Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dopamine D2 receptors modulate the cholinergic pause and inhibitory learning

Abstract

Cholinergic interneurons (CINs) in the striatum respond to salient stimuli with a multiphasic response, including a pause, in neuronal activity. Slice-physiology experiments have shown the importance of dopamine D2 receptors (D2Rs) in regulating CIN pausing, yet the behavioral significance of the CIN pause and its regulation by dopamine in vivo is still unclear. Here, we show that D2R upregulation in CINs of the nucleus accumbens (NAc) lengthens the pause in CIN activity ex vivo and enlarges a stimulus-evoked decrease in acetylcholine (ACh) levels during behavior. This enhanced dip in ACh levels is associated with a selective deficit in the learning to inhibit responding in a Go/No-Go task. Our data demonstrate, therefore, the importance of CIN D2Rs in modulating the CIN response induced by salient stimuli and point to a role of this response in inhibitory learning. This work has important implications for brain disorders with altered striatal dopamine and ACh function, including schizophrenia and attention-deficit hyperactivity disorder (ADHD).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: D2R upregulation does not alter intrinsic properties or firing in NAc CINs.
Fig. 2: D2R upregulation in NAc CINs increases pause duration.
Fig. 3: D2R upregulation in NAc CINs alters ACh levels in a continuous-reinforcement (CRF) task.
Fig. 4: D2R upregulation in NAc CINs impairs No-Go responding.
Fig. 5: CIN D2R upregulation reduces contrast in cue-evoked phasic ACh signaling in Go/No-Go task.

Similar content being viewed by others

References

  1. Bolam JP, Wainer BH, Smith AD. Characterization of cholinergic neurons in the rat neostriatum. A combination of choline acetyltransferase immunocytochemistry, Golgi-impregnation and electron microscopy. Neuroscience. 1984;12:711–8.

    Article  CAS  PubMed  Google Scholar 

  2. Matamales M, Gotz J, Bertran-Gonzalez J. Quantitative imaging of cholinergic interneurons reveals a distinctive spatial organization and a functional gradient across the mouse striatum. PLoS ONE. 2016;11:e0157682.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Mogenson GJ, Jones DL, Yim CY. From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol. 1980;14:69–97.

    Article  CAS  PubMed  Google Scholar 

  4. Kelley AE. Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci Biobehav Rev. 2004;27:765–76.

    Article  PubMed  Google Scholar 

  5. Salamone JD, Correa M, Farrar A, Mingote SM. Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology. 2007;191:461–82.

    Article  CAS  PubMed  Google Scholar 

  6. Wang Z, Kai L, Day M, Ronesi J, Yin HH, Ding J, et al. Dopaminergic control of corticostriatal long-term synaptic depression in medium spiny neurons is mediated by cholinergic interneurons. Neuron. 2006;50:443–52.

    Article  CAS  PubMed  Google Scholar 

  7. Witten IB, Lin SC, Brodsky M, Prakash R, Diester I, Anikeeva P, et al. Cholinergic interneurons control local circuit activity and cocaine conditioning. Science. 2010;330:1677–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee J, Finkelstein J, Choi JY, Witten IB. Linking cholinergic interneurons, synaptic plasticity, and behavior during the extinction of a cocaine-context association. Neuron. 2016;90:1071–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zucca S, Zucca A, Nakano T, Aoki S, Wickens J. Pauses in cholinergic interneuron firing exert an inhibitory control on striatal output in vivo. eLife 2018; 7: e32510.

  10. English DF, Ibanez-Sandoval O, Stark E, Tecuapetla F, Buzsáki G, Deisseroth K, et al. GABAergic circuits mediate the reinforcement-related signals of striatal cholinergic interneurons. Nat Neurosci. 2011;15:123–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Cachope R, Mateo Y, Mathur BN, Irving J, Wang HL, Morales M, et al. Selective activation of cholinergic interneurons enhances accumbal phasic dopamine release: setting the tone for reward processing. Cell Rep. 2012;2:33–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Threlfell S, Lalic T, Platt NJ, Jennings KA, Deisseroth K, Cragg SJ. Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron. 2012;75:58–64.

