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Cognitive deficits are central attendant symptoms of major depressive disorder (MDD) with a crucial impact in patients’ everyday
life. Thus, it is of particular clinical importance to understand their pathophysiology. The aim of this study was to investigate a
possible relationship between brain structure and cognitive performance in MDD patients in a well-characterized sample. N= 1007
participants (NMDD= 482, healthy controls (HC): NHC= 525) were selected from the FOR2107 cohort for this diffusion-tensor
imaging study employing tract-based spatial statistics. We conducted a principal component analysis (PCA) to reduce
neuropsychological test results, and to discover underlying factors of cognitive performance in MDD patients. We tested the
association between fractional anisotropy (FA) and diagnosis (MDD vs. HC) and cognitive performance factors. The PCA yielded a
single general cognitive performance factor that differed significantly between MDD patients and HC (P < 0.001). We found a
significant main effect of the general cognitive performance factor in FA (Ptfce-FWE= 0.002) in a large bilateral cluster consisting of
widespread frontotemporal-association fibers. In MDD patients this effect was independent of medication intake, the presence of
comorbid diagnoses, the number of previous hospitalizations, and depressive symptomatology. This study provides robust
evidence that white matter disturbances and cognitive performance seem to be associated. This association was independent of
diagnosis, though MDD patients show more pronounced deficits and lower FA values in the global white matter fiber structure. This
suggests a more general, rather than the depression-specific neurological basis for cognitive deficits.
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INTRODUCTION
Cognitive deficits are attendant symptoms of major depressive
disorder (MDD) as defined by the International Classification of
Disease (ICD-11) [1] that occur in two-thirds of depressed patients
[2]. Deficits were described in several domains of cognition
including executive function, attention, concentration, learning,
memory, and psychomotor processing speed [2–5], while auto-
matic stages of processing seem to be less affected than
controlled, effortful processing domains [6, 7].
Understanding the causes of cognitive dysfunction in depres-

sion is of high clinical relevance. Some cognitive deficits seem to
persist after remission [8–10], and increase with every MDD
episode [11, 12]. They are associated with reductions in
psychosocial functioning in MDD [13, 14] with consequences for
occupation, social interactions, and health. First, patients suffering
from cognitive deficits are less likely to obtain and sustain a job
[15]. Second, they have problems maintaining household, or social

and family relationships [16]. Lastly, cognitive deficits appear to
increase proneness to relapse [17] and suicidal ideations [18], by
reducing social support [16], impairing treatment success [19], and
compromising problem-solving capacities [20]. The treatment of
cognitive deficits could therefore improve MDD patients’
functioning.
The neurobiological perspective might shed light on the

underpinnings of cognitive deficits in MDD. Following lesion
studies, the classic neurobiological view of cognitive deficits
focused on the impairment of specialized brain regions respon-
sible for unique cognitive operations. In doing so, complex models
were established that focus on the prefrontal cortex, hippocam-
pus, anterior cingulate cortex, and basal ganglia [21].
The brain is, however, characterized by a network of complex,

reciprocal anatomical connections. Thus, the connectome per-
spective that higher cognitive functioning depends upon the
integration of various inputs from specialized regions, seems more
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consistent with the brain’s architecture [22]. One possible measure
of the microstructure of interconnecting fibers is diffusion-tensor
imaging (DTI), a noninvasive, affordable, and efficient measure-
ment to estimate fiber microstructure, reflecting myelination, axon
density, axon diameter, and the number of fibers [23, 24]. White
matter microstructure assessed by means of DTI has shown strong
associations with cognitive performance in multiple studies in
healthy controls (HC) and patient groups. In HC, cognitive
performance measures were linked to fiber integrity in frontal
association fibers [25–27], like the corpus callosum (CC), the
cingulum bundle (CB), the superior longitudinal fasciculi (SLF), or
the inferior fronto-occipital fasciculi (IFOF) [28, 29]. Likewise,
similar associations of DTI-based measures of fiber integrity and
cognitive deficits have already been described in different brain
disorders, e.g., stroke [30], Parkinsons disease [31], small-vessel
disease [32], multiple sclerosis [33], diabetes [34], substance abuse
[22], schizophrenia [35, 36], or bipolar disorder [37].
However, the role of white matter integrity regarding cognitive

deficits of MDD patients has attracted less attention, albeit MDD
was associated with reductions in fiber microstructure in the IFOF,
the uncinate fasciculi (UF), the thalamic radiation (TR), the
corticospinal tract (CT), and the inferior longitudinal fasciculi
(ILF) and the SLF, the CB, and the CC compared with HC [38–41]
and changes in the white matter connectome [42, 43].
Unfortunately, studies investigating the association between

these microstructural abnormalities and cognitive deficits in MDD
are sparse: In geriatric depression, associations between cognitive
deficits and brain microfiber structure were found in overall
prefrontal white matter, the CC, the TR, and the UF [44–46].
However, we are not aware of a study investigating white matter
disturbances using DTI over the entire age and severity range of
MDD patients.

