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Schizophrenia is a devastating psychiatric illness that detrimentally affects a significant portion of the worldwide population. Aging
of schizophrenia patients is associated with reduced longevity, but the potential biological factors associated with aging in this
population have not yet been investigated in a global manner. To address this gap in knowledge, the present study assesses
proteomics and metabolomics profiles in the plasma of subjects afflicted with schizophrenia compared to non-psychiatric control
patients over six decades of life. Global, unbiased analyses of circulating blood plasma can provide knowledge of prominently
dysregulated molecular pathways and their association with schizophrenia, as well as features of aging and gender in this disease.
The resulting data compiled in this study represent a compendium of molecular changes associated with schizophrenia over the
human lifetime. Supporting the clinical finding of schizophrenia’s association with more rapid aging, both schizophrenia diagnosis
and age significantly influenced the plasma proteome in subjects assayed. Schizophrenia was broadly associated with prominent
dysregulation of inflammatory and metabolic system components. Proteome changes demonstrated increased abundance of
biomarkers for risk of physiologic comorbidities of schizophrenia, especially in younger individuals. These findings advance our
understanding of the molecular etiology of schizophrenia and its associated comorbidities throughout the aging process.
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INTRODUCTION
Schizophrenia is a major psychiatric illness that affects ~1% of the
population worldwide. Notwithstanding the debilitating psychia-
tric implications of schizophrenia, individuals suffering from this
disease experience reduced lifespans of 15–20 years on average
brought on by a litany of aging-related diseases, such as
cardiovascular disease, diabetes, and cancer [1–4]. A pivotal
development for the management of psychiatric symptoms,
antipsychotic medications have a long-documented history of
undesirable metabolic side effects [5]. Beyond the putative
metabolic disruption caused by antipsychotics, several studies
have identified a sustained pro-inflammatory molecular signature
in individuals suffering from schizophrenia [6, 7]. The extra-
psychotic features of schizophrenia disease presentation have led
to its description as a disease of accelerated aging [8, 9].
To date, the molecular etiology and full scope of aging-related

disease risk in persons with schizophrenia remains unknown.
Previous studies have centered on understanding singular
molecular entities (e.g., protein or metabolite) or functional
pathways and their relationships to disease risk in schizophrenia.
Indeed, these studies have identified inflammatory drivers

associated with schizophrenia, such as Vcam1, C-reactive protein
(CRP), and various cytokines [6, 10, 11]. Existing studies have also
described the impact of metabolic dysregulation in schizophrenia,
focusing on altered glucose and lipid metabolism stemming from
both schizophrenia and antipsychotic pharmacological agents
[12–14].
A growing number of investigations focus on leveraging

emerging -omics technologies to uncover previously unknown
mechanisms of disease and to define biomarkers associated with
clinical variables [15]. For schizophrenia, such studies hold promise
not only for their ability to reveal a wealth of information on the
biological underpinnings of the disease, but for the new strategies
they might portend for managing the metabolic and inflammatory
dysfunction associated with schizophrenia and its treatment. Here,
we apply contemporary untargeted mass spectrometry-based
approaches to catalog proteomic and metabolomic alterations in
blood plasma collected from individuals with schizophrenia and
non-psychiatric subjects. The resulting data reveal a compendium
of age-defined molecular factors associated with heightened
disease risk in individuals with schizophrenia, including increased
broad-scale inflammatory factors and metabolic dysfunction.
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MATERIALS AND METHODS
Plasma sample collection
Fasting blood was collected in EDTA-treated vacutainers from 54
individuals with schizophrenia and 51 non-psychiatric comparison
subjects. Subjects ranged in age from 28 to 74. There were 29 female
and 25 male subjects in the schizophrenia group, and 25 female and 26
male subjects in the non-psychiatric comparison group. Following
centrifugation, plasma was stored at −80 °C until assay. Standard lab
assays for triglyceride, cholesterol, glucose, and insulin levels were
performed by the Altman Clinical and Translational Research Institute
(ACTRI) laboratory at University of California San Diego using standard
procedures. The level of insulin resistance was estimated with the
homeostatic model assessment of insulin resistance (HOMA-IR)= [fasting
plasma insulin (mU/L) × fasting plasma glucose (mmol/L)]/22.5 [16]. High-
sensitivity C-reactive protein (hs-CRP) levels were measured with a
commercially available enzyme-linked immunosorbent assay (ELISA) (Meso
Scale Discovery, Rockville, MD, USA). Intra- and inter-assay coefficients
were < 5%.