    Article  CAS  PubMed  Google Scholar 

  13. Exley R, Clements MA, Hartung H, McIntosh JM, Cragg SJ. α6-Containing nicotinic acetylcholine receptors dominate the nicotine control of dopamine neurotransmission in nucleus accumbens. Neuropsychopharmacology. 2007;33:2158.

    Article  PubMed  CAS  Google Scholar 

  14. Rice ME, Cragg SJ. Nicotine amplifies reward-related dopamine signals in striatum. Nat Neurosci. 2004;7:583–4.

    Article  CAS  PubMed  Google Scholar 

  15. Hikida T, Kaneko S, Isobe T, Kitabatake Y, Watanabe D, Pastan I, et al. Increased sensitivity to cocaine by cholinergic cell ablation in nucleus accumbens. Proc Natl Acad Sci USA. 2001;98:13351–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Warner-Schmidt JL, Schmidt EF, Marshall JJ, Rubin AJ, Arango-Lievano M, Kaplitt MG, et al. Cholinergic interneurons in the nucleus accumbens regulate depression-like behavior. Proc Natl Acad Sci USA. 2012;109:11360–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Aoki S, Liu AW, Zucca A, Zucca S, Wickens JR. Role of striatal cholinergic interneurons in set-shifting in the rat. J Neurosci. 2015;35:9424–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Collins AL, Aitken TJ, Huang IW, Shieh C, Greenfield VY, Monbouquette HG, et al. Nucleus accumbens cholinergic interneurons oppose cue-motivated behavior. Biol Psychiatry 2019; 86: 388–96.

  19. Aosaki T, Tsubokawa H, Ishida A, Watanabe K, Graybiel AM, Kimura M. Responses of tonically active neurons in the primate’s striatum undergo systematic changes during behavioral sensorimotor conditioning. J Neurosci. 1994;14:3969–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kimura M, Rajkowski J, Evarts E. Tonically discharging putamen neurons exhibit set-dependent responses. Proc Natl Acad Sci USA. 1984;81:4998–5001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Aosaki T, Graybiel AM, Kimura M. Effect of the nigrostriatal dopamine system on acquired neural responses in the striatum of behaving monkeys. Science. 1994;265:412–5.

    Article  CAS  PubMed  Google Scholar 

  22. Apicella P, Legallet E, Trouche E. Responses of tonically discharging neurons in the monkey striatum to primary rewards delivered during different behavioral states. Exp Brain Res. 1997;116:456–66.

    Article  CAS  PubMed  Google Scholar 

  23. Morris G, Arkadir D, Nevet A, Vaadia E, Bergman H. Coincident but distinct messages of midbrain dopamine and striatal tonically active neurons. Neuron. 2004;43:133–43.

    Article  CAS  PubMed  Google Scholar 

  24. Ravel S, Legallet E, Apicella P. Responses of tonically active neurons in the monkey striatum discriminate between motivationally opposing stimuli. J Neurosci. 2003;23:8489–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Blazquez PM, Fujii N, Kojima J, Graybiel AM. A network representation of response probability in the striatum. Neuron. 2002;33:973–82.

    Article  CAS  PubMed  Google Scholar 

  26. Marche K, Martel AC, Apicella P. Differences between dorsal and ventral striatum in the sensitivity of tonically active neurons to rewarding events. Front Syst Neurosci. 2017;11:52.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Joshua M, Adler A, Mitelman R, Vaadia E, Bergman H. Midbrain dopaminergic neurons and striatal cholinergic interneurons encode the difference between reward and aversive events at different epochs of probabilistic classical conditioning trials. J Neurosci. 2008;28:11673–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Apicella P. The role of the intrinsic cholinergic system of the striatum: what have we learned from TAN recordings in behaving animals? Neuroscience. 2017;360:81–94.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang YF, Cragg SJ. Pauses in striatal cholinergic interneurons: what is revealed by their common themes and variations? Front Syst Neurosci. 2017;11:80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Benhamou L, Kehat O, Cohen D. Firing pattern characteristics of tonically active neurons in rat striatum: context dependent or species divergent? J Neurosci. 2014;34:2299–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Atallah HE, McCool AD, Howe MW, Graybiel AM. Neurons in the ventral striatum exhibit cell-type-specific representations of outcome during learning. Neuron. 2014;82:1145–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bradfield LA, Bertran-Gonzalez J, Chieng B, Balleine BW. The thalamostriatal pathway and cholinergic control of goal-directed action: interlacing new with existing learning in the striatum. Neuron. 2013;79:153–66.

