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Aging is associated with chronic systemic inflammation, which contributes to the development of many age-related diseases, including
vascular disease. The world’s population is aging, leading to an increasing prevalence of both stroke and vascular dementia. The
inflammatory response to ischemic stroke is critical to both stroke pathophysiology and recovery. Age is a predictor of poor outcomes
after stroke. The immune response to stroke is altered in aged individuals, which contributes to the disparate outcomes between young
and aged patients. In this review, we describe the current knowledge of the effects of aging on the immune system and the cerebral
vasculature and how these changes alter the immune response to stroke and vascular dementia in animal and human studies. Potential
implications of these age-related immune alterations on chronic inflammation in vascular disease outcome are highlighted.
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INTRODUCTION
Aging is an inevitable biological process that affects all organs and
cells, including the immune system, the cerebral vasculature, and the
brain. Aging results in significant and complex changes to both the
innate and adaptive immune system [1]. With aging, there is a
decline in immune system efficacy, and this immunosenescence
results in greater susceptibility to infections [2]. The lifetime risk of
cerebrovascular disease and vascular dementia has increased, driven
by the increasing age of the global population [3]. Age is a risk factor
for stroke-related complications such as infections, cardiac events,
and delirium, as well as mortality [4]. Elderly patients also have higher
rates of post-stroke depression and cognitive decline [5]. Stroke
accelerates the progression of neurodegenerative diseases, such as
Alzheimer’s disease (AD), and is a significant contributor to vascular
dementia [6, 7]. The immune system is a key player in both the acute
and chronic response to stroke, and age-related alterations in the
immune system contribute to the poorer outcomes seen in older
patients [8]. The development of novel strategies to target or reverse
this detrimental immune response is an active area of investigation.
This review summarizes recent studies examining immune and

vascular senescence and how these age-related changes can
affect the immune response to stroke and other cerebrovascular
diseases. A better understanding of age-related immune altera-
tions in vascular disease will create a foundation for developing
therapies applicable to the majority of patients affected by these
diseases, the elderly.

BRAIN IMMUNOSENESCENCE
Senescence is an irreversible replicative-arrest state of cells,
leading to changes in gene expression and phenotype that alter

the function of neighboring cells [9]. Senescent cells release pro-
inflammatory signals (e.g., Interleukins (IL), IL-1α, IL-1β, IL-6, and IL-
8) that are referred to as the “senescence-associated secretory
phenotype” (SASP) [10]. Accumulation of senescent cells during
aging promotes chronic inflammation and tissue dysfunction and
is an essential contributor to the progression of age-associated
diseases (i.e., AD and atherosclerosis). Endothelial, epithelial, and
stromal cells can express the SASP [11], leading to the recruitment
of immune cells and an increased pro-inflammatory milieu [12].
Glial cells also undergo senescence both in vitro and in vivo,
contributing to age-related neuroinflammation and vascular
dysfunction. Enhancing the clearance of senescent microglia and
astrocytes using genetic or pharmacological approaches reduced
tau aggregation and led to the preservation of cognitive function
in murine models [13]. This suggests that there is potential
to reverse some of the detrimental immune responses seen
with aging.
Franceschi et al. [14] put forth a theory that aging results in a

chronic increase in systemic inflammation, termed “inflamma-
ging.” Chronic inflammation caused by aging, termed sterile
inflammation (indicating no detectable pathogens), is well
described [15]. Inflammaging and inappropriate immune activa-
tion contribute to the pathogenesis of many age-related diseases,
including diabetes, atherosclerosis, and AD [16]. Sporadic AD
development has been linked to enriched risk genes that are
present in aged microglia, the primary resident immune cell of the
brain. This implicates brain innate immunity in neurodegeneration
[17]. This concept is further supported by the presence of
microglia with a senescent (dystrophic) phenotype in post-
mortem AD brains [18]. The adaptive immune system and clonally
expanded senescent T-cells also contribute to AD pathogenesis
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[19]. The risk of ischemic stroke and vascular dementia is increased
with aging, in part due to increased reactive oxygen species (ROS)
and enhanced coagulation induced by inflammation [20]. How-
ever, the mechanisms that drive age-related chronic inflammation
in the brain and cerebral vasculature are not fully understood.
Both immunosenescence and inflammaging alter the micro-

environment of the central nervous system (CNS), primarily by
actions on microglia. Normally microglia are in a homeostatic state
maintained by cellular signals and interactions with ligands that
inhibit microglial activation. Ligands such as CD200, CXCL1, and
CD47 are expressed by neurons and bind to corresponding
receptors on microglia [21]. As neurons are damaged with age or
vascular insults, these inhibitory ligand-receptor interactions with
microglia are disrupted [21]. In addition, misfolded proteins, such
as amyloid-beta (Aβ), accumulate during normal aging and lead to
an increase in the levels of microglial pro-inflammatory cytokines
[21–23]. With age, there is also an increase in the expression of
specific cytokines, such as transforming growth factor-β (TGFβ).
Chronic exposure of microglia to TGFβ impairs their capacity to
secrete anti-inflammatory cytokines [24, 25] and leads to the
downregulation of interferon regulatory factor-7, an important
factor in switching microglia from a pro-inflammatory to an anti-
inflammatory phenotype [25]. After an acute stroke, loss of blood
brain barrier (BBB) integrity leads to a dramatic infiltration of
peripheral immune cells into the brain, further contributing to
neuroinflammation. The composition of these infiltrating cells in
animal models differs between young and aged brains, as does
their inflammatory potential [26].

CEREBROVASCULAR AGING AND IMMUNITY
A healthy cerebral vasculature is critical for brain function.
Neuronal function and survival depend on the integrity of the
brain’s blood vessels and their capacity to remove neurotoxic
molecules from the interstitial fluid, including amyloid [27]. With
aging, both venous and arterial tortuosity and vessel injury
decrease cerebral blood flow (CBF), leading to the accumulation
of beta-amyloid, hypoperfusion, and dysregulated exchange of
nutrients [28]. The etiology of this tortuosity is unclear, but is
due in part to adverse remodeling of the venular walls, impaired
expression of angiogenic and growth factors, increased

endothelial cell senescence, and dysregulation of matrix
metalloproteinases (MMPs) [29] (See Fig. 1).
Age-related increases in arterial stiffness, chronic exposure to

cell stress, endothelial senescence, and enhanced inflammatory
processes are linked to the development of atherosclerosis [30].
The formation of atherosclerotic plaques is depicted in Fig. 1, led
by macrophage infiltration into the arterial intima to phagocytose
oxidized low-density lipoprotein [31]. These macrophages become
active after ingesting lipids and secrete pro-inflammatory
cytokines, further exacerbating vascular inflammation and increas-
ing the size and complexity of the atherosclerotic plaque [32]
(Fig. 1). Age-related changes in the cerebral vasculature can
enhance white matter injury, a common feature in vascular
dementia [33]. These myelinated white matter tracts create long-
range connectivity and are involved in axonal transport,
neuroplasticity, and learning. Endothelial dysfunction and hypo-
perfusion lead to demyelination and BBB breakdown, which is
further exacerbated by the enhanced oxidative and inflammatory
milieu seen in the aging brain [33].
Cerebral endothelial cells (CEC) are critical components of the