Protein isolation and labeling
Samples were thawed on ice and 100 μL aliquots were segregated for
analysis. Samples were diluted in equal volumes of lysis buffer (3% SDS,
75mM Sodium Chloride, 1 mM β-glycerophosphate, 1 mM sodium fluoride,
1 mM Sodium Vanadate, 10 mM Sodium Pyrophosphate, 1 mM phenyl-
methanesulfonyl fluoride and 1X Roche cOmplete mini EDTA free protease
inhibitor in 50mM HEPES, pH 8.5) and 8M urea with 50mM HEPES.
Disulfide bonds were reduced in 5 mM dithiothreitol (DTT) at 56 °C for
30min and free cysteines were alkylated in 15mM iodoacetamide (IAA) in
a darkened environment for 20min. The alkylation reaction was quenched
for 15min at room temperature through the addition of an equivalent
volume of DTT as in the reduction reaction. Protein was precipitated via
the addition of 250 μL of trichloroacetic acid (TCA) and incubation of tubes
on ice for 10min. Precipitated protein was subjected to centrifugation and
samples were washed twice with ice cold acetone. Protein pellets were
dried and resuspended in a solution of 1 M urea with 50mM HEPES and
50mM ammonium bicarbonate (ABC). Protein pellets were next digested
through a two-step process, wherein samples were first incubated at room
temperature while shaking overnight in LysC, then incubated for 6 h at
37 °C in sequencing-grade trypsin (Promega). Supernatants were desalted
on C18 columns using instructions provided by the manufacturer (Waters).
Desalted samples were dried under vacuum. Samples were subjected to
peptide quantification using a Pierce Colorimetric Peptide Quantification
Assay kit per the manufacturer’s instructions. 50 μg of each sample was
separated for further processing. An internal pooled standard sample
comprised of equal masses of each sample was prepared, and 50 μg
aliquots were separated for further processing.
Samples were resuspended in a solution of 30% anhydrous acetonitrile

(ACN) with 200mM HEPES, pH= 8.5. Tandem mass tag (TMT) labels
(Thermo Fisher Scientific; Catalog Number: 90113) were suspended in
anhydrous ACN to a final concentration of 20mg/mL, and 7 μL were added
to each resuspended sample. The labeling scheme was organized such
that metadata features such as age and schizophrenia disease status were
randomly and equitably represented in each TMT 10-plex. The 126 channel
was reserved for the pooled internal standard across all multiplexed
experiments. The labeling reaction was allowed to proceed for 1 h at room
temperature, after which excess label was quenched through the addition
of 8 μL of 5% hydroxylamine for 15min. 50 μL of 1% trifluoroacetic acid
(TFA) was added to each sample, and within 10-plex samples were
combined and desalted on C18 columns (Waters) as above. Multiplexed
samples were dried under vacuum.
Multiplexed samples were next subjected to fractionation using reverse

phase high pH liquid chromatography. Briefly, samples were fractionated
on an Ultimate 3000 high performance liquid chromatography system
fitted with fraction collector, C18 column (4.6 x 250mm), solvent degasser,
and variable wavelength detector. Multiplexed samples were fractionated
on a gradient ranging from 22% to 35% ACN with 10mM ammonium
bicarbonate (ABC) over 60min. The resulting 96 fractions were con-
catenated using methods previously described [17]. Briefly, alternating
wells were combined within each column, resulting in 24 total fractions.
Alternating concatenated fractions were used for proteomic analysis, while
the other half were used for PTM-inclusive proteomic analysis. For the “low
resolution” proteome experiments, fraction A12 from ten-plexes 5 and 6
and fraction B1 for ten-plex 11 were lost during sample preparation. For
the “high resolution” proteome experiments, fraction B12 from ten-plex 6

and fraction B2 from ten-plex 9 were replaced with fractions A12 and A2,
respectively.