    Article  CAS  PubMed  Google Scholar 

  33. Apicella P, Deffains M, Ravel S, Legallet E. Tonically active neurons in the striatum differentiate between delivery and omission of expected reward in a probabilistic task context. Eur J Neurosci. 2009;30:515–26.

    Article  PubMed  Google Scholar 

  34. Chuhma N, Mingote S, Moore H, Rayport S. Dopamine neurons control striatal cholinergic neurons via regionally heterogeneous dopamine and glutamate signaling. Neuron. 2014;81:901–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Straub C, Tritsch NX, Hagan NA, Gu C, Sabatini BL. Multiphasic modulation of cholinergic interneurons by nigrostriatal afferents. J Neurosci. 2014;34:8557–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Wieland S, Du D, Oswald MJ, Parlato R, Köhr G, Kelsch W. Phasic dopaminergic activity exerts fast control of cholinergic interneuron firing via sequential NMDA, D2, and D1 receptor activation. J Neurosci. 2014;34:11549–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Augustin SM, Chancey JH, Lovinger DM. Dual dopaminergic regulation of corticostriatal plasticity by cholinergic interneurons and indirect pathway medium spiny neurons. Cell Rep. 2018;24:2883–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kharkwal G, Brami-Cherrier K, Lizardi-Ortiz JE, Nelson AB, Ramos M, Del Barrio D, et al. Parkinsonism driven by antipsychotics originates from dopaminergic control of striatal cholinergic interneurons. Neuron. 2016;91:67–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Doig NM, Magill PJ, Apicella P, Bolam JP, Sharott A. Cortical and thalamic excitation mediate the multiphasic responses of striatal cholinergic interneurons to motivationally salient stimuli. J Neurosci. 2014;34:3101–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang YF, Reynolds JNJ, Cragg SJ. Pauses in cholinergic interneuron activity are driven by excitatory input and delayed rectification, with dopamine modulation. Neuron. 2018;98:918–25.e913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Matsumoto N, Minamimoto T, Graybiel AM, Kimura M. Neurons in the thalamic CM-Pf complex supply striatal neurons with information about behaviorally significant sensory events. J Neurophysiol. 2001;85:960–76.

    Article  CAS  PubMed  Google Scholar 

  42. Ding JB, Guzman JN, Peterson JD, Goldberg JA, Surmeier DJ. Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron. 2010;67:294–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brown MT, Tan KR, O’Connor EC, Nikonenko I, Muller D, Luscher C. Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning. Nature. 2012;492:452–6.

    Article  CAS  PubMed  Google Scholar 

  44. Bäckman CM, Malik N, Zhang Y, Shan L, Grinberg A, Hoffer BJ, et al. Characterization of a mouse strain expressing Cre recombinase from the 3’ untranslated region of the dopamine transporter locus. Genesis. 2006;44:383–90.

    Article  PubMed  CAS  Google Scholar 

  45. Gallo EF, Meszaros J, Sherman JD, Chohan MO, Teboul E, Choi CS, et al. Accumbens dopamine D2 receptors increase motivation by decreasing inhibitory transmission to the ventral pallidum. Nat Commun. 2018;9:1086.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Gallo EF, Salling MC, Feng B, Moron JA, Harrison NL, Javitch JA, et al. Upregulation of Dopamine D2 receptors in the nucleus accumbens indirect pathway increases locomotion but does not reduce alcohol consumption. Neuropsychopharmacology 2015; 40: 1609–18.

