YN, Izzy S, Whalen M, McGavern DB, El Khoury J. Neuroimmunology of traumatic brain injury: Time for a paradigm shift. Neuron. 2017;95:1246–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kim N, Kim JY, Yenari MA. Anti-inflammatory properties and pharmacological induction of Hsp70 after brain injury. Inflammopharmacology. 2012;20:177–85.

    Article  CAS  PubMed  Google Scholar 

  77. Eroglu B, Kimbler D, Pang J, Choi J, Moskophidis D, Yanasak N, et al. Therapeutic inducers of the HSP70/HSP110 protect mice against traumatic brain injury. J Neurochemistry. 2014;130:626–41.

    Article  CAS  Google Scholar 

  78. Kallakuri S, Li Y, Zhou R, Bandaru S, Zakaria N, Zhang L, et al. Impaired axoplasmic transport is the dominant injury induced by an impact acceleration injury device: an analysis of traumatic axonal injury in pyramidal tract and corpus callosum of rats. Brain Res. 2012;1452:29–38.

    Article  CAS  PubMed  Google Scholar 

  79. Hsieh TH, Kang JW, Lai JH, Huang YZ, Rotenberg A, Chen KY, et al. Relationship of mechanical impact magnitude to neurologic dysfunction severity in a rat traumatic brain injury model. PLoS ONE. 2017;12:e0178186, 1–18.

  80. Ciallella JR, Ikonomovic MD, Paljug WR, Wilbur YI, Dixon CE, Kochanek PM, et al. Changes in expression of amyloid precursor protein and interleukin-1β after experimental traumatic brain injury in rats. J Neurotrauma. 2002;19:1555–67.

    Article  PubMed  Google Scholar 

  81. Johnson VE, Stewart W, Smith DH. Axonal pathology in traumatic brain injury. Exp Neurol. 2013;246:35–43.

    Article  CAS  PubMed  Google Scholar 

  82. Shishido H, Ueno M, Sato K, Matsumura M, Toyota Y, Kirino T, et al. Traumatic brain injury by weight-drop method causes transient amyloid-β deposition and acute cognitive deficits in mice. Behav Neurol. 2019;2019:3248519. https://doi.org/10.1155/2019/3248519.

  83. Elliott MB, Tuma RF, Amenta PS, Barbe MF, Jallo JI. Acute effects of a selective cannabinoid-2 receptor agonist on neuroinflammation in a model of traumatic brain injury. J Neurotrauma. 2011;28:973–81.

    Article  PubMed  Google Scholar 

  84. Chen Y, Buck J. Cannabinoids protect cells from oxidative cell death: a receptor-independent mechanism. J Pharmacol Exp Ther. 2000;293:807–12.

    CAS  PubMed  Google Scholar 

  85. Nikodemova M, Duncan ID, Watters JJ. Minocycline exerts inhibitory effects on multiple mitogen-activated protein kinases and IκBα degradation in a stimulus-specific manner in microglia. J Neurochem. 2006;96:314–23.

    Article  CAS  PubMed  Google Scholar 

  86. Eljaschewitsch E, Witting A, Mawrin C, Lee T, Schmidt PM, Wolf S, et al. The endocannabinoid anandamide protects neurons during CNS inflammation by induction of MKP-1 in microglial cells. Neuron 2006;49:67–79.

    Article  CAS  PubMed  Google Scholar 

  87. Donat CK, Scott G, Gentleman SM, Sastre M. Microglial activation in traumatic brain injury. Front Aging Neurosci. 2017;15:349–63.

    Google Scholar 

  88. Madathil SK, Wilfred BS, Urankar SE, Yang W, Leung LY, Shear DA, et al. Early microglial activation following closed-head concussive injury is dominated by pro-inflammatory M-1 type. Front Neurol. 2018;9:964.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Jin Y, Wang R, Yang S, Zhang X, Dai J. Role of Microglia autophagy in microglia activation after traumatic brain injury. World Neurosurg. 2017;100:351–60.