Mass spectrometry-based proteomic analysis
All proteome mass spectrometry data were collected on an Orbitrap Fusion
mass spectrometer (Thermo Fisher Scientific) with an in line Easy-nLC.
Previously described methods were utilized for data collection [15]. Briefly,
proteome data was collected using a “low resolution” method, wherein
MS2 peptide fragmentation occurred in the linear ion trap. In contrast,
PTM-enabled proteome data were collected using a “high resolution”
method, where MS2 peptide fragmentation occurred in the orbitrap,
reducing the overall coverage of the proteome data but enhancing our
ability to match spectra to translationally modified peptides.

Mass spectrometry-based metabolomic analysis
For metabolomic analysis, 100 μL of each plasma sample was segregated
for analysis. Metabolite extraction was performed on ice, wherein 400 μL of
cold methanol with 1mM of sulfamethazine were added to each sample.
Samples were subjected to mixing on a vortexer for 2 min. Protein
precipitation was enhanced during an incubation period of 20min at
−20 °C. Samples were subjected to centrifugation at 16,000 × g for 15min
in order to separate precipitated protein from extracted metabolites. The
supernatant resulting from centrifugation was transferred into a 96 well
plate and dried under vacuum. 53 schizophrenia (SZ) and 51 non-
psychiatric control (NC) samples were run on a Q-Exactive Mass Spectro-
meter (Thermo). Briefly, samples were run on a 150mm (internal diameter
2.1 μm) Kinetex Polar C18 column packed with 2.6 μm particles with 100 Å
pore size. Samples were run on 11.1 min gradients ranging from 0% to
100% ACN with 0.1% formic acid. Data were collected in a data-dependent
fashion in positive mode. Full mass spectrometry resolution was set to
35,000 with automatic gain control target of 5 × 105. The scan range was
100–500m/z for precursor ions. For MS/MS analysis, the resolution was set
to 35,000 with automatic gain control target of 5 × 105. Stepped
normalized collision energy levels were 20, 30, and 40. The minimum
automatic gain control target was 5 × 103. The apex trigger was set to
2–15 s with dynamic exclution of 10 s.

Data processing and normalization
Raw files generated using the “low resolution” proteome method were
searched using the SEQUEST algorithm in Proteome Discoverer 2.1 against
the reference proteome for Homo sapiens downloaded from Uniprot.com
on 2/18/2020. Data collected using the “high resolution” proteome method
were searched using Byonic through Proteome Discoverer. “Low resolu-
tion” data were searched using a precursor mass tolerance of 50 ppm and
fragment mass tolerance of 0.6 Da, while “high resolution” data were
searched using a precursor mass tolerance of 20 ppm and fragment mass
tolerance of 0.02 Da. For “low resolution” data, static modifications were
specified as follows: TMT 6-plex on lysines and N-termini and carbamido-
methylation of cysteines. Dynamic modifications were specified to include
oxidation of methionines. For low resolution data, dynamic modifications
were specified through Byonic using corresponding mass shifts found
through Unimod.com.
For metabolomics data, the area under the curve feature abundances

were calculated to produce a metabolome bucket table with the mzMine
software [18]. Parameters were as follows: Mass Detection (MS1 noise level
of 1E5, MS2 noise level of 1E2), ADAP Chromatogram Builder (min group
size in # of scans 3, group intensity threshold 1.5E3, min highest intensity
3E5, m/z tolerance of 0.005 Da or 10 ppm), Chromatogram deconvolution
(Local min search used, chromatographic threshold 0.01%, minimum in RT
range 0.50min, minimum relative height 0.01%, minimum absolute height
3E5, min ratio of peak top/edge 3, peak duration 0.05–0.50min, m/z range
for MS2 pairing 0.01 Da, RT range for MS2 pairing 0.10min), Isotopic peaks
grouper (m/z tolerance 0.05m/z or 10 ppm, RT tolerance 0.10min,
maximum charge 4), Join aligner (m/z tolerance 0.005m/z or 10 ppm,
weight for m/z 90, RT tolerance 0.10min, weight for RT 10) and filtered for
at least 2 peaks in a sample and gap filling was performed to produce the
final bucket table for statistical analysis. Molecular networking was
performed on GNPS through feature based molecular networking (release
18) [19]. Molecular networking was performed as follows: precursor and
fragment ion mass tolerance 0.05 Da, minimum cosine score of 0.7,
minimum matched fragment ions of 6. Molecular class annotations were
generated through the Qemistree workflow on GNPS which utilized the
programs Sirius and ClassyFire [20–22]. Annotations are level 3, or family
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level annotations, according to the 2007 metabolomics standards intiative
[23]. Data were normalized first by signal from the internal resuspension
standard, sulfadimethoxine and next by the sum of the signal per sample
(excluding signal from the internal standard). These percentages were then
scaled to a total of 1,000,000 signal per sample for downstream analysis.
Results included 1535MS2 features, of which 552 had putative annotations
through either GNPS or Qemistree. Data values were normalized using
three steps. First, quantitation values were normalized to the quantitation
value for the internal standard: sulfadimethozine. If no signal was present
for this metabolite, the value was left unchanged. Next, sulfadimethoxine
and its potassium derivative at 333m/z were removed, and the values
were normalized to the sum of the signal remaining in each channel.
Finally, the resulting values were multiplied by 1E6.