Another open question is the specificity of these potential
alterations in MDD. The aim of this study was, thus, to the extent
of previous results to the entire severity spectrum of MDD
patients and to compare the association between fiber
microstructure and cognitive deficits with HC. First, we expect
MDD patients to perform worse on cognitive tests. These deficits
should decline, but still be detectable in remitted patients
(hypothesis 1). Second, we expect that MDD patients have lower
fiber microstructure compared with HC in the IFOF, the UF, the
TR, the CT, the SLF and the ILF, the CB, and the CC (hypothesis 2).
Further, as associations between white matter microstructure
and cognitive deficits were already shown for a wide range
of disorders, we do not expect that the association of cognitive
test measures and white matter integrity is restricted to
MDD patients. Rather, we would assume that the magnitude
of the association between white matter and cognitive
functioning should be similar between MDD patients and HC
(hypothesis 3).

MATERIALS AND METHODS
Participants
N= 1007 participants (MDD: N= 482, Mage= 37.12, 311♀, HC: N= 525,
Mage= 31.68, 321♀, Table 1, Supplement 1) were selected from the
FOR2107 cohort assessed at two scanning sites—Marburg and Münster
(the general description of the study [47] and the magnetic resonance
imaging (MRI) quality-assurance protocol [48] are provided elsewhere).
Participants were recruited through newspaper advertisements or in
psychiatric hospitals.
The FOR2107 cohort was approved by the Ethics Committees of the

Medical Faculties, University of Marburg and University of Münster. All
experiments were performed in accordance with the ethical guidelines and
regulations. All participants gave written informed consent prior to

Table 1. Descriptive statistics of the sample used in this study.

MDD (N= 482) HC (N= 525) Test statistic P value Cohen’s d

Age, M ± SD 37.12 ± 13.47 31.68 ± 11.87 t(962.3)=−6.77a <0.001 0.436

Sex, f/m 311/171 321/204 χ²(1)= 1.23b 0.268 –

IQMVT, M ± SD 113.79 ± 13.71 114.98 ± 13.72 t(1005)= 1.38c 0.170 0.087

Education years, M ± SD 13.15 ± 2.76 13.98 ± 2.42 t(1005)= 5.05c <0.001 0.329

BDI Sum, M ± SD 17.99 ± 11.19 2.50 ± 2.15 t(505.68)=−29.68a <0.001 2.640

TMT-A, M ± SD 26.16 ± 10.36 22.52 ± 8.40 t(927.0)=−6.10a <0.001 0.401

TMT-B, M ± SD 57.12 ± 24.30 46.89 ± 17.30 t(861.5)=−7.64a <0.001 0.521

DSST, M ± SD 55.97 ± 12.17 65.45 ± 11.05 t(973.2)= 12.9a <0.001 0.827

RAVLT-S, M ± SD 55.73 ± 9.87 60.15 ± 8.27 t(941.7)= 7.68a <0.001 0.501

RAVLT-R, M ± SD 13.14 ± 2.99 13.90 ± 1.89 t(799.2)= 4.75a <0.001 0.336

CBTT-f, M ± SD 8.65 ± 1.84 9.44 ± 1.96 t(1005)= 6.63c <0.001 0.418

CBTT-b, M ± SD 8.04 ± 1.91 9.00 ± 1.71 t(969.0)= 8.42a <0.001 0.541

d2, M ± SD 168.05 ± 43.05 194.00 ± 42.86 t(1005)= 9.58c <0.001 0.604

LNS, M ± SD 15.83 ± 3.20 16.96 ± 3.09 t(1005)= 5.70c <0.001 0.360

VF-C, M ± SD 23.20 ± 6.01 25.45 ± 5.63 t(1005)= 6.15c <0.001 0.388

VF-P, M ± SD 11.32 ± 4.22 12.44 ± 4.41 t(1005)= 4.11c <0.001 0.259

VF-A, M ± SD 15.27 ± 3.48 16.90 ± 3.26 t(1005)= 7.62c <0.001 0.481

General Cognitive Performance factor, M ± SD −0.37 ± 1.03 0.34 ± 0.84 t(1005)=−12.04 <0.001 0.935