    Article  PubMed  Google Scholar 

  90. Imai Y, Kohsaka S. Intracellular signaling in M-CSF-induced microglia activation: role of Iba1. Glia. 2002;40:164–74.

    Article  PubMed  Google Scholar 

  91. Imai Y, Ibata I, Ito D, Ohsawa K, Kohsaka S. A novel gene iba1 in the major histocompatibility complex class III region encoding and EF hand protein expressed in a monocytic lineage. Biochem Biophys Res Commun. 1996;224:855–62.

    Article  CAS  PubMed  Google Scholar 

  92. Ito D, Tanaka K, Suzuki S, Dembo T, Fukuuchi Y. Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke. 2001;32:1208–15.

    Article  CAS  PubMed  Google Scholar 

  93. Verdin E, Dequiedt F, Kasler HG. Class II histone deacetylases: versatile regulators. Trends Genet. 2003;19:286–93.

    Article  CAS  PubMed  Google Scholar 

  94. Cernotta N, Clocchiatti A, Florean C, Brancolini C. Ubiquitin-dependent degradation of HDAC4, a new regulator of random cell motility. Mol Biol Cell. 2011;22:278–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bolger TA, Yao TP. Intracellular trafficking of histone deacetylase 4 regulates neuronal cell death. J Neurosci. 2005;25:9544–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fischle W, Dequiedt F, Hendzel MJ, Guenther MG, Lazar MA, Verdin E, et al. Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol Cell. 2002;9:45–57.

    Article  CAS  PubMed  Google Scholar 

  97. Fitzsimons HL. The Class IIa histone deacetylase HDAC4 and neuronal function: Nuclear nuisance and cytoplasmic stalwart? Neurobiol Learn Mem. 2015;123:149–58.

    Article  CAS  PubMed  Google Scholar 

  98. Isaacs JT, Antony L, Dalrymple SL, Brennen WN, Gerber S, Leanderson T, et al. Tasquinimod is an allosteric modulator of HDAC4 survival signaling within the compromised cancer microenvironment. Cancer Res. 2013;73:1386–99.

    Article  CAS  PubMed  Google Scholar 

  99. Li J, Chen J, Ricupero CL, Hart RP, Schwartz MS, Herrup K, et al. Nuclear accumulation of HDAC4 in ATM deficiency promotes neurodegeneration in ataxia telangiectasia. Nat Med. 2012;18:783–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Wu Q, Yang X, Zhang L, Zhang Y, Feng L. Nuclear accumulation of histone deacetylase 4 (HDAC4) exerts neurotoxicity in models of Parkinson’s disease. Mol Neurobiol. 2017;54:6970–83.

    Article  CAS  PubMed  Google Scholar 

  101. Atkins CM, Chen S, Alonso OF, Dietrich WD, Hu BR. Activation of calcium/calmodulin-dependent protein kinases after traumatic brain injury. J Cereb Blood Flow Metab. 2006;26:1507–18.

    Article  CAS  PubMed  Google Scholar 

  102. Chang S, Bezprozvannaya S, Li S, Olson EN. An expression screen reveals modulators of class II histone deacetylase phosphorylation. Proc Natl Acad Sci USA. 2005;102:8120–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Harrison BC, Kim M, van-Rooij E, Plato CF, Papst PJ, McKinsey TA, et al. Regulation of cardiac stress signaling by protein kinase D1. Mol Cell Biol. 2006;26:3875–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Li X, Song S, Liu Y, Ko SH, Kao HY. Phosphorylation of the histone deacetylase 7 modulates its stability and association with 14-3-3 proteins. J Biol Chem. 2004;279:34201–08.

    Article  CAS  PubMed  Google Scholar 

  105. Lehman JJ, Kelly DP. Transcriptional activation of energy metabolic switches in the developing and hypertrophied heart. Clin Exp Pharmacol Physiol. 2002;73:667–77.