Data analysis with statistical assessment
Principle component analysis (PCoA) was performed using Qiime [24] for
analysis of cohort proteomics data (Supplementary Tables 1 and 2).
Statistical analysis testing the impact of clinical variables on mass
spectrometry datasets used to construct PCoA plots were performed
using PERMANOVA (for categorical variables) and Adonis (for continuous
variables) [25]. Binary comparison analyses were performed in Microsoft
Excel using the Student’s T Test with Welch’s correction when the
assumption of equal variance could not be met. Altered molecules were
highlighted when the binary comparison Student’s T Test yielded p < 0.05,

with Benjamini–Hochberg corrected p values highlighted in Supplemen-
tary Table 2 (proteome). String-db analysis was performed using a
compiled interaction confidence threshold of 0.6. K means clustering
was performed using Morpheus (Broad Institute). Bubble plots were
generated using the ‘plotly’ R package. Molecular function gene ontology
analysis and Reactome analysis were performed using Gprofiler. Figures
were generated using Python, Graphpad Prism, and Cytoscape. All
representative images were generated using Adobe Illustrator.
As explained in this methods section, every step of the proteomics to

bioinformatics procedures utilizes statistical criteria for evaluation of
significance. We do, however, note that statistical significance likely,
though not definitively, indicates the biological significance of the findings.
Thus, the potential pitfalls of any group of methods requires that they be
validated using different experimental approaches as topics of the next
studies of the research program (explained at the end of the Discussion
section).

RESULTS
Multi-omic analysis to assess broad-scale alterations related
to schizophrenia
In this study, we analyzed the plasma of 54 persons with
schizophrenia (SZs) and 51 age-comparable non-psychiatric com-
parison subjects (NCs) through three mass spectrometry-based

Fig. 1 Multi-omics analyses of plasma from schizophrenia (SZ) and control non-psychiatric comparison (NC) subjects by proteomics and
metabolomics to assess circulating molecular alterations. a Multi-omics mass spectrometry-based strategy for evaluating molecular profiles
in human schizophrenia. Plasma from 54 SZ and 51 NC subjects ranging in ages 28–74 years was subjected to (i) proteomics and PTM analyses
of trypsin-generated peptides subjected to TMT-labeling, fractionation, and mass spectrometry-based analysis, combined with (ii)
metabolomics analyses for identification of small molecules, as described in the methods. Data on patient clinical features of inflammation
(assayed by hs-CRP), BMI (body mass index), diabetes (HOMA-IR), triglycerides, and cholesterol were collected. Principal component analyses
(PCoA) of metavariable influence of proteome data were conducted for (b) High-sensitivity C-reactive protein (hs-CRP) levels in plasma of
subjects, (c) ages of subjects, (d) body mass index (BMI) of subjects, (e) triglyceride levels in plasma of subjects, (f) homeostatic model
assessment for insulin resistance (HOMA-IR), and (g) cholesterol levels in plasma. h Significance measurements for metadata variable impact
on PCoA distribution of proteome data. P values for categorical variables were measured using the PERMANOVA test for significance.
P values for continuous variables were measured using Adonis test. Data are represented as -Log10(p value) (*p value < 0.05; **p value < 0.01;
***p value < 0.001; dotted line threshold indicates p value < 0.05).
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approaches analyzing proteins, post-translational modifications
(PTMs) of proteins, and metabolites (Fig. 1a). Our cohort represented
an equitable distribution of ages and gender within groups
(Supplementary Fig. 1a, b). Sociodemographic and clinical informa-
tion were also collected for these patients, demonstrating that SZs

had lower levels of education, higher BMI, and higher rates of
smoking (Supplementary Table 1).
Proteomic analysis quantified 742 proteins (Supplementary Table 2).