Number of hospitalizations, M ± SD 1.66 ± 2.16 – – – –

Medication Load Index, M ± SD 1.32 ± 1.43 – – – –

Comorbid diagnosis (yes/no) 203/279 – – – –

BDI Sum beck depression inventory, CBTT-f/b Corsi block-tapping test, forwards/backwards, d2 d2 test of attention, DSST digit symbol substitution test, HC
healthy control, IQMVT Intelligence quotient evaluated with the multiple-choice vocabulary test version B (dt. “Mehrfachwahl-Wortschatz-Test Version B”), LNS
letter–number–sequences test, Mmean, MDD major depressive disorder, RAVLT-S/B Rey Auditory Verbal Learning Test, sum of all correct words/recognition, SD
standard deviation, TMT-A/B trail making test, Version A/B, VF-C/P/A verbal fluency test, category/phonemic/alternating.
aTwo-sample t test assuming unequal variance, bPearson χ² test, ctwo-sample t test assuming equal variance.
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examination. They received financial compensation for participation after
the testing session.
Trained personnel confirmed psychiatric diagnoses or the lack thereof

using the Structural Clinical Interview for DSM-IV-TR (SCID-IV) [49]. MDD
patients were considered if they reported a current or lifetime diagnosis of
MDD (severe, moderate, mild, (partially) remitted episode). Remission was
defined as the absence of DSM-IV-TR diagnostic criteria for a MDD episode
for at least two months at the time of the interview. Partial remission
classifies patients with subclinical symptoms (i.e., symptoms are insufficient
to fulfill the diagnostic criteria of an MDD episode but severe enough to
interfere with daily functioning) or if the time of recovery was shorter than
2 months.

Questionnaires, tests, and other clinical characteristics
In the FOR2107 cohort, all participants underwent neurocognitive testing
in five subdomains of cognition: (1) executive functioning and sustained
attention, 2) long and short-term memory performance, (3) visuospatial
working memory, (4) verbal working memory, and (5) semantic
processing. For a detailed description of the neurocognitive test battery,
see Supplement 2. The general intelligence quotient (IQMVT) was
estimated with the German version of the multiple-choice vocabulary
intelligence test (MVT). Participants provided their highest educational
degree. Education years were then estimated according to the typical
time it takes to acquire the said degree.
To correct for typical clinical characteristics associated with MDD the

following questionnaires and scores were used: The Beck Depression
Inventory (BDI) [50] to assess current symptomatology, the number of prior
hospitalizations provided by the participants in an interview, the
Medication Load Index [51], a composite measure of total medication
load reflecting daily dose and number of prescriptions irrespective of
active components, and the presence of any comorbidities provided by
the SCID-I interview.

Analysis
Analysis 1: factor analysis. To address hypothesis 1, we conducted an
explorative principal component analysis (PCA; KMO= 0.888; Bartlett (66)=
4308.3, P< 0.001) with varimax rotation to reduce the 12 neuropsychological
test scores to fewer variables. The component scores for each extracted factor
were computed using a regression approach. Demographic data and the
component analysis were analyzed using IBM SPSS Statistics 26 (SPSS Inc.,
Chicago, IL, USA).

Analyses 2 and 3: diffusion-tensor imaging. The DTI data acquisition,
quality-assurance protocol, and preprocessing steps have already been
published [38]. Detailed information can be found in Supplements 3.
Analysis was performed with FSL5.0.10 (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/,
FMRIB, Oxford Center for Functional MRI of the Brain, University of Oxford,
Department of Clinical Neurology, John Radcliffe Hospital, Oxford, UK) [52–
54]. Tensor-derived maps were generated and fractional anisotropy (FA),
mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) for
each voxel per participant were estimated [55]. FA is defined as the
normalized variance of the three eigenvalues about their mean. FA
quantifies directional diffusion, MD is the average of all three eigenvalues,
AD is equivalent to the first eigenvalue reflecting the primary diffusion
direction which representing tract orientation, and RD is the mean of the
second and third eigenvalue, representing motion perpendicular to the
tract. As the number of fibers, fiber crossings, and general fiber orientation
can also influence diffusion metrics in healthy fiber structure [56], the
values should be interpreted with caution. Nonetheless, increased MD and
decreased FA are measures of neuronal injury, while increased RD
measures demyelination and increased AD axonal damage [57].
As tract-based spatial statistics (TBSS) reduces partial volume effects and