  47. Jing M, Li Y, Zeng J, Huang P, Skirzewski M, Kljakic O, et al. An optimized acetylcholine sensor for monitoring in vivo cholinergic activity. Nat Methods. 2020;17:1139–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Deng P, Zhang Y, Xu ZC. Involvement of I(h) in dopamine modulation of tonic firing in striatal cholinergic interneurons. J Neurosci. 2007;27:3148–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wilson CJ. The mechanism of intrinsic amplification of hyperpolarizations and spontaneous bursting in striatal cholinergic interneurons. Neuron. 2005;45:575–85.

    Article  CAS  PubMed  Google Scholar 

  50. Barker DJ, Miranda-Barrientos J, Zhang S, Root DH, Wang HL, Liu B, et al. Lateral preoptic control of the lateral habenula through convergent glutamate and GABA transmission. Cell Rep. 2017;21:1757–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Calipari ES, Bagot RC, Purushothaman I, Davidson TJ, Yorgason JT, Peña CJ, et al. In vivo imaging identifies temporal signature of D1 and D2 medium spiny neurons in cocaine reward. Proc Natl Acad Sci USA. 2016;113:2726–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ward RD, Gallistel CR, Jensen G, Richards VL, Fairhurst S, Balsam PD. Conditioned [corrected] stimulus informativeness governs conditioned stimulus-unconditioned stimulus associability. J Exp Psychol Anim Behav Process. 2012;38:217–32.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Collins AL, Aitken TJ, Greenfield VY, Ostlund SB, Wassum KM. Nucleus accumbens acetylcholine receptors modulate dopamine and motivation. Neuropsychopharmacology. 2016;41:2830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nautiyal KM, Wall MM, Wang S, Magalong VM, Ahmari SE, Balsam PD, et al. Genetic and modeling approaches reveal distinct components of impulsive behavior. Neuropsychopharmacology. 2017;42:1182–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yan Z, Song WJ, Surmeier J. D2 dopamine receptors reduce N-type Ca2+ currents in rat neostriatal cholinergic interneurons through a membrane-delimited, protein-kinase-C-insensitive pathway. J Neurophysiol. 1997;77:1003–15.

    Article  CAS  PubMed  Google Scholar 

  56. Donthamsetti P, Gallo EF, Buck DC, Stahl EL, Zhu Y, Lane JR, et al. Arrestin recruitment to dopamine D2 receptor mediates locomotion but not incentive motivation. Mol Psychiatry. 2020;25:2086–2100.

    Article  CAS  PubMed  Google Scholar 

  57. Bennett BD, Wilson CJ. Spontaneous activity of neostriatal cholinergic interneurons in vitro. J Neurosci. 1999;19:5586–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lacey MG, Mercuri NB, North RA. Dopamine acts on D2 receptors to increase potassium conductance in neurones of the rat substantia nigra zona compacta. J Physiol. 1987;392:397–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Uchida S, Akaike N, Nabekura J. Dopamine activates inward rectifier K+ channel in acutely dissociated rat substantia nigra neurones. Neuropharmacology. 2000;39:191–201.

    Article  CAS  PubMed  Google Scholar 

  60. Singer BF, Bryan MA, Popov P, Scarff R, Carter C, Wright E, et al. The sensory features of a food cue influence its ability to act as an incentive stimulus and evoke dopamine release in the nucleus accumbens core. Learn Mem. 2016;23:595–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Patriarchi T, Cho JR, Merten K, Howe MW, Marley A, Xiong W-H, et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science. 2018;360:eaat4422.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Cragg SJ. Meaningful silences: how dopamine listens to the ACh pause. Trends Neurosci. 2006;29:125–31.

    Article  CAS  PubMed  Google Scholar 

  63. Cui G, Jun SB, Jin X, Pham MD, Vogel SS, Lovinger DM, et al. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature. 2013;494:238–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Syed ECJ, Grima LL, Magill PJ, Bogacz R, Brown P, Walton ME. Action initiation shapes mesolimbic dopamine encoding of future rewards. Nat Neurosci. 2016;19:34–36.