BBB and contribute to its integrity, which is essential to maintain
the balance of nutrients, immune cells, and overall brain home-
ostasis [34]. CEC dysfunction leads to BBB impairment and
reduced blood flow in the proximity of white matter injury
[35, 36]. Enhanced BBB permeability precedes the onset of
dementia [35]. Thus, a healthy vascular endothelium is essential
to maintain low and selective permeability of the BBB [37]. CEC,
like most cell types, experience cellular senescence and “pro-
grammed” cell-cycle arrest with aging [38]. Endothelial senescence
contributes to oxidative stress, inflammation, microvascular
rarefaction, arterial stiffness, vascular luminal narrowing, and
subsequent reductions in CBF. Thus, CEC senescence contributes
to BBB impairment, an early step in vascular dementia.
Endothelial cells develop a pro-inflammatory genetic profile as

they age, a shift that is activated by senescence-inducing factors,
including NF-κB [39]. Endothelial cells are exposed early to cytokines
produced by circulating senescent immune cells [40], which
propagates the SASP. Senescent CEC then develop transcriptome
changes that lead to increased production and secretion of pro-
inflammatory factors [41], resulting in further deleterious effects in
the cerebral vasculature [42–44] (see Table 1).

Fig. 1 Age-related changes in the vasculature. [1] Senescent immune cells secrete reactive oxygen species (ROS) that [2] activates the NF-kB
pathway in cerebral endothelial cells (CECs). Then, CECs adopt a senescent-associated secretory phenotype (SASP) and [3] secrete MMP that
degrade the extracellular matrix. Other SASP components secreted by senescent CECs can also promote fibrosis and collagen deposition. [4]
Senescent CECs secrete pro-inflammatory substances (IL-1, IL-6, IL-8) into the vasculature lumen that impair tight junctions between CEC, and
[5] facilitate the infiltration of immune cells and monocytes through the CEC layer. [6] Infiltrating monocytes reach the internal elastic lamina
and change their phenotype to macrophages, [7] which phagocytize oxidized lipoproteins. In the internal elastic lamina, [8] reactive
macrophages and infiltrating immune cells secrete pro-inflammatory cytokines that exacerbate inflammatory responses, and [9] contribute to
the deposition of cellular debris, fatty substances, migrated vascular smooth muscle cells, and lipid-laden macrophages (foam cells) that lead
to the formation of atherosclerotic plaques. Figure made with Biorender.com.
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Reduced brain capillary density and impaired endothelial-
dependent functions, including angiogenesis (critical for main-
taining and modifying microvascular networks), is seen with
aging. Impairments in endothelial-mediated vasodilation, and
neurovascular coupling [45] also occur and further deteriorate
the architecture of the cerebral vasculature [46–49] leading to
subsequent cognitive impairment [50]. One increasingly com-
mon subtype of vascular dementia is cerebral amyloid angio-
pathy (CAA). CAA develops due to deposition of amyloid in the
media and adventitia of small arteries and capillaries of the
leptomeninges and the cerebral cortex. It is a leading cause of
lobar intracerebral hemorrhage and cognitive impairment in the
elderly. Although the hallmark of both CAA and AD is amyloid
pathology, these diseases are clinically distinct. Less than 50% of
CAA cases meet the pathologic criteria for AD and over 75% of
patients with AD have only mild or no CAA [5, 51]. In CAA,
vascular amyloid deposits cause inflammation, hemorrhage, and
degradation of vascular smooth muscle cells and pericytes
[52, 53]. Age is the most important risk factor for CAA [54]. These
hemorrhages demonstrate the clear link between vascular and
amyloid pathology [55–57].
Aged CEC are also directly implicated in the increased

infiltration of peripheral immune cells, a hallmark of brain aging.
CEC produce pro-thrombotic mediators and cellular adhesion
molecules (i.e., intercellular adhesion molecule-1 and plasminogen
activator inhibitor-1) in patients with vascular dementia. This
increase in adhesion molecules amplifies the ability of immune
cells to enter the CNS in response to vascular injury (Table 1). A
subpopulation of angiogenic endothelial cells is induced in the
brain of patients with AD [58]. These cells exhibit increased
expression of angiogenic growth factors, their receptors (i.e.,
EGFL7, FLT1, and VWF), and antigen-presentation machinery (i.e.,
B2M and HLA-E). The contribution of endothelial cells to
angiogenesis and immune responses in AD and other age-
associated vascular diseases is increasingly evident. Importantly,
some of the pathological changes seen in aged CECs are reversible
and thus may be potential targets for therapeutic intervention
[59]. Cerebrovascular aging connects the simultaneous deteriora-
tion of CEC function, negative alterations to cerebrovascular

structure, impaired cerebral blood flow, impaired clearance of
debris, and increased amyloid deposition that all contribute to
cognitive impairment [60, 61].

MICROGLIAL AGING
The CNS has historically been considered to be an “immune
privileged” site, but this concept is changing. Although microglia
are the predominant innate immune cell in the CNS, there is
robust communication between the brain and the peripheral
immune system through a variety of different avenues, including
through the CSF and lymphatics [62]. Microglia maintain a
dynamic state of immune readiness by constantly scanning the
brain environment for perturbations [63]. Microglia maintain brain
homeostasis by interacting with signaling molecules secreted by
healthy neurons [64, 65]. Young microglia and astrocytes promote
angiogenesis, remodel the extracellular matrix, and suppress
destructive immunity (see Fig. 2). Microglia play critical roles in
both the developing and adult CNS; they react rapidly to danger
signals, changing their morphology and adopting an activated
state that can trigger the secretion of beneficial anti-inflammatory
cytokines, such as IL-4 and IL-10 [66–68]. However, the microglia
transcriptome changes with aging, leading to enhanced inflam-
mation, impaired phagocytosis, and profound morphological
changes that reduce immune surveillance [69].
A phenotypic hallmark of aging, and in numerous pathological

conditions, is the emergence of “dark microglia” [70]. These
microglia are found in close proximity to the vasculature and
amyloid plaques in the brains of AD patients. They contain
condensed and remodeled nuclear chromatin, an electron-dense
cytoplasm, and exhibit features seen with oxidative and metabolic
stress. However, microglial heterogeneity expands beyond dark
microglia, and novel subtypes are emerging from transcriptomic
data. For example, a microglial signature, enriched in AD
susceptibility genes, has been found with human aging [71, 72],
and a “disease-associated microglial” (DAM) profile has been
described in neurodegenerative conditions in mouse models [73].
DAM cells cluster around amyloid plaques establishing a protective
barrier, they are ApoE-Trem2 dependent and upregulate genes

Table 1. Changes to gene and protein expression in aged endothelial cells in human and murine studies.

