Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Distinct roles of astroglia and neurons in synaptic plasticity and memory

Abstract

Long-term potentiation (LTP) in the hippocampus is the most studied form of synaptic plasticity. Temporal integration of synaptic inputs is essential in synaptic plasticity and is assumed to be achieved through Ca2+ signaling in neurons and astroglia. However, whether these two cell types play different roles in LTP remain unknown. Here, we found that through the integration of synaptic inputs, astrocyte inositol triphosphate (IP3) receptor type 2 (IP3R2)-dependent Ca2+ signaling was critical for late-phase LTP (L-LTP) but not early-phase LTP (E-LTP). Moreover, this process was mediated by astrocyte-derived brain-derived neurotrophic factor (BDNF). In contrast, neuron-derived BDNF was critical for both E-LTP and L-LTP. Importantly, the dynamic differences in BDNF secretion play a role in modulating distinct forms of LTP. Moreover, astrocyte- and neuron-derived BDNF exhibited different roles in memory. These observations enriched our knowledge of LTP and memory at the cellular level and implied distinct roles of astrocytes and neurons in information integration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Astroglial IP3R2-dependent signaling is required for L-LTP.
Fig. 2: Astrocytic Ca2+ responses to HFS in IP3R2-KO and IP3R2-cKO mice and their WT mice.
Fig. 3: Astrocytic BDNF is required for L-LTP.
Fig. 4: Neuronal BDNF is critical for E-LTP and L-LTP.
Fig. 5: The dynamics of BDNF secretion are important in modulating distinct forms of LTP.
Fig. 6: Hippocampal-dependent learning and memory are differentially impaired among mice with manipulation in astroglia or neurons in the contextual fear conditioning test.

Similar content being viewed by others

References

  1. Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993;361:31–39.

    Article  CAS  PubMed  Google Scholar 

  2. Malenka RC, Nicoll RA. Long-term potentiation-a decade of progress? Science. 1999;285:1870–4.

    Article  CAS  PubMed  Google Scholar 

  3. Malenka RC, Bear MF. LTP and LTD: an embarrassment of riches. Neuron. 2004;44:5–21.

    Article  CAS  PubMed  Google Scholar 

  4. Nguyen PV, Abel T, Kandel ER. Requirement of a critical period of transcription for induction of a late phase of LTP. Science. 1994;265:1104–7.

    Article  CAS  PubMed  Google Scholar 

  5. Montarolo PG, Goelet P, Castellucci VF, Morgan J, Kandel ER, Schacher S. A critical period for macromolecular synthesis in long-term heterosynaptic facilitation in Aplysia. Science. 1986;234:1249–54. 1986-12-05

    Article  CAS  PubMed  Google Scholar 

  6. Herring BE, Nicoll RA. Long-Term Potentiation: From CaMKII to AMPA Receptor Trafficking. Annu Rev Physiol. 2016;78:351–65.

    Article  CAS  PubMed  Google Scholar 

  7. Malinow R, Malenka RC. AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci. 2002;25:103–26.

    Article  CAS  PubMed  Google Scholar 

  8. Ross WN. Understanding calcium waves and sparks in central neurons. Nat Rev Neurosci. 2012;13:157–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fields RD, Araque A, Johansen-Berg H, Lim S, Lynch G, Nave K, et al. Glial Biology in Learning and Cognition. Neuroscientist. 2014;20:426–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Araque A, Carmignoto G, Haydon PG, Oliet SH, Robitaille R, Volterra A. Gliotransmitters travel in time and space. Neuron. 2014;81:728–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Verkhratsky A, Rodriguez JJ, Parpura V. Calcium signalling in astroglia. Mol Cell Endocrinol. 2012;353:45–56.

    Article  CAS  PubMed  Google Scholar 

  12. Khakh BS, McCarthy KD. Astrocyte calcium signaling: from observations to functions and the challenges therein. Cold Spring Harb Perspect Biol. 2015;7:a20404.