PTM analysis identified 872 unique modified peptides derived from
140 proteins (Supplementary Table 3). The metabolomics data yielded
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1535 metabolites, of which 159 were matched to known annotations
(Supplementary Table 4).
To visualize the degree to which the collected data were

influenced by clinical variables, principal component analysis
(PCoA) was performed on each data set. The proteome data
separated significantly by schizophrenia status (Fig. 1b–h), though
the PTM-inclusive proteome and metabolome failed to do so
(Supplementary Fig. 2a, b). Metadata types assessed included
schizophrenia diagnosis, laboratory-measured hs-CRP level, age,
body mass index (BMI), triglyceride measurement, HOMA-IR (an
insulin resistance score), and cholesterol measurement. Statistical
tests were used to understand the degree to which metadata
variables influenced how samples differentially populated PCoA
space (Fig. 1h). Interestingly, after hs-CRP measurement (Fig. 1b),
the proteome data was most significantly influenced by subject
age (Fig. 1c), followed by BMI (Fig. 1d), triglyceride measurement
(Fig. 1e), and HOMA-IR value (Fig. 1f).
To assess the fidelity of the proteome data, CRP relative

abundance values were correlated to clinical laboratory measure-
ments, revealing a high degree of association between the
datasets (SZs p < 0.001; NCs p= 0.0012) (Supplementary Fig. 1c, d).
Relative abundance values of the low-density lipoprotein (LDL)
marker, ApoB, were also significantly correlated to clinical LDL
measurements (SZs and NCs p < 0.001). These findings validate the
methods undertaken herein and underscore the utility of mass
spectrometry-based proteomic data for elucidating the circulating
plasma proteome of schizophrenia.

Detection of metabolic dysfunction and inflammatory
signatures in schizophrenia
We next sought to identify individual molecular features
associated with schizophrenia. Binary comparisons were per-
formed to identify sets of proteins increased or decreased in
individuals with schizophrenia (Fig. 2a). We identified 129
upregulated and 69 downregulated proteins in our comparison
of SZs to NCs. Molecular function enrichment analysis revealed a
proinflammatory signature in SZs via terms such as “antigen
binding” and “complement binding” (Fig. 2b).
To understand the molecular pathway relationships between the

various up- and downregulated proteins, the pool of altered proteins
was subjected to network analysis using the knowledge-based
software tool, String-db (Fig. 2c). Proteins related to metabolism
were highly interconnected, including apolipoproteins and insulin-
like growth factor binding proteins (IGFBPs). Lipid-binding proteins
ApoB, ApoD, ApoF, and ApoM were reduced in patients with
schizophrenia, whereas ApoE was increased (Fig. 2d). Interestingly,
ApoB/D/F/M have been described as constituents of LDL particles

[26]. As expected, their abundance profile in schizophrenia mirrored
the reduced LDL levels measured in SZs (Supplementary Fig. 1e). In
contrast, ApoE, which is synthesized primarily in the brain, plays an
important role in many neurological disorders including schizo-
phrenia, where it is thought to regulate synaptic plasticity [27, 28].
Further metabolic dysregulation was detected as an upregulation in
IGFBP6 in schizophrenia and a decrease in IGF2 and IGFBP3/5/7/ALS
(Fig. 2e). Accompanying the metabolic disruption identified in
patients with schizophrenia was an increase in several complement
effector proteins, including C4a/b, C5, C6, C8a, and C9 (Fig. 2f).
Past studies have indicated a sex-bias for comorbidities in those

with schizophrenia [29, 30]. Therefore, sex differences in the
proteome dataset were evaluated through binary comparison
(Supplementary Fig. 3a, b). Reduced angiotensinogen (AGT) in
males, and increased alpha-1 acid glycoprotein (ORM1) in females
were the most significant sex-specific protein features in patients
with schizophrenia (Supplementary Fig. 3c, d). In the comparison of
females with and without schizophrenia, 50 proteins were altered
exclusively in females, 49 were altered exclusively in males, and 23
were altered in both sexes (Supplementary Fig. 3f). To visualize
interaction-based relationships between the subset of proteins
altered in schizophrenia in either sex, data were subjected to
functional network analysis (Supplementary Fig. 3e). Interestingly,
proteins altered in both sexes were highly correlated, indicating a
core set of molecular changes governing adverse health outcomes
of schizophrenia regardless of sex (Supplementary Fig. 3g).
Given the changes detected in proteins related to metabolic