Target Status Phenotypic changes Functional changes Reference

TNF-α ↑ ROS production Inflammation, NADPH oxidase activation,
apoptosis

[218–221]

TNF-β ↑ ROS production apoptosis [218]

IL-1β ↑ ROS production Inflammation [219, 222]

IL-6 ↑ Senescence Increase adhesion molecules [219, 223]

IL-6Rα ↑ Senescence Inflammation [219]

IL-17 ↑ Senescence Inflammation [219]

MMPs ↑ Tight junctional complexes are
disrupted

Weakened BBB becomes permeable
vasoconstriction

[224–227]

MCP-1/CCR2 ↑ Vascular remodeling Leukocyte infiltration [227–229]

VEGF ↓ Vasoconstriction Reduced activation of eNOS [230]

NADPH Oxidase ↑ Arterial remodeling Activates MMPs, oxidative stress [231]

Calpain-1 ↑ Clot formation ANGII/MMP signaling [229, 232]

Local Ang II ↑ Arterial remodeling Activates MMP-2, TGFβ [233]

MFG-E8 ↑ Increased concentrations in
aortic wall

Activates MMP-2, TGF-β, collagen production [224, 225, 227]

Nitric oxide Bio-
availability

↓ Impaired cellular interactions Decrease anti-fibrinolytic activity, apoptosis [229, 234]

TGF- β 1 ↑ Vascular remodeling Increased collagen, fibrosis [235, 236]

SIRT1 ↓ Vascular Senescence Reduced activation of eNOS and
suppression of ANG II

[237] [238, 239] [240]
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involved in lysosomal, phagocytic, and lipid metabolic pathways
[73, 74]. TREM2 variants are associated with increased risk for
sporadic AD supporting the involvement of microglial dysfunction
in disease development [75]. In addition, supporting a specific
role of dysfunctional and pro-inflammatory microglia, a novel
lipid-droplet-accumulating microglial with defective phagocytosis
and pro-inflammatory profile was recently identified in the aging
brain [76].
Microglial dysfunction associated with aging contributes to

cellular senescence and negatively affects the response to injury.
These age-associated changes result in maladaptive immune
responses, chronic inflammation, and poorer outcomes after CNS
injury [77]. Aging skews the transcriptomic profile of microglia
toward a chronic inflammatory state, upregulating genes involved
in cytokine production, host defense, and cell adhesion [78–80].
Aged microglia have elevated levels of TNFα, IL-1β, and IL-6 (see
Fig. 2) [81, 82]. In parallel, the loss of anti-inflammatory cytokines
such as IL-10 suggests they have a reduced ability to restrain and
control pro-inflammatory microglial pathways with aging (Fig. 2).
Upregulation and transcription of genes involved in cell-cell
interactions, immune cell chemotaxis, immune-inflammatory
responses, and tissue remodeling/repair are reduced in microglia
from aged compared to young mice. This is also seen in humans,
aged human microglia have distinct upregulation of pathways
associated with DNA damage, telomere maintenance, and
phagocytosis [79, 83]. These shifts in microglial gene expression
may be driven, in part, by IL-10 and IL-4 secreted by B-cells [84].
This suggests that aged subjects have difficulty mounting a
controlled inflammatory response to injury, leading to detrimental
effects on tissue repair.

PERIPHERAL IMMUNE CELLS CONTRIBUTE TO BRAIN
IMMUNOSENESCENCE
An increase in the number of resident immune cells is seen in the
aged brain, both in animal models and in humans, including
antigen-presenting cells (e.g., dendritic cells, T-cells, and B-cells)
[85]. Under normal physiological conditions, the movement of
peripheral immune cells is tightly regulated by the BBB. The
delicate balance of cells and substances allowed to move between
the cerebral blood vessels and the CNS is maintained by CEC and
microvessels [86]. The transport of immune cells is regulated by a
multi-step process involving interactions between adhesion and

signaling molecules in endothelial and immune cells. Immune
cells become tethered and attach to the blood vessels, allowing
for the recognition of cytokines and specific carbohydrate ligands
that then polarize immune cells. This identification process is
necessary to strictly regulate which immune cells can enter the
CNS [34]. Once an immune cell has been identified and polarized,
it can cross the endothelial basement membrane. An increase in
clonal and antigen-experienced T-cells with an effector memory
phenotype is seen in the blood and cerebrospinal fluid of AD
patients, implicating an adaptive immune response. These
alterations are also seen in patients with other age-related
neurodegenerative diseases [19]. What drives the increasing
numbers of diverse immune cells to enter the CNS of aged
individuals is unclear but likely involves age-related changes in the
brain’s vasculature that facilitate their entry.

PERIPHERAL IMMUNE CELL AGING
The innate immune system comprises multiple cell types that
rapidly recognize and react to conserved pathogen-associated
molecular patterns and danger-associated molecular patterns
(DAMPs) in a nonspecific manner [87, 88]. When the cerebral
vasculature is damaged, peripheral immune cells are recruited to
the site of injury via DAMPs and play a role in the inflammatory
response and recovery of the CNS. Profound age-associated
changes occur in many innate immune cell lineages, including
neutrophils, dendritic cells, natural killer cells, and resident glial
cells, which exacerbate CNS injury (Table 2).

AGING IN MYELOID LINEAGE CELLS
Macrophages
Senescent hematopoietic cells secrete monocyte chemotactic
protein (MCP)−1, which contributes to macrophage tissue
infiltration [89]. The levels of infiltrated macrophages and pro-
inflammatory cytokines are greater in the brains of 12-month-old
mice (equivalent to a 40–45-year-old human) than in 6-month-old
mice [90]. Once in the nervous tissue, macrophages activate either
a pro-inflammatory (enriched with CD11c and the chemokine
receptor CCR2) or an anti-inflammatory phenotype (enriched with
CD163). Investigators have also used senescence-accelerated
mouse (SAM) models (SAMP1, SAMP6, SAMP8, and SAMP10) and
senescence-resistant mice (SAMR) to identify mechanisms of

Fig. 2 Astrocytes and microglia in a young CNS release growth factors and cellular signals to maintain homeostasis and control
neurogenesis of neurons. As individuals age, cellular and molecular changes in the brain environment are initiated by an increase of pro-
inflammatory cytokines and an accumulation of proteins, such as amyloid. Next, microglia and the innate immune response are activated,
activating astrocytes and leading to neuronal damage. Activation of microglia and astrocytes disrupts the BBB and contributes to a
heightened immune response and worse cognitive outcomes in elderly patients with cerebrovascular injury. Neurological signals: ATP:
adenosine triphosphate, BDNF: brain-derived neurotrophic factor, CX3CR1 or CX3CL1: fractalkine receptor and ligand IGF-1: Insulin-like
growth factor, Aβ: amyloid-beta, IRF-7: Interferon regulatory factor 7, INF-γ: Interferon gamma, GFAP: Glial Fibrillary acidic protein, MCP-1:
Macrophage chemoattractant protein, ROS: Reactive oxygen species, TGFβ, transforming growth factor-β, TNFα: tumor necrosis factor-alpha.
Figure made with Biorender.com.
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aging. The lifespan of SAMP strains is shorter than wild-type mice
[91], and they exhibit accelerated senescence-associated pheno-
types that copy those observed in age-related diseases in humans.
For example, SAMP1 mice mimic amyloidosis, SAMP6 mice show
symptoms of osteoporosis, and SAMP8 mice show age-dependent
deficits in learning and memory. SAMP-1 mice have increased
expression of macrophage markers (F4/80) in the brain. Expression
of other macrophage markers (CD11c, relative to CD163) and
CCR2 levels are also higher in the brains of SAMP1 mice compared
to control mice, suggesting that macrophages reach the brain
from the bloodstream and become pro-inflammatory with
senescence [92]. This phenotype is accompanied by increased
expression of MCP-1 in SAMP1 mice [92], mirroring what occurs in
natural aging models.
Macrophages, in conjunction with activated microglia, migrate