    Article  Google Scholar 

  13. Henneberger C, Papouin T, Oliet SH, Rusakov DA. Long-term potentiation depends on release of D-serine from astrocytes. Nature. 2010;463:232–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Navarrete M, Perea G, Fernandez DSD, Gomez-Gonzalo M, Nunez A, Martin ED, et al. Astrocytes mediate in vivo cholinergic-induced synaptic plasticity. Plos Biol. 2012;10:e1001259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, et al. Astrocytic purinergic signaling coordinates synaptic networks. Science. 2005;310:113–6.

    Article  CAS  PubMed  Google Scholar 

  16. Yang Y, Ge W, Chen Y, Zhang Z, Shen W, Wu C, et al. Contribution of astrocytes to hippocampal long-term potentiation through release of D-serine. Proc Natl Acad Sci USA. 2003;100:15194–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Volterra A, Liaudet N, Savtchouk I. Astrocyte Ca(2)(+) signalling: an unexpected complexity. Nat Rev Neurosci. 2014;15:327–35.

    Article  CAS  PubMed  Google Scholar 

  18. Adamsky A, Kol A, Kreisel T, Doron A, Ozeri-Engelhard N, Melcer T, et al. Astrocytic activation generates de novo neuronal potentiation and memory enhancement. Cell. 2018;174:59–71.

    Article  CAS  PubMed  Google Scholar 

  19. Bazargani N, Attwell D. Astrocyte calcium signaling: the third wave. Nat Neurosci. 2016;19:182–9.

    Article  CAS  PubMed  Google Scholar 

  20. Li X, Zima AV, Sheikh F, Blatter LA, Chen J. Endothelin-1-induced arrhythmogenic Ca2+ signaling is abolished in atrial myocytes of inositol-1,4,5-trisphosphate(IP3)-receptor type 2-deficient mice. Circ Res. 2005;96:1274–81.

    Article  CAS  PubMed  Google Scholar 

  21. Agulhon C, Fiacco TA, McCarthy KD. Hippocampal short- and long-term plasticity are not modulated by astrocyte Ca2+ signaling. Science. 2010;327:1250–4.

    Article  CAS  PubMed  Google Scholar 

  22. Petravicz J, Fiacco TA, McCarthy KD. Loss of IP3 receptor-dependent Ca2+ increases in hippocampal astrocytes does not affect baseline CA1 pyramidal neuron synaptic activity. J Neurosci. 2008;28:4967–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shigetomi E, Jackson-Weaver O, Huckstepp RT, O’Dell TJ, Khakh BS. TRPA1 channels are regulators of astrocyte basal calcium levels and long-term potentiation via constitutive D-serine release. J Neurosci. 2013;33:10143–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Srinivasan R, Huang BS, Venugopal S, Johnston AD, Chai H, Zeng H, et al. Ca(2+) signaling in astrocytes from Ip3r2(-/-) mice in brain slices and during startle responses in vivo. Nat Neurosci. 2015;18:708–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sherwood MW, Arizono M, Hisatsune C, Bannai H, Ebisui E, Sherwood JL, et al. Astrocytic IP3 Rs: Contribution to Ca(2+) signalling and hippocampal LTP. Glia. 2017;65:502–13.

    Article  PubMed  Google Scholar 

  26. Pang PT, Lu B. Regulation of late-phase LTP and long-term memory in normal and aging hippocampus: role of secreted proteins tPA and BDNF. Ageing Res Rev. 2004;3:407–30.

    Article  CAS  PubMed  Google Scholar 

  27. Yuste R, Bonhoeffer T. Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu Rev Neurosci. 2001;24:1071–89.

    Article  CAS  PubMed  Google Scholar 

  28. Liu JH, Li ZL, Liu YS, Chu HD, Hu NY, Wu DY, et al. Astrocytic GABAB receptors in mouse hippocampus control responses to behavioral challenges through astrocytic BDNF. Neurosci Bull. 2020;36:705–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hu NY, Chen YT, Wang Q, Jie W, Liu YS, You QL, et al. Expression patterns of inducible Cre recombinase driven by differential astrocyte-specific promoters in transgenic mouse lines. Neurosci Bull. 2020;36:530–44.