    Article  CAS  PubMed  Google Scholar 

  65. Bertran-Gonzalez J, Laurent V, Chieng BC, Christie MJ, Balleine BW. Learning-related translocation of δ-opioid receptors on ventral striatal cholinergic interneurons mediates choice between goal-directed actions. J Neurosci. 2013;33:16060–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Flagel SB, Clark JJ, Robinson TE, Mayo L, Czuj A, Willuhn I, et al. A selective role for dopamine in stimulus-reward learning. Nature. 2011;469:53–57.

    Article  CAS  PubMed  Google Scholar 

  67. Heymann G, Jo YS, Reichard KL, McFarland N, Chavkin C, Palmiter RD, et al. Synergy of distinct dopamine projection populations in behavioral reinforcement. Neuron. 2020;105:909–20. e905.

    Article  CAS  PubMed  Google Scholar 

  68. Dalley JW, Fryer TD, Brichard L, Robinson ESJ, Theobald DEH, Lääne K, et al. Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science. 2007;315:1267–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Martyniuk KM, Dandeneau M, Balsam PD, Kellendonk C. Dopamine D2R upregulation in ventral striatopallidal neurons does not affect Pavlovian or go/no-go learning. Behav Neurosci. 2021;135:369–79.

    Article  CAS  PubMed  Google Scholar 

  70. Ragozzino ME, Mohler EG, Prior M, Palencia CA, Rozman S. Acetylcholine activity in selective striatal regions supports behavioral flexibility. Neurobiol Learn Mem. 2009;91:13–22.

    Article  CAS  PubMed  Google Scholar 

  71. Matamales M, Skrbis Z, Hatch RJ, Balleine BW, Götz J, Bertran-Gonzalez J. Aging-related dysfunction of striatal cholinergic interneurons produces conflict in action selection. Neuron. 2016;90:362–73.

    Article  CAS  PubMed  Google Scholar 

  72. Okada K, Nishizawa K, Fukabori R, Kai N, Shiota A, Ueda M, et al. Enhanced flexibility of place discrimination learning by targeting striatal cholinergic interneurons. Nat Commun. 2014;5:3778.

    Article  CAS  PubMed  Google Scholar 

  73. Faust TW, Assous M, Shah F, Tepper JM, Koós T. Novel fast adapting interneurons mediate cholinergic-induced fast GABAA inhibitory postsynaptic currents in striatal spiny neurons. Eur J Neurosci. 2015;42:1764–74.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Pakhotin P, Bracci E. Cholinergic interneurons control the excitatory input to the striatum. J Neurosci. 2007;27:391–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Franklin NT, Frank MJ. A cholinergic feedback circuit to regulate striatal population uncertainty and optimize reinforcement learning. eLife. 2015;4:e12029.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Lin Tian for providing dLight1.2, and Christine Lim, Julianna Cavallaro, Daphne Baker, and Natalie Zarrelli for assistance with histology. Also, many thanks to Dr. Nao Chuhma and Dr. Steven Rayport for advice on slice physiology, and Joseph Floeder, Dr. Marie Labouesse, and Dr. Mark Ansorge for assistance with fiber photometry.

Funding

C.K., J.G., K.M.M., J.A.J., and P.D.B. were supported by R01 MH093672 and R01 MH124858. P.D.B and J.A.J. were also supported by MH068073 and MH054137, respectively. E.F.G, J.Y., and E.T. were supported by K01 MH107648 and a Faculty Research Grant (Fordham University). J.M.V was supported by the Leon Levy Fellowship in Neuroscience.

Author information

Authors and Affiliations

Authors

Contributions

E.F.G., J.G., J.Y., E.T., and K.M.M. performed the experiments. E.F.G., J.G., C.K., and P.D.B. analyzed the data. E.G. and C.K. designed the experiments and supervised the project, with input from P.D.B. and J.A.J.; E.F.G. and C.K. wrote the paper with input from J.G., J.A.J., Y.L., and P.D.B.

Corresponding authors

Correspondence to Eduardo F. Gallo or Christoph Kellendonk.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallo, E.F., Greenwald, J., Yeisley, J. et al. Dopamine D2 receptors modulate the cholinergic pause and inhibitory learning. Mol Psychiatry 27, 1502–1514 (2022). https://doi.org/10.1038/s41380-021-01364-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01364-y

This article is cited by

Search

Quick links