into the brain after a cerebrovascular insult to phagocytose debris
from apoptotic neurons. This event occurs in the cerebral cortices
of young mice even after a micro-infarct [93]. This controlled
macrophage infiltration is a beneficial inflammatory response,
enhancing debris clearance and preventing further brain injury.
However, this may not be the case in an aged brain, as
macrophages impair synaptic plasticity in the hippocampus of
aged mice [90, 94]. Bone marrow macrophages incubated with
soluble brain extract from aged mice had increased expression of
MHCII and CD40 compared to macrophages incubated with
extracts from the young brain. When these macrophages were
primed with the inflammatory cytokines seen in aged brain and
applied to hippocampal slices, long-term potentiation was
inhibited [90]. This suggests that infiltrating macrophages can
respond to the local inflammatory milieu seen in the aged brain.
The mechanisms driving macrophages responses and their
influence on synaptic plasticity are unknown. It is hypothesized
that the systemic increase in inflammatory cytokines found in
aged individuals leads to phenotypic changes in macrophages,
which can damage neurons, impairing synaptic plasticity. Addi-
tionally, aged macrophages produce prostaglandin E2, which can
inhibit T-cell growth and proliferation, and CCR6 [95], leading to
additional recruitment of macrophages. Thus, the role of
macrophages depends on a delicate balance of cytokine levels,
which is disrupted with brain aging.

Neutrophils
Neutrophils have multiple host-defense functions, including
enzyme secretion, phagocytosis, cytokine production, and gen-
eration of ROS and neutrophil extracellular traps [96]. Aging is
associated with deficits in neutrophil recruitment, including
decreased accuracy of neutrophil chemotaxis and migration
toward inflammatory stimuli [97]. Aged neutrophils exhibit
dysfunction in debris clearance and production of enzymes
needed for vascular remodeling [98]. Similar to macrophages
and microglia, neutrophils’ ability to clear cellular debris is critical
to their anti-inflammatory, immune response. Altered phagocy-
tosis, neutrophil extracellular traps release, and enhanced ROS
generation in neutrophils from aged hosts have the potential to
impair the response to infection or sterile injury and worsen
chronic inflammation within healthy tissue [99]. Thus, with aging,
neutrophils become less resilient and less functionally efficient.

Dendritic cells
Dendritic cells are integral for antigen presentation and preserve
the equilibrium between immune tolerance and aberrant immune
responses [100]. Age has profound effects on dendritic cells, both
at baseline and with stimulation [101, 102]. Aged dendritic cells
have reduced ability to induce proliferation of CD4+ and CD8+
T-cells and to stimulate these cells to secrete interferon (IFN)-γ
[103, 104]. Aged dendritic cells have impaired antigen uptake and
phagocytosis of apoptotic cells, which prolongs self-antigen
exposure and promotes chronic auto-inflammation in elderlyTa
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hosts [101]. In addition, dendritic cells play an important role in
neurodegenerative disorders, cerebrovascular disease, and cancer
[105–108], which are pathologies associated with aging. In the
aging murine brain, major histocompatibility complex-II expres-
sion increases in peripherally sourced myeloid antigen-presenting
cells, including dendritic cells. These cells continue to accumulate
in the brain with advancing age [85]. This increase in brain
dendritic cells correlates with the emergence of age-associated
behavioral deficits, but further studies will be needed to directly
assess the causal role of dendritic cells in brain aging.

Natural killer cells
Natural killer cells prevent viral infections and tumor growth.
However, their numbers are significantly increased in the
postmortem brain tissue of aged humans [109] and aged mice
[110]. Jin et al. recently proposed a mechanism that links natural
killer cell activation with cytotoxicity and cognitive dysfunction in
the hippocampi of aged mice. These activated natural killer cells
are identified by perforin and granzyme B (cytotoxicity mediators)
and CD96 and NKG2D (activation markers) [110]. Neuroblasts
become senescent in the aged brain and secrete IL-27, which
promotes natural killer cell proliferation and activation. The
temporal depletion or reduction of these cells in old mice
enhanced the numbers of neuronal precursors and reduced
apoptotic neuroblasts in the hippocampus and led to improved
cognitive function and enhanced synaptic plasticity [110]. These
findings could help to target natural killer cells in neurodegen-
erative disorders.

AGING IN THE LYMPHOID LINEAGE
The adaptive immune system consists of lymphocytes, including
T- and B-cells, which are antigen-specific and create long-lived
immune memory. These cells have a much larger role in age-
related CNS dysfunction than previously recognized.

T-cells
As aging progresses, a decrease in naive T-cells leads to a
shrinking of the T-cell receptor (TCR) repertoire, which may be a
consequence of thymic involution and chronic antigenic stimula-
tion [111, 112]. The TCR repertoire is necessary for the response to
infection, and the loss of TCR diversity in elderly patients may
make them more vulnerable to infections [113]. Aging is also
associated with an accumulation of expanded clones of memory
and effector T-cells, believed to result from lifelong exposure to
continuous oxidative stress and antigens [114–117]. One conse-
quence of aging is the decreased ability of aged naive CD4+

T-cells to interact with antigen-presenting cells and respond to
antigens in general. Thus, CD4+ T-cells from aged mice do not
expand, produce cytokines, or differentiate as effectively as in
young mice [118]. In addition, mouse and human regulatory T-
cells, which suppress the immune response, become more
numerous and increase their function with aging [119–122]. This
can cause a dysregulation in the immune signals that would
normally aid in beneficial immune cell interactions and controlled
inflammatory responses.

B-cells
The production of naive B-cells in the bone marrow declines with
aging, potentially due to age-associated inhibition of genes
required for B-cell precursor maturation [123]. As a result, clonal
expansion, cytokine production, and antibody production in
response to new challenges are impaired, leaving elderly hosts
at greater risk of infection, cancer, and other chronic diseases
[123].
Similar to T-cell immunosenescence, aging leads to fewer novel

B-cells and more aged antigen-specific B-cells [124, 125]. Age-
associated B-cells are found in both mice and humans [126, 127].