function in schizophrenia and previous reports underscoring the
role of plasma protein PTMs on health and aging, we sought to
determine whether schizophrenia was associated with alterations
in PTMs [5, 31, 32]. Roughly two-thirds of the altered modified
peptides were higher in NCs than in SZs (Fig. 2g, h). Among the
modifications identified, oxidation was highly represented in
differentially modified peptides in NCs. This was surprising, as
protein oxidation is thought to be a prognosticator of aging and
chronic illnesses of dysfunctional metabolism [33–35]. In contrast,
increased peptide N-glycosylation was more highly represented in
SZs than in NCs (Fig. 2i). This finding aligns with previous reports
that glycosylated proteins are elevated in cardiovascular disease, a
significant cause of early mortality in people with schizophrenia
[1, 2, 32, 36, 37].
We next searched for altered metabolites in schizophrenia (Fig. 2j).

NC- and SZ-associated metabolites were broadly classified into
functional groups (Fig. 2k). The majority of altered metabolites were
classified as lipids, suggesting that schizophrenia is associated with
dysfunctional circulating lipid profiles. To explore functional relation-
ships between identified metabolites, molecular networking was

Fig. 2 Detection of metabolic dysfunction and inflammatory signatures in schizophrenia. a Binary comparison of proteome data by
volcano plot. The Log2(SZ/NC) ratios of relative abundance for proteins illustrates positive values indicating upregulation in SZ and negative
values indicating upregulation in the NC controls. Proteins highlighted in purple or blue showed significant relative abundance alterations
with p value < 0.05. b Molecular function gene ontology analysis of upregulated and downregulated proteins in schizophrenia compared to
NC controls. Functional protein systems that are positively and negatively associated with SZ are illustrated by the color-coded heat map key.
c String-db network of significantly altered proteins in schizophrenia patients. Network analyses conducted by String-db illustrate significantly
dysregulated SZ compared to NC proteins (assessed by Log2(SZ/NC ratios), which include protein categories of complement, insulin-like
growth factor binding proteins, and apolipoproteins. SZ and NC protein abundance profiles for (d) apolipoproteins, (e) insulin-like growth
factor proteins, (f) complement proteins. g Binary comparison of PTM-enabled proteome data by volcano plot. The Log2(SZ/NC) ratios of
relative abundance for PTM-proteins with positive values indicate upregulation and negative values indicate downregulation in SZ vs. NC
controls. Proteins highlighted in purple or blue showed significant relative abundance alterations with p value < 0.05. h Relative abundance of
10 PTM-proteins with highest relative modification frequency in SZ (purple) or NC (blue) subjects. i Differential distribution of detected PTM
types in SZ vs. NC subjects. j Binary comparison of metabolome data shown by volcano plot. Metabolomics data was assessed by Log2(SZ/NC)
and -Log10(p values), illustrating SZ-associated and NC-associated metabolites. It is noted that the antipsychotic drug clozapine and
olanzapine were uniquely associated with the SZ group. k Classification distribution of metabolites associated with NC and SZ subjects.
Shown are differential distributions of proportions of identified lipid molecules, benzenoids, organic acids and related, organoheterocyclic
compounds, oxygen compounds, and nitrogen compounds. l Dysregulated lipid molecules in schizophrenia patients assessed by GNPS
spectral networks. Spectral network shown demonstrates lipid-related molecules identified by Global Natural Product Social Molecular
Networking (GNPS) and their association to SZ or NC subjects. Node outline indicate significance (p value < 0.05), with significantly
dysregulated proteins indicated by arrows.
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performed (Supplementary Fig. 4) [19, 38]. Fold change and
significance data were overlaid onto the networked metabolites,
revealing a network of lipid-related molecules with strong associa-
tions to schizophrenia (Fig. 2l). The annotations are level 3, or family
level annotations, according to the 2007 metabolomics standards
intiative [23]. Notably, the annotation from a spectral match to
elaidic acid, reveals that this match to a singly unsaturated 18:1 fatty
acid with a molecular formula of C18H24O2 (Level 3), was upregulated
in SZs. In contrast, the annotation with a spectral match to linoleic
acid, which represents an 18:2 fatty acid with two double bonds
(C18H32O2, Level 3), was upregulated in NCs [39]. 18:1-fatty acids like
elaidic acid have been linked to increased risk of cardiovascular
disease and cancer, while 18:2-fatty acids such as linoleic acid are
associated with protection from cardiovascular disease and have
been linked to the pathophysiology of schizophrenia [39–44]. Taken
together, these findings detail a circulating metabolic and inflam-
matory molecular signature associated with schizophrenia.