    Article  PubMed  Google Scholar 

  30. Shigetomi E, Bushong EA, Haustein MD, Tong X, Jackson-Weaver O, Kracun S, et al. Imaging calcium microdomains within entire astrocyte territories and endfeet with GCaMPs expressed using adeno-associated viruses. J Gen Physiol. 2013;141:633–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pierozan P, Ferreira F, Ortiz DLB, Goncalves FC, Totarelli MP, de Castro MN, et al. The phosphorylation status and cytoskeletal remodeling of striatal astrocytes treated with quinolinic acid. Exp Cell Res. 2014;322:313–23.

    Article  CAS  PubMed  Google Scholar 

  32. Boda B, Mendez P, Boury-Jamot B, Magara F, Muller D. Reversal of activity-mediated spine dynamics and learning impairment in a mouse model of Fragile X syndrome. Eur J Neurosci. 2014;39:1130–7.

    Article  PubMed  Google Scholar 

  33. Alkayed F, Kashimata M, Koyama N, Hayashi T, Tamura Y, Azuma Y. P2Y11 purinoceptor mediates the ATP-enhanced chemotactic response of rat neutrophils. J Pharmacol Sci. 2012;120:288–95.

    Article  CAS  PubMed  Google Scholar 

  34. Silva TM, Franca GR, Ornelas IM, Loiola EC, Ulrich H, Ventura AL. Involvement of nucleotides in glial growth following scratch injury in avian retinal cell monolayer cultures. Purinergic Signal. 2015;11:183–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Perea G, Navarrete M, Araque A. Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci. 2009;32:421–31.

    Article  CAS  PubMed  Google Scholar 

  36. Miklič Š, Jurič DM, Čaman-Kržan M. Differences in the regulation of BDNF and NGF synthesis in cultured neonatal rat astrocytes. Int J Dev Neurosci. 2004;22:119–30.

    Article  PubMed  CAS  Google Scholar 

  37. Parpura V, Zorec R. Gliotransmission: exocytotic release from astrocytes. Brain Res Rev. 2010;63:83–92.

    Article  CAS  PubMed  Google Scholar 

  38. Jean YY, Lercher LD, Dreyfus CF. Glutamate elicits release of BDNF from basal forebrain astrocytes in a process dependent on metabotropic receptors and the PLC pathway. Neuron Glia Biol. 2008;4:35–42.

    Article  PubMed  Google Scholar 

  39. Messaoudi E, Ying SW, Kanhema T, Croll SD, Bramham CR. Brain-derived neurotrophic factor triggers transcription-dependent, late phase long-term potentiation in vivo. J Neurosci. 2002;22:7453–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kang H, Schuman EM. Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science. 1995;267:1658–62.

    Article  CAS  PubMed  Google Scholar 

  41. Patterson SL, Abel T, Deuel TA, Martin KC, Rose JC, Kandel ER. Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron. 1996;16:1137–45.

    Article  CAS  PubMed  Google Scholar 

  42. Lu Y, Christian K, Lu B. BDNF: A key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol Learn Mem. 2008;89:312–23.

    Article  CAS  PubMed  Google Scholar 

  43. Bekinschtein P, Cammarota M, Izquierdo I, Medina JH. BDNF and memory formation and storage. Neuroscientist. 2008;14:147–56.

    Article  CAS  PubMed  Google Scholar 

  44. Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR, Lafaille JJ, et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell. 2013;155:1596–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cao X, Li LP, Wang Q, Wu Q, Hu HH, Zhang M, et al. Astrocyte-derived ATP modulates depressive-like behaviors. Nat Med. 2013;19:773–7.

    Article  CAS  PubMed  Google Scholar 

  46. Kovalchuk Y, Hanse E, Kafitz KW, Konnerth A. Postsynaptic Induction of BDNF-Mediated Long-Term Potentiation. Science. 2002;295:1729–34.