In animal models of AD, levels of activated B-cells are increased in
the circulation, and enhanced infiltration of B-cells into the CNS
results in immunoglobulin deposits around Aβ plaques. AD
progression requires B-cells, as the loss of these cells alone is
sufficient to reduce Aβ plaque burden and activity of disease-
associated microglia. B-cell depletion reverses behavioral and
memory deficits, restores TGFβ+-microglia, and slows AD progres-
sion in mice [128]. The role of B-cells in stroke will be
discussed below.
In summary, age-related alterations occur in all major peripheral

immune cell subsets (Table 2). These alterations contribute to
immune dysregulation/inflammaging and a skewing of the
immune response towards increased basal chronic inflammation,
impairing host defenses and contributing to the pathogenesis of
both acute and chronic inflammatory diseases.

AGE-RELATED CHANGES IN STROKE-INDUCED INFLAMMATION
Ischemic stroke pathology
After ischemic heart disease, stroke ranks as the second leading
cause of death worldwide. Acute ischemic stroke, accounting for
~87% of all strokes, is caused by the loss of cerebral blood flow
[129]. Secondary damage pathways intensify tissue injury for days
or weeks after the initial event [130]. This ongoing sterile
inflammation contributes to secondary damage after ischemic
stroke [131]. Fortunately, most ischemic stroke patients survive
their initial injury. However, poor functional outcome in stroke
survivors is a major determinant of overall disease burden. There
are ~6 million stroke survivors living in the United States, and this
number is projected to increase to 10 million by 2030 as the aging
population expands [129]. The economic cost of care increases
with age as elderly stroke survivors (≥65 years) are more likely to
have severe deficits, other co-morbid illnesses, and require greater
care [132, 133].

The inflammatory response to stroke
Inflammation protects the host from pathogens, clears dead cells,
and facilitates tissue repair after injury. The body produces an
inflammatory response to infection or tissue damage; once the
agent is removed, inflammation is resolved, allowing the tissue to
return to homeostasis [134]. Brain ischemia quickly causes failure
of ion pumps, over-accumulation of intracellular sodium and
calcium, loss of membrane integrity, and necrotic cell death [135].
DAMPs, also known as alarmins, are released by necrotic and
dying neurons that stimulate the inflammatory response [136] (see
Fig. 3). DAMPs include a variety of molecules ranging from
extracellular proteins, intracellular proteins (i.e., high-mobility
group box 1 proteins and heat shock proteins) to plasma proteins
like fibrinogen. Once in the bloodstream, DAMPs bind to pattern
recognition receptors of peripheral immune cells and initiate the
post-stroke inflammatory response, including cytokine release as
these cells are recruited into the brain [137]. For example,
monocytes and neutrophils are activated outside of the brain and
are recruited to the site of ischemic injury to assist in repair and
recovery [138] (Fig. 3). However, how these cells are primed in the
periphery matters. Once they leave the bone marrow niche, they
are exposed to a plethora of cytokines in the aged blood that
contributes to their pathogenicity [139].
One of the first studies to directly examine the immune

response to stroke in aged animals compared young-adult
(5–6 months), middle-aged (14–15 months), and aged
(20–22 months) C57BL/6 male and female mice using a transient
middle cerebral artery occlusion model [140]. Acute functional
outcomes were worse with aging, with a concomitant increase in
neutrophils, inflammatory macrophages, dendritic cells, and
activated microglia in the aged brain, which may contribute to
the greater behavioral deficits and higher mortality seen in aged
mice [26, 140].
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In the aged brain, chronic immune activation and inflammation
contribute to further neurodegeneration and tissue loss. The
inflammatory response impairs neurogenesis and contributes to
poor functional recovery [141]. Elevated innate immune cell
responses within 48 h of a stroke are associated with poor
cognitive recovery [138]. The removal of the largest pool of
peripheral immune cells via splenectomy reduces injury in aged
mice after stroke and decreases stroke induced inflammation
[138]. Therefore, reducing the amount of aged peripheral immune
cells recruited to the ischemic brain can improve cognitive
recovery post-stroke [142].
It is increasingly clear that it is not just the amount of infiltrating

immune cells that differs in the young versus the aged brain; the
temporal pattern and cell type that enters the brain also
contributes to stroke outcome [139]. There are marked differences
in the composition of circulating and infiltrating leukocytes
recruited to the ischemic brain of aging mice compared to young
mice. Aged animals exhibited enhanced levels of neutrophils in
the blood and had more neutrophil invasion into the brain. These
infiltrated neutrophils had reduced ability to phagocytize patho-
gens and debris and expressed high levels of extracellular matrix-
degrading enzymes (i.e., MMP-9) and markers of oxidative stress in
aged animals. Aged mice had more pronounced hemorrhagic
transformation compared with young mice relative to infarct size,
which may reflect their increased MMP expression. In humans,
higher numbers of myeloperoxidase-positive neutrophils were
found in postmortem brain samples of old (>71 years) ischemic
stroke patients compared with age-matched controls. Neutrophils
were found in the human brain parenchyma, and a significant
proportion of these were MMP-9-positive, and found in areas of
hemorrhage and hyperemia. These age-related changes in the
myeloid response to stroke suggests that the bone marrow
response to stroke is also altered with age. To directly evaluate
this, heterochronic bone marrow chimeras were generated to
determine the contribution of peripheral immune senescence to
age- and stroke-induced inflammation [26]. Aged host mice that
received young bone marrow had attenuation of age-related
reductions in bFGF and VEGF. They also had improved locomotor
activity and gait dynamics compared to isochronic controls (old
mice reconstituted with old bone marrow), even in the absence of
ischemic injury. Microglia in young heterochronic mice (that

received old bone marrow) developed a senescent-like pheno-
type. Cohorts of animals were subjected to transient middle
cerebral artery occlusion. Aged mice that received young bone
marrow had improvements in post-stroke behavioral deficits and
had fewer brain-infiltrating neutrophils compared with isochronic
controls. Young mice reconstituted with aged bone marrow had
higher rates of hemorrhagic transformation, increased mortality,
and worse behavioral outcomes. This implies that an aged
peripheral immune system negatively affects the immunological
response to stroke, even when the animal was young. More
importantly, from a translational perspective, these detrimental
effects were reversed by manipulation of the peripheral immune
cells in the bone marrow [26].
Similar studies have also targeted peripheral inflammation as an

approach to reduce ischemic injury. A major source of antigens
and immune cells is the gut. Aged animals given a fecal transfer of
a “young” microbiome also had improved stroke outcomes
compared to aged animals reconstituted with an aged biome
[139]. This protection was related to an enhancement in the
integrity of the gut barrier and attenuation of the inflammatory
response in both the gut and brain. Young biome augmented the
frequency of intestinal Treg cells and reduced inflammatory brain
IL-17+ γδ T cells levels in aged hosts. Beneficial effects of youthful
biome also extend to cognitive function. Mice raised in germ free
(GF) conditions that were transplanted with young donor
microbiome had improved cognitive performance compared to
GF mice reconstituted with aged biome [140]. This suggests that
there is the potential to reverse “inflammaging” via manipulation
of peripheral tissues, an area of active investigation in both
vascular and neurodegenerative diseases [143, 144].