    Google Scholar 

  106. McKinsey TA, Zhang CL, Lu J, Olson EN. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature. 2000;408:106–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Vega RB, Harrison BC, Meadows E, Roberts CR, Papst PJ, McKinsey TA, et al. Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol Cell Biol. 2004;24:8374–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Grozinger CM, Schreiber SL. Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization. Proc Natl Acad Sci USA. 2000;97:7835–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. McKinsey TA, Zhang CL, Olson EN. Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. Proc Natl Acad Sci USA. 2000;97:14400–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. McKinsey TA, Zhang CL, Olson EN. Identification of a signal-responsive nuclear export sequence in class II histone deacetylases. Mol Cell Biol. 2001;21:6312–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Backs J, Song K, Bezprozvannaya S, Chang S, Olson EN. CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. J Clin Investig. 2006;116:1853–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Backs J, Backs T, Bezprozvannaya S, McKinsey TA, Olson EN. Histone deacetylase 5 acquires calcium/calmodulin-dependent kinase II responsiveness by oligomerization with histone deacetylase 4. Mol Cell Biol. 2008;28:3437–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Song B, Lai B, Zheng Z, Zhang Y, Luo J, Li M, et al. Inhibitory phosphorylation of GSK-3 by CaMKII couples depolarization to neuronal survival. J Biol Chem. 2010;285:41122–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Xu K, Dai XL, Huang HC, Jiang ZF. Targeting HDACs: a promising therapy for Alzheimer’s disease. Oxid Med Cell Longev. 2011;2011:143269. https://doi.org/10.1155/2011/143269.

  115. Majdzadeh N, Wang L, Morrison BE, Bassel-Duby R, Olson EN, D’Mello S. HDAC4 inhibits cell-cycle progression and protects neurons from cell death. Dev Neurobiol. 2008;68:1076–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sando R, Gounko N, Pieraut S, Liao L, Yates J, Maximov A. HDAC4 governs a transcriptional program essential for synaptic plasticity and memory. Cell. 2012;151:821–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Cho Y, Cavalli V. HDAC5 is a novel injury-regulated tubulin deacetylase controlling axon regeneration. EMBO J. 2012;31:3063–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Agis-Balboa RC, Pavelka Z, Kerimoglu C, Fischer A. Loss of HDAC5 impairs memory function: Implications for Alzheimer’s disease. J Alzheimer’s Dis. 2013;33:35–44.

    Article  CAS  Google Scholar 

  119. Mazzocchi M, Wyatt SL, Mercatelli D, Morari M, Morales-Prieto N, O’Keeffe GW, et al. Gene Co-expression Analysis identifies histone deacetylase 5 and 9 expression in midbrain dopamine neurons and as regulators of neurite growth via bone morphogenetic protein signaling. Front Cell Dev Biol. 2019;7:191.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Cho Y, Sloutsky R, Naegle KM, Cavalli V. Injury-Induced HDAC5 nuclear export is essential for axon regeneration. Cell. 2013;155:894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Vargas-López V, Lamprea MR, Múnera A. Histone deacetylase inhibition abolishes stress-induced spatial memory impairment. Neurobiol Learn Mem. 2016;134:328–38.

    Article  PubMed  CAS  Google Scholar 

  122. Levenson JM, O’Riordan KJ, Brown KD, Trinh MA, Molfese DL, Sweatt JD. Regulation of histone acetylation during memory formation in the hippocampus. J Biol Chem. 2004;279:40545–59.

    Article  CAS  PubMed  Google Scholar 

  123. Walz A, Ugolkov A, Chandra S, Kozikowski A, Carneiro BA, Mazar AP, et al. Molecular pathways: Revisiting glycogen synthase kinase-3β as a target for the treatment of cancer. Clin Cancer Res. 2017;23:1891–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hidaka H, Yokokura H. Molecular and cellular pharmacology of a calcium/calmodulin-dependent protein kinase II (CaM kinase II) Inhibitor, KN-62, and proposal of CaM kinase phosphorylation cascades. Adv Pharmacol. 1996;36:193–219.