registration misalignments [58], it was used for all DTI analyses (Supple-
ments 3). To test for statistical significance, the nonparametric permutation
testing implemented in FSL’s “randomize” [59] was used with 5000
permutations. Using the default options optimized for TBSS, threshold-free
cluster enhancement (TFCE) was used to correct for multiple comparisons.
Significance was determined by correcting for the family-wise error (FWE;
P < 0.05) using the 95th percentile of the null distribution of permutated
input data of the maximum TFCE scores [60]. For scatterplots and additional
analyses in SPSS, the average FA per participant of significant clusters was
extracted using FSL’s “fslstats”. The total intracranial volume (TIV) was
extracted from T1 images using the Computational Anatomy Toolbox (CAT-
12, http://www.neuro.uni-jena.de/cat, v933, Supplement 3). More detailed

information about the statistics and general methods can be found in
Supplement 4.
Results focus on FA as it is the most widely reported DTI measure.

However, as the combination of different DTI metrics can be beneficial for
interpretation, results in MD, RD, and AD are described in Supplement 5.
To correct for scanner differences, two dummy coded variables (Marburg
pre-body-coil change, Marburg post-body-coil change) with Münster as
reference category were calculated.
To replicate the effects of reduced fiber integrity (lower FA, higher MD/

RD) in MDD patients compared with HC (hypothesis 2) an ANCOVA with FA
as the dependent variable, diagnosis (HC vs. MDD) as an independent
variable was conducted (Analysis 2).
Further, to investigate the association of neurocognitive functioning with

fiber structure, an ANCOVA with FA as the dependent variable, diagnosis
(HC vs. MDD), the extracted neurocognitive factors, and their interaction
with diagnosis as independent variables was conducted (Analysis 3).
We expected a significant main effect of neurocognitive functioning
irrespective of diagnosis (Hypothesis 3). Additional control analyses were
performed including a complementary tractography-based connectome
analysis and analyses using T1 structural data (Supplement 3). If not
otherwise specified, all analyses included the following nuisance variables:
age, sex, TIV, Marburg pre-body-coil, Marburg post-body-coil, IQMVT, and the
number of education years.

RESULTS
Analysis 1. Factor analysis for neuropsychological tests
As expected, MDD patients performed significantly worse
compared to HC on all neuropsychological tests (all P < 0.001,
Table 1) with small (e.g., for verbal fluency) to large (processing
speed) effect sizes (Cohen’s d range:[0.26–0.83]). While the five-
factor structure ((1) executive functioning and sustained attention,
(2) long and short-term memory performance, (3) visuospatial
working memory, (4) verbal working memory, and (5) verbal
fluency) could be replicated with clear allocations of each test to
one of the five factors (Supplement 6), the scree plot (Supple-
mentary Fig. 1) from the explorative PCA strongly suggested a
one-factor solution (EVfactor= 4.953) accounting for 41.28% of
the variance and factor-loadings ranging from 0.461 to 0.777
(Supplementary Table 1).

Differences between MDD and HC in cognitive performance. GCP
differed significantly between MDD patients and HC (F(1,1001)=
74.46, P < .001, η²= 0.069) with a medium sized effect even after
taking age, sex, IQMVT and education years into account. More
precisely, acute and (partially) remitted MDD patients differed
from HC in their GCP (F(1,1001)= 34.40, P < 0.001, η²= 0.033,
Fig. 1). Post hoc Bonferroni corrected tests revealed that HC
differed from acute (P < 0.001, 95% confidence interval (CI): [0.67,
1.06]), partially remitted (P < 0.001, CI: [0.42, 0.91]) and completely
remitted MDD patients (P < 0.001, CI: [0.25, 0.73]), respectively.
Acute MDD patients presented with lower GCP compared with
completely remitted MDD patients (P= 0.002, CI: [−0.64, −0.10]),
but not compared with partially remitted MDD patients (P= 0.300,
CI: [−0.48, 0.07]. Lastly, the difference between partially and
completely remitted MDD patients was not significant (P= 0.877,
CI: [−0.48, 0.14]). Likewise, GCP was negatively associated with
depression severity (BDI) in the MDD subsample after controlling
for age, sex, IQMVT, and education years (F(1,469)= 4.82, P= 0.029,
η²= 0.010; b=−0.007).