Glial contributions to ischemic stroke in aging models
An enhanced glial response and higher pro-inflammatory cytokine
production have been seen in aged animals after stroke [145, 146].
Surprisingly, aged mice (16 months) have smaller infarct volumes
and less edema than younger male mice (9–12 weeks) [147].
Similar results were found in rat models of stroke with greater
histological damage in young (3 months) compared to old
(24–26 months) male rats [148]. Surprisingly, aged animals, which
exhibit small infarcts, manifested higher mortality and more
severe behavioral deficits than young mice. A more rapid

Fig. 3 Cellular and molecular changes in the brain are initiated by primary brain injury. In response to injury, damage-associated molecular
patterns (DAMPs) are released, and an innate immune response characterized by glial activation and infiltration of blood-borne immune cells
into the brain occurs. The activation and infiltration of peripheral immune cells lead to secondary brain injury, further destroying brain tissue
and poor recovery. Figure made with Biorender.com.
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development of the infarct, enhanced glial scarring, and a delayed
suboptimal functional recovery were seen after stroke in aged
animals [146, 149].
In response to stroke, microglia are one of the first responders,

quickly developing an activated phenotype, generating ROS,
phagocytizing, and producing pro-inflammatory cytokines and
proteases [26] (Fig. 4). These activated microglia phagocytose
dying cells and debris and are necessary for later repair. After
stroke, the percentage of phagocytosing microglia increased at 24
h and peaks by 72 h [150]. Due to this extended period of
activation, dysregulation of this response contributes to poorer
stroke outcome and secondary damage. Colony-stimulating factor
1 receptor (CSF1R) signaling is required for microglial survival
[151]. A highly specific CSF1R inhibitor (PLX5622) can be orally
administered to deplete microglia. Young mice depleted of
microglia had increased infarct size after stroke [152]. However,
as microglia may be pathologically activated at baseline in the
aged brain, we tested if depletion could lead to beneficial effects
in aged models. Aged animals (18–19 months), depleted of
microglia fed (PLX5622) for 3 weeks before an induced stroke, also
had increased infarct damage and myeloid cell infiltration at 24
and 72 h after stroke [153]. Despite the dysregulated state of aged
microglia, this experiment suggests that aged microglia have
some beneficial effects during the acute phase of ischemic stroke.
Similar findings have been reported in aged rats, where cognitive
function and synaptic transmission benefit from the support of
aged microglia, and removal of these cells was deleterious [154].
However, the chronic effects of microglia depletion and repopula-
tion on cognition and stroke repair remain to be investigated
(Fig. 4).
Astrocytes expressing IL-15 are one of the first cells that recruit

microglia to the damaged area. This enhances their differentiation
into a pro-inflammatory phenotype, worsening neurological
outcomes after stroke in mice [155]. Specifically, chemokines,
such as C-C motif chemokine ligand-2 (CCL2), increase pro-

inflammatory functions of microglia and recruitment of peripheral
macrophages to the injured brain [156]. Deficits in age related
cognitive recovery after stroke can often be traced back to the
chemical signals received and secreted by immune cells in the
early phase of injury.
Glial cells also secrete MMPs, which maintain the integrity of the

basement membrane and are essential for BBB maintenance
(Fig. 4). MMPs degrade components of the extracellular matrix
(collagen, laminin, fibronectin, and proteoglycans) [157]. MMPs are
produced and secreted by CECs, neurons, glial cells, and
peripheral immune cells, such as neutrophils [26]. With aging,
the balance between MMPs and the extracellular matrix is
impaired, leading to aberrant degradation of the extracellular
matrix or enhanced collagen deposition or fibronectin [158].
Microglia are also a major source of MMPs after stroke, especially
MMP-3 and MMP-9 [159, 160]. MMP-9 is linked to increased BBB
disruption and can lead to poorer stroke outcomes in older
patients due to increased peripheral immune cell activation [161]
(see Fig. 4). Reduced disruption of the BBB is also important for
regulating the influx of peripheral immune cells and hemorrhagic
transformation [142, 162, 163]. Acute MMP inhibition reduces
infarct size, brain edema, and recombinant tissue plasminogen
activator–induced hemorrhage in animal models [161, 164]. Mice
deficient in MMP-3 or MMP-9 have less ischemic injury than wild-
type controls [165, 166]. Higher serum levels of MMP-9 in aged
animals predict poor outcome and infiltrating neutrophils in aged
mice produce higher levels of MMP-9 than those of young animals
[167]. Extracellular MMP inducer (EMMPRIN or CD147) is a cell-
surface glycoprotein that induces production of MMPs, including
MMP-9. Patients with chronic inflammation have higher levels of
CD147 [161, 168, 169]. Blocking CD147 with an antibody reduced
brain hemoglobin and MMP-9 levels in mice 3 days after stroke
and reduced infarct size and behavioral deficits. In stroke patients,
high levels of serum CD147 24 h after stroke predicted poor
functional outcome at 12 months. The levels of CD147 in the brain

Fig. 4 After a brain insult, including ischemic stroke, activated microglia trigger an inflammatory response and eliminate debris from
apoptotic cells. After ischemic stroke, immune cells activate [1], and microglia secrete MMPs [2] that disrupt the integrity of the BBB and
facilitates the invasion of macrophages and neutrophils into the brain parenchyma [3]. However, in the aged brain, this pro-inflammatory
response is extended and contributes to the participation of T-cells that magnify the immune response [4]. Depletion of microglia prior to
stroke exacerbated injury. One potential strategy to mitigate inflammation after brain injury is to deplete pathological microglia or enhance
their capacity for repair. Figure made with Biorender.com.
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positively correlated with MMP-9 and secondary hemorrhage in
post-mortem stroke patient samples [170].
While the immediate effects on BBB breakdown are apparent in

stroke, chronic changes in BBB integrity also allow for increased
entry of cells of the slower acting adaptive immune response.
Increased numbers of CD8+ T-cells are found in the aged brain
parenchyma, choroid plexus, and meninges in mice [171]. These
cells have effector memory (CD44+, CD62L−), tissue-resident
phenotypes, and expressed markers associated with TCR activa-
tion. The CD8 T-cell levels negatively correlate with pro-
inflammatory function of microglia. However, after stroke or
ex vivo stimulation, these cells dramatically increased their
production of TNF, IFN-γ, and MCP-1/CCL2. This population of
resident memory, immune-surveilling CD8 T-cells is a hallmark of
CNS aging. They modify microglia homeostasis under normal
conditions, but are primed to potentiate inflammation and
leukocyte recruitment after ischemic injury [171]. CD8+ T-cells
also inhibit neurite growth, further impairing stroke recovery [172].
Adoptive transfer of regulatory T-cells reduced inflammatory

responses both intrinsic and extrinsic to the CNS [173]. Moreover,
T regulatory cells provide neurovascular protection against stroke
by inhibiting peripheral neutrophil-derived MMP-9 production,
but these studies were only performed in young animals [174].
Clearly, the balance in the immune cell subtypes is critical to
stroke outcome, but studies in aged animals are needed. CD4+