Identifying molecular determinants of age-related disease risk
using a machine learning strategy
Given the documented risk of early death in schizophrenia and the
significant impact of aging on our proteome data, we evaluated
age-specific patterns of protein abundance (Fig. 1c, h). Patients were
stratified into three groups representing youth, middle age, and
advanced age—under 40, 40–60, and over 60—respectively, for
both SZs and NCs. To validate this classification system, hierarchical
clustering was performed on average protein abundances (Fig. 3a).

Using this method, SZs clustered together. Interestingly, NCs over
60 also clustered with SZs, while younger NCs clustered apart. This
suggests commonality between the plasma proteome of SZs at all
ages with NCs in the advanced age group.
Because patients with schizophrenia experience a higher

likelihood of early death, we sought to evaluate the age-
stratified data against a published dataset of proteins associated
with risk of death [45]. There was high concordance overall
between protein abundance fold change in schizophrenia and
previously reported risk of death among all age strata (Fig. 3b–d).
To uncover age-related patterns in our data, K means clustering

was performed on average protein abundance from each of the
six groups (Supplementary Table 5, Fig. 3e). Of particular interest
was cluster 4, wherein average abundance values increased with
age in healthy patients, but were higher in individuals with
schizophrenia throughout the life stages, especially in individuals
under 40. We hypothesize that this cluster represents a subset of
proteins associated with early onset of age-related disease in SZs,
as these proteins were found increased among older NCs.
The proteins within this cluster were subjected to functional

analysis (Fig. 4a). “Complement cascade” was the most signifi-
cantly enriched term. Interestingly, there have been several
reports on the relationship between complement signaling and
cardiovascular disease [46–50]. Also in cluster 4 were Cystatin-3
(CST3) (Fig. 4b) and Vitronectin (VTN) (Fig. 4c), proteolysis
inhibitors which have been described as robust biomarkers of
heart disease [45, 51]. We identified Fibrinogen-B (FGB) (Fig. 4d), a

Fig. 3 Identifying molecular determinants of age-related disease risk using a machine learning strategy. a Hierarchical clustering of
proteome data for age-related categories in schizophrenia and healthy control subjects revealing clustering by schizophrenia status and
age. Purple: schizophrenia; blue: healthy controls; dark green: < 40; mint green: 40–60; gray: > 60. Proteins associated death in ages groups of
(b) < 40 years, (c) 40–60 years, and (d) > 60 years old. Log2(SZ/NC) ratios of proteins associated with death at different age categories
are illustrated. e Age-stratification of differentially expressed protein clusters in SZ and control NC subjects. The heatmap color key shows
white for relative minimum value per protein, and relative maxima are indicated by cluster-specific colors for clusters 1–8.
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protein involved in the clotting cascade, and L-Plastin (Fig. 4e), a
critical inflammatory marker [52].
Given the heightened risk of early death in patients with

schizophrenia, strategies for early intervention against dysregu-
lated protein targets are needed. To evaluate the targetability of
proteins with increased abundance associated with schizophrenia
under 40, proteins from cluster 4 were subjected to network
analysis through String-db (Fig. 4f). The five most highly
connected proteins in this network were C3, CST3, AHSG, CRP,
and ApoE. Interestingly, investigational and FDA-approved drugs
have been developed to target these proteins [53–55]. These
drugs represent a promising avenue for early interventions against
the comorbidities associated with schizophrenia.
Finally, we hypothesized that molecular alterations in older SZs

could be signs of a robustly protective plasma milieu, simply by
virtue of this group’s survival into older adulthood. Indeed,
adiponectin, an adipokine that regulates insulin sensitivity and
may play a role in improving cognition, displayed a positive
relationship with age in the SZ group (Fig. 4g) [56].