Analysis 2. Group differences (MDD vs. HC)
Prior to the inclusion of GCP in the model, the effect of diagnosis
on FA was not significant (PFWE= 0.072). Significant effects were
found for AD, but not in MD and RD (Supplement 2). However,
when including only acute MDD patients and HC, a main effect of
diagnosis was found in FA (Ptfce-FWE= 0.018, k= 15,111 voxels in
three clusters, MNI-coordinates of the peak voxel from the largest
cluster: x= 34, x=−18, 36, Fig. 2) in all eight anticipated fiber
bundles (Supplementary Table 2).
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Analysis 3. ANCOVA including the general cognitive
performance (GCP) factor
After including GCP into the model, neither the main effect of
diagnosis (Ptfce-FWE= 0.264) nor a diagnosis × GCP interaction
(Ptfce-FWE= 0.365) could be found for FA, while a significant main
effect of diagnosis was still present for AD (Supplement 5).
However, we found a significant main effect of GCP (Ptfce-FWE=
0.002, k= 43,700 voxels in one cluster, MNI-coordinates of the
peak voxel: x= 31, y=−66, z= 11, Supplementary Table 3, Fig. 3)
in a large bilateral cluster consisting of the CC, the IFOF, the
anterior TR, and the SLF and ILF among other regions
(Supplementary Table 2). Even after excluding (partially) remitted
MDD patients to reduce variance and enhance differences with
HC, this association between FA and GCP remained (Supple-
ment 7). To verify that results were independent of the MRI
scanner, two ANCOVAs with the mean FA values per participant
from the significant cluster as the dependent variable were
calculated in SPSS. This analysis confirmed that the GCP effect
was present at both scanning sites, respectively (Marburg:
F(1,628)= 31.67, P < 0.001, η²= .048, Münster: F(1,361)= 12.93,
P < 0.001, η²= 0.035). As GCP and diagnosis are depending on
each other, a linear ANCOVA might not be adequate to
disentangle their effects. Thus, the analysis was repeated in SPSS
using a nonparametric Generalized estimating equation (GEE)
analysis. The results were confirmed using this method (main
effect diagnosis: Wald-χ²(1)= 0.29, P= 0.589; main effect GCP:
Wald-χ²(1)= 25.95, P < 0.001; interaction: Wald-χ²(1)= 0.40, P=
0.528). The tractography-based connectome analysis confirmed
that the associations with GCP were widespread, including fibers

zz = 105 z = 95 z = 65 y = 106 

Fig. 2 Healthy controls had higher fractional anisotropy (FA) values compared with acute depressive patients. FA values are displayed at
Ptfce-FWE < 0.05 onto the FMRIB58 template. Slice position is noted above the brain images.

Fig. 3 Association of fractional anisotropy (FA) and the general cognitive performance factor in major depressive disorder (MDD)
patients and healthy controls (HC). FA values were extracted with a threshold of Ptfce-FWE< 0.01 and displayed onto the FMRIB58 template in the
x=−36, y=−9, z= 11 planes in MNI space. The scatterplot depicts mean FA values of the significant cluster with a threshold of Ptfce-FWE < 0.05.

Fig. 1 The general cognitive performance factor in HC and MDD
patients. MDD patients were divided into remitted, partially
remitted and acute MDD by the SCID-I diagnoses. HC healthy
controls, MDD major depressive disorder, SE standard error.
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connecting nearly all anatomical brain regions irrespective of the
method of analysis (Supplement 8 and Supplementary Fig. 2). The
effect in the MDD subgroup remained significant, even after
taking medication intake, the presence of comorbid diagnoses,
number of previous hospitalizations, and BDI into account in an
additional ANCOVA in SPSS (Table 2). Except for verbal working
memory performance, all subdomains of GCP were associated
with the mean extracted FA from the significant cluster. The
strongest effects were found for processing speed and sustained
attention (Supplementary Table 4). A significant association with
GCP was also present for MD and RD (Supplement 3). There was
no positive correlation between