T-cells also have a differential response to stroke in the aged brain.
CD4+ T-cells secrete IFN-γ, stimulating the release of C-X-C motif
chemokine ligand (CXCL)−10 from multiple cell types [175].
CXCL10, in turn, stimulates CD4+ T-cells to secrete more IFN-γ and
other pro-inflammatory cytokines. Aged mice had significantly
higher levels of CXCL10 in the serum and post-stroke brain than
young mice. Behavioral recovery after experimental stroke was
improved in aged mice depleted of CD4+ T-cells [176]. CD4
depletion reduced levels of pro-inflammatory cytokines, such as
IFN-γ, CXCL10, CCL2, and CXCL1 [176], and lower levels of CXCL10
were linked to improved cognitive recovery. As depicted in Fig. 4,
aged T-cells can secrete inflammatory cytokines and influence the
inflammatory response after stroke, leading to downstream
activation of other immune cells that impact cognitive outcomes.
B-cells are also recruited to the ischemic brain by CXCL13 [177].

Young mice lacking B-cells have increased infarcts, functional
deficits, and mortality [178]. Adoptive transfer of B-cells reduced
infarct volumes. Young mice depleted of B-cells by a humanized
antibody to CD20+ (rituximab) had delayed motor recovery,
impaired spatial memory, and reduced stroke-induced hippocam-
pal neurogenesis weeks after stroke. However, no studies have
confirmed these findings in aged mice. In vitro studies show that
B-cells exert a direct neuroprotective effect on neurons and
preserve neuronal dendritic arborization after oxygen glucose
deprivation [179]. Brain tissue from human stroke and dementia
patients were compared for B-cell density and IgG immune
reactivity. Data from these animal models, coupled with human
data, found an association between self-reactive antibodies and
cognitive decline. These data are consistent with previous studies
that reported persistent immune cell infiltration, even decades
after stroke [180]. Importantly, further studies are needed to clarify
the contribution of B-cells to post-stroke injury and repair and
how this is related to aging.

CLINICAL EVIDENCE OF DIFFERENCES IN THE IMMUNE
RESPONSE TO STROKE IN AGING
One of the first studies to examine the adaptive immune response
to stroke was performed in 2004 [181]. Peripheral blood
CD4+CD28- cells were collected from patients (75±13.5 years,
50% female) within the first 48 h of ischemic stroke and analyzed
by flow cytometry. Rising counts of circulating CD4+CD28- cells
were associated with an increased risk of stroke recurrence and

death over the next year. Expansion of this T-cell subset was
suggested as a contributory pathogenic mechanism of recurrent
stroke and death after ischemic stroke [181]. Clinical studies of
stroke patients (71.8±14.4 years, 36% female) found IL-17-
secreting T-cells in the peripheral blood 30 days after stroke.
These IL-17 levels were associated with poorer cognitive status in
post-stroke patients [182, 183]. Additionally, perivascular CD4+

T-cells in acute stroke lesions from post-mortem human samples
secrete IL-21, a mediator of inflammation [184, 185]. Patients (73.4
±15.7 years, 40% female) with acute ischemic stroke had increased
expression of toll-like receptor (TLR)−4 on peripheral blood
monocytes. Increased TLR4 expression correlates with increased
stroke severity [186]. TLR4 mediates the activation of innate
responses in monocytes, such as NF-κB activity and TNF-α
synthesis, and are associated with worse outcomes in stroke
patients [187]. Aging alters the immunological response to stroke
and, consequentially, the post-stroke recovery process.

INFLAMMATION IN OTHER AGE-RELATED CEREBROVASCULAR
DISEASES
Inflammation in vascular contributions to cognitive
impairment and dementia (VCID) with aging
VCID is a heterogeneous group of disorders characterized by
cognitive deficits secondary to cerebrovascular pathology. Chronic
cerebral hypoperfusion is important in the onset of VCID. After AD,
VCID is the second most common cause of dementia and
accounts for ~15% of all dementia cases when it occurs as a
single dementia diagnosis. Many dementia patients have mixed
dementia (i.e.,VCID and AD pathologies) [188]. The risk of
dementia after a cardiovascular event varies by its severity and
the incidence of VCID increases with age [189].
People over the age of 65 are at the highest risk for VCID [188].

A stroke patient has two-fold increased risk of developing demen-
tia compared with an individual with no history of stroke. This risk
is highest within the 6 months after stroke; however, an increased
risk prevails for at least a decade, even after controlling for known
dementia risk factors [190, 191]. Although there are no treatments
for post-stroke dementia, recent evidence has improved our
understanding of the mechanisms that contribute to cognitive
decline. What molecular mechanisms govern high risk of
dementia incidence in stroke survivors are not identified; however,
growing evidence from clinical and pre-clinical studies suggests
that there exists a connection between neuroinflammation and
cognitive decline. Thus, chronic brain inflammation caused by
defective elimination of harmful substances and exacerbated and
extended immune response may contribute to post-stroke
dementia. The role of immunosenescence and inflammaging in
cerebral small vessel disease has been recently reviewed [192].
Endothelial dysfunction and subsequent BBB leakage are the

most critical mechanisms leading to VCID. Post-mortem brain
tissues from 80 to 90-year-old humans exhibited SASP phenotypes
in their cerebral microvessels [193]. The presence of senescent
CEC is associated with enhanced BBB permeability due to SASP
[194]. Importantly, BBB leakage was observed near areas of white
matter injury in VCID patients, and it has been implicated in mild
cognitive impairment and neurodegeneration [35, 195, 196]. The
hippocampus and the striatum of patients with neurodegenera-
tive disorders show high levels of pro-inflammatory cytokines
associated with senescence [197]. Accelerated-senescence mouse
models also exhibit enhanced senescent CEC, early and severe
BBB integrity loss, and cognitive dysfunction [198, 199]. Under-
standing the molecular mechanisms that drive CEC to senescence
during aging will help to identify potential therapeutic targets for
age-related cerebrovascular diseases and dementias.
Neuroinflammation has been linked to dysfunction of the