    Article  CAS  PubMed  Google Scholar 

  47. Maren S. Neurobiology of Pavlovian fear conditioning. Annu Rev Neurosci. 2001;24:897–931.

    Article  CAS  PubMed  Google Scholar 

  48. Martinowich K, Manji H, Lu B. New insights into BDNF function in depression and anxiety. Nat Neurosci. 2007;10:1089–93.

    Article  CAS  PubMed  Google Scholar 

  49. Fiacco TA, Agulhon C, Taves SR, Petravicz J, Casper KB, Dong X, et al. Selective stimulation of astrocyte calcium in situ does not affect neuronal excitatory synaptic activity. Neuron. 2007;54:611–26.

    Article  CAS  PubMed  Google Scholar 

  50. Grienberger C, Konnerth A. Imaging calcium in neurons. Neuron. 2012;73:862–85.

    Article  CAS  PubMed  Google Scholar 

  51. Vignoli B, Battistini G, Melani R, Blum R, Santi S, Berardi N, et al. Peri-synaptic glia recycles brain-derived neurotrophic factor for LTP stabilization and memory retention. Neuron. 2016;92:873–87.

    Article  CAS  PubMed  Google Scholar 

  52. Park H, Poo MM. Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci. 2013;14:7–23.

    Article  CAS  PubMed  Google Scholar 

  53. Huang YZ, Pan E, Xiong ZQ, McNamara JO. Zinc-mediated transactivation of TrkB potentiates the hippocampal mossy fiber-CA3 pyramid synapse. Neuron. 2008;57:546–58.

    Article  CAS  PubMed  Google Scholar 

  54. Harward SC, Hedrick NG, Hall CE, Parra-Bueno P, Milner TA, Pan E, et al. Autocrine BDNF–TrkB signalling within a single dendritic spine. Nature. 2016;538:99–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ji Y, Lu Y, Yang F, Shen W, Tang TT, Feng L, et al. Acute and gradual increases in BDNF concentration elicit distinct signaling and functions in neurons. Nat Neurosci. 2010;13:302–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lu Y, Ji Y, Ganesan S, Schloesser R, Martinowich K, Sun M, et al. TrkB as a potential synaptic and behavioral tag. J Neurosci. 2011;31:11762–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kang H, Welcher AA, Shelton D, Schuman EM. Neurotrophins and time: different roles for TrkB signaling in hippocampal long-term potentiation. Neuron. 1997;19:653–64.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Chen (University of California, San Diego) for providing IP3R2+/− mice and P.G. Haydon (Tufts University School of Medicine, Boston) for providing GFAP-tTA and tetO.SNARE mouse lines. We also thank Dr. B.S. Khakh (University of California Los Angeles, Los Angeles) for providing GECIquant software. This work was supported by grants from the National Natural Science Foundation of China (82090032, 31830033, 31600864), the Program for Changjiang Scholars and Innovative Research Team in University (IRT_16R37), the Key-Area Research and Development Program of Guangdong Province (2018B030334001, 2018B030340001), the Science and Technology Program of Guangzhou (202007030013), Natural Science Foundation of Guangdong Province (2021A1515012181) and Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence Fund (2019020).

Author information

Authors and Affiliations

Authors

Contributions

TG and JLiu designed the study. JLiu, QW, and JLan performed the behavior tests and analysis. JLiu and MZ performed the electrophysiology recordings. QW conducted the ELISA measurements. NH performed the immunofluorescence. WJ performed the Ca2+ imaging. DW conducted the stereotaxic microinjection. SL, KZ, and XL performed the western blotting. TG conceived the project and wrote the manuscript with the assistance of JLiu and JY.

Corresponding author

Correspondence to Tian-Ming Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JH., Zhang, M., Wang, Q. et al. Distinct roles of astroglia and neurons in synaptic plasticity and memory. Mol Psychiatry 27, 873–885 (2022). https://doi.org/10.1038/s41380-021-01332-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01332-6

This article is cited by

Search

Quick links