DISCUSSION
Schizophrenia is a severe mental illness associated with significant
disruption to daily life, but also associated with physiologic
comorbidities thought to contribute to a shortened lifespan. To
achieve a global perspective on the circulating molecular factors
contributing to altered physiology in individuals with schizo-
phrenia, we undertook a mass spectrometry-based multi-omic
analysis of blood plasma samples collected from individuals
diagnosed with schizophrenia (SZs) and non-psychiatric control
subjects (NCs) representing individuals from six decades of life.
Our study found that despite significant heterogeneity in clinical
symptoms of schizophrenia, multi-omic analysis revealed sus-
tained metabolic disruption and increased inflammatory markers
among detected circulating proteome components. For example,

we identified reduced levels of ApoB/D/F/M in the proteome data,
which align with clinical findings of reduced lipid measurements
in schizophrenia (Supplementary Fig. 1e, f). In contrast, ApoE, a
protein that was increased among SZs in our data, has been linked
to the etiology of schizophrenia, but its role in metabolic health
highlights this protein as a target for further investigation [27, 28].
In addition to metabolic dysfunction, we also noted increased
immune-related proteins in SZs compared to NCs, a finding often
correlated with increased risk of age-related diseases such as
cancer, cardiovascular disease, and diabetes.
Our analysis of PTMs revealed reduced levels of oxidized peptides

in schizophrenia. Oxidation often occurs as a result of oxidative
stress, a process thought to increase the risk of aging-related
diseases. Interestingly, in spite of decreased protein oxidation in
schizophrenia, patients showed higher levels of inflammatory
markers and higher overall BMI, indicators of poorer overall health.
In contrast, increased N-glycosylation was higher in SZs. This finding
matches previous reports highlighting glycosylation as a risk factor
for atherosclerosis and cardiovascular disease [37].
Age-based stratification method revealed high levels of several

known cardiovascular disease biomarkers in SZs under 40. This
suggests that the molecular features of increased risk of age-
related comorbidities and death in people with schizophrenia are
present early in life. Highly interconnected proteins identified
within this network could represent attractive targets for the
prevention of comorbidities in younger patients with schizophre-
nia. For example, the most highly interconnected protein in the
constructed network, C3, has been targeted using the long-acting
C3 inhibitor, polyethylene glycol-Cp40, in paroxysmal nocturnal
hemoglobinuria [53].
While the psychiatric symptoms of schizophrenia can be

managed by current antipsychotic medications, there is room
for improvement in the management of other aspects of the
disorder, such as the cognitive deficits and significantly reduced
lifespan seen in persons with schizophrenia. Despite the presence

Fig. 4 Targetable determinants of early morbidity in schizophrenia. a Reactome functional analysis of proteins from cluster 4 represented
as a treemap. b–e Representative disease risk biomarkers identified in cluster 4. f String interaction network of proteins from cluster 4 (top 5
most interconnected proteins are highlighted in red with all interaction partners). g Trend in adiponectin protein abundance at various ages.
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of the antipsychotic drug medications in the serum of the
schizophrenia samples evaluated, there are still prominent
changes in serum biomarker proteins in schizophrenia, especially
those of the immune system. The data clearly shows that
antipsychotic drugs are not capable of attenuating numerous
dysregulated systems in schizophrenia, including, for example,
cystatin C which is upregulated in SZs under 40 and is correlated
with cognitive deficits [57]. It is known that antipsychotics fail to
ameliorate cognitive dysfunction in schizophrenia [58, 59]. There-
fore, this study reinforces the inflammatory changes in schizo-
phrenia that are not ameliorated by antipsychotic drugs. These
data demonstrate that future new approaches to address
cognitive deficits, metabolic dysfunction, and increased inflam-
matory signaling in schizophrenia are clearly needed.
The analyses presented here lay the groundwork for better

understanding metabolic disease risk factors at various stages of
life in schizophrenia. Future studies should include prospective
longitudinal investigations of larger and more diverse samples of
SZs and NCs. Larger sample sizes will enable analyses on
subgroups of patients with different illness severity and comor-
bidity and the development of more targeted strategies for
managing schizophrenia.
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