cerebral endothelium. Similar to stroke, enhanced levels of
infiltrating immune cells occur in patients with cerebral small
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vessel disease, which precedes VCID [200]. Senescent endothelium
in aged VCID patients could lead to cerebrovascular inflammation.
Endothelial nitric oxidase synthase, which produces the anti-
inflammatory and anti-oxidative molecule nitric oxidase, is down-
regulated with aging [201]. Downregulation of nitric oxidase levels
results in reduced CBF, vessel tone dysfunction, and enhanced
oxidative stress, which activates the (TLR)-NF-κB pathway and
enhances the secretion of pro- inflammatory cytokines [202]. TLR-
NF-κB-induced oxidative stress can also uncouple endothelial
nitric oxidase synthase and impair nitric oxidase production. Thus,
endothelial cells enter in a vicious cycle of nitric oxidase
downregulation, oxidative stress, and inflammation that even-
tually leads to cerebrovascular dysfunction and cognitive impair-
ment (Fig. 5). Using antibodies against pro-inflammatory cytokines
is a promising approach to prevent inflammation in the cerebral
vasculature to mitigate phenotypes associated with vascular
dementia. For example, targeting TNFα, which is upregulated
with aging, restored endothelial nitric oxidase synthase levels,
ameliorated motor and cognitive function, and reversed vascular
endothelial dysfunction [203]. Chronic cerebral hypoperfusion also
has detrimental effects on the brain. Experimental bilateral
common carotid artery stenosis induces upregulation of MMP-1
and MMP-9, which degrade collagen I/III. This is associated with
reduced cross-sectional area, wall thickness, and wall-to-lumen
ratio in major arteries that supply the brain [204]. Aged CEC
exhibit changes in gene expression that lead to inflammation and
endothelial senescence. These transcriptional changes may be
caused by downregulation of master genetic regulators during
aging, such as nuclear factor erythroid 2-related factor (Nrf2).
The activity of the pro-survival and anti-oxidant Nrf2 declines in

aged individuals across multiple species. The components of the
Nrf2 pathway are downregulated in CECs and vascular smooth
muscle cells in peripheral vessels [205] (see Fig. 5), as well as in the
cerebrovasculature of aged non-human primates [206]. Nrf2
deficiency impairs neurovascular coupling, increases amyloid β
precursor protein (APP) levels, increases neuroinflammation, and
induces cognitive impairment [207]. Nrf2 depletion in aged mice
also increased the expression of senescence-associated genes and
microglia activation-related genes in the hippocampus [208].
Mouse models of VCID also demonstrate increased levels of Nrf2
but may be species specific [209]. Upregulation of Nrf2 in neurons
may mitigate VCID [210]. However, whether targeting

Nrf2 specifically in the cerebral vasculature can prevent the
vascular-associated pathobiology seen in VCID has not been
explored.

Inflammation in CAA, a hallmark age-related vascular disease
CAA is caused by progressive Aβ deposition within the cortical
and leptomeningeal arteries in the elderly, which causes
intracerebral micro-bleeds, hemorrhages, inflammation, endothe-
lial cell dysfunction, and death. The greatest risk factor for CAA is
advancing age [54]. 20–40% of postmortem human samples show
CAA pathology, and 80% of AD patients have Aβ deposition in
their cerebral vasculature [211], suggesting that Aβ accumulation
along cerebral blood vessels contributes to dementia. Aβ
deposition has dramatic consequences in the cerebrovasculature
that lead to a rarefaction of pial collateral vessels, the primary
source of protection after ischemic insults in the brain [212]. CAA
contributes to cerebral hypoperfusion, and hypoperfusion accel-
erates Aβ deposition in a positive feedback loop that aggravates
CAA pathology [213]. Amyloid-beta deposition in the media and
adventitia layers leads to degeneration of vascular smooth muscle
cells and pericytes and vascular fragility, inflammation, and
cerebral micro-bleeds [53]. These small hemorrhages occur in
17–46% of patients with cognitive impairment and demonstrate a
clear link between vascular and amyloid pathology [55–57].
Aging is a risk factor for Aβ accumulation in the brain

vasculature, as it downregulates key players in the metabolism
of APP. The protease ADAM metallopeptidase domain 10
(ADAM10) cleavages APP to soluble APPα [214], which is
neuroprotective. ADAM10 is downregulated in senescent cells,
and reduced levels of this metallopeptidase are associated with
neuroinflammation and immune activation [215] (Fig. 5). Symp-
tomatic CAA mice have more activated resident and infiltrating
myeloid cells than pre-symptomatic CAA mice [216]. In a murine
model of CAA, anti-inflammatory polyunsaturated fatty acid
metabolites prevented Aβ deposition along cerebral blood
vessels and reduced neuroinflammation [217]. Thus, ADAM10
appears to be a potential target to mitigate Aβ accumulation
and prevent CCA.

CONCLUSION AND FUTURE DIRECTIONS
During aging, the immune system’s capability to maintain an
effective response is dramatically decreased, causing chronic,
uncontrolled inflammation that can trigger or accelerate age-
related brain disorders. The events and subsequent feedforward
loops caused by aging are summarized in Fig. 6. Aged individuals
have senescent cells in their cerebral vasculature that may
trigger peripheral immune cell infiltration. Circulating immune
cells also undergo age-related changes that disrupt tight
junctions between endothelial cells and impair BBB integrity.
This allows for immune cell entry into the brain, including
myeloid cells that secrete pro-inflammatory cytokines and
metalloproteinases. Secreted cytokines quickly reach microglia
and astrocytes, promoting a further inflammatory response.
Aging exacerbates the response of activated astrocytes and
microglia, leading to sustained recruitment of peripheral cells
involved in both innate and adaptive immunity. The altered
immune response to stroke worsens neurological outcomes and
may majorly contribute to the disparate outcomes between
young and aged patients. Levels of pro-inflammatory immune
cells are positively correlated with worse outcomes in stroke
patients, days and weeks after the insult. Similar observations
have also been made in animal models.
In conclusion, many cell types and cellular components are

involved in immunosenescence and inflammaging. There are a
multitude of factors and pathways that are disrupted with aging,
including the loss of anti-inflammatory mechanisms. The reduced
capacity of the aged immune system to downregulate its response

Fig. 5 Aging has detrimental effects in the regulation of
important anti-inflammatory regulators associated with the
cerebral vasculature. The expression of ADAM metallopeptidase
domain 10 (ADAM10), nuclear factor erythroid 2-related factor
(Nrf2), and endothelial nitric oxidase synthase (eNOS) is down-
regulated with aging. ADAM10 cleavages amyloid-β precursor
protein (APP) and forms soluble APPα, which opposite to soluble
APPβ appears to be neuroprotective. Nrf2 negatively regulates the
expression of β-secretase, which cleavages APP and form soluble
APPβ. This contributes to the deposition of amyloid-β and promotes
neuroinflammation. eNOS is synthesized by the cerebral endothe-
lium and prevents oxidative stress. However, reduced levels of eNOS
during aging enhances oxidative stress, which activates the TLR-NF-
κB pathway axis and enhances the secretion of pro-inflammatory
cytokines. In addition, the TLR-NF-κB pathway axis uncouples eNOS,
creating a feedback loop that aggravates neuroinflammation. Blue
indicates a beneficial effect for the cerebral vasculature and the
brain, and red indicates a harmful effect.
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leads to an increase of pro-inflammatory cells and diminishing
anti-inflammatory mediated repair of injury. Therefore, the
biological age of the immune system may be a better predictor
of the immunological response to cerebrovascular injury than
chronological age. Novel approaches to reduce age-related brain
inflammation via manipulation of peripheral immunity may hold
great promise for the treatment of vascular and neurodegenera-
tive diseases.
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