    Article  CAS  PubMed  Google Scholar 

  125. Tokumitsu H, Chijiwa T, Hagiwara M, Mizutani A, Terasawa M, Hidaka H. KN-62, 1-[N,O-Bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]−4-phenylpiperazine, a specific inhibitor of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem.1990;265:4315–20.

    Article  CAS  PubMed  Google Scholar 

  126. Fleming CL, Ashton TD, Gaur V, McGee SL, Pfeffer FM. Improved synthesis and structural reassignment of MC1568: A class IIa selective HDAC inhibitor. J Med Chem. 2014;57:1132–35.

    Article  CAS  PubMed  Google Scholar 

  127. Nebbioso A, Manzo F, Miceli M, Conte M, Manente L, Altucci L, et al. Selective class II HDAC inhibitors impair myogenesis by modulating the stability and activity of HDAC-MEF2 complexes. EMBO Rep. 2009;10:776–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Raymond E, Dalgleish A, Damber JE, Smith M, Pili R. Mechanisms of action of tasquinimod on the tumour microenvironment. Cancer Chemother Pharmacol. 2014;73:1–8.

    Article  CAS  PubMed  Google Scholar 

  129. Benson RR, Gattu R, Sewick B, Kou Z, Zakaria N, Cavanaugh JM, et al. Detection of hemorrhagic and axonal pathology in mild traumatic brain injury using advanced MRI: implications for neurorehabilitation. NeuroRehabilitation. 2012;31:261–79.

    Article  PubMed  Google Scholar 

  130. Beaumont A, Marmarou A, Hayasaki K, Barzo P, Fatouros P, Corwin F, et al. The permissive nature of blood brain barrier (BBB) opening in edema formation following traumatic brain injury. Acta Neurochir Suppl. 2000;76:125–9.

    CAS  PubMed  Google Scholar 

  131. Barzo P, Marmarou A, Fatouros P, Hayasaki K, Corwin F. Biphasic pathophysiological response of vasogenic and cellular edema in traumatic brain swelling. Acta Neurochir Suppl. 1997;70:119–22.

    CAS  PubMed  Google Scholar 

  132. Barzo P, Marmarou A, Fatouros P, Hayasaki K, Corwin F. Contribution of vasogenic and cellular edema to traumatic brain swelling measure by diffusion-weighted imaging. J Neurosurg. 1997;87:900–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

These studies were supported in part by the grants: R01DA042057 (NIDA/NIH) to SP and JGG; and RX002900 (VA) to AC and JGG. The Microscopy, Imaging, and Cytometry Resources Core are supported, in part, by the Cancer Center Support Grant (P30 CA022453, NCI/NIH) to Karmanos Cancer Institute, Wayne State University, Detroit, MI; RP and WA received awards from the Levy-Logenbaugh Donor-Advised Fund.

Author information

Authors and Affiliations

Authors

Contributions

SRK, RP, WA, RLS, SAP, and JGG designed research; SRK, SP, DJG, RB, SK, and JGG performed research; RB, TM, and JGG contributed new reagents/analytic tools; SRK, SP, DJG, RP, JMC, WA, AC, RLS, SAP, and JGG, analyzed data; SRK, SK, RP, WA, RLS, SAP, and JGG, wrote the paper.

Corresponding author

Correspondence to Juri G. Gelovani.

Ethics declarations

Competing interests

RB and JGG are inventors on issued patents and pending patent applications related to PET imaging of HDACs class IIa expression-activity and are entitled to royalties if licensing or commercialization occurs. Potential conflicts of interest are managed in accordance with established institutional conflict of interest policies of the Wayne State University (Detroit, MI). The other authors declare that no conflicts of interest exist.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamal, S.R., Potukutchi, S., Gelovani, D.J. et al. Spatial and temporal dynamics of HDACs class IIa following mild traumatic brain injury in adult rats. Mol Psychiatry 27, 1683–1693 (2022). https://doi.org/10.1038/s41380-021-01369-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01369-7

Search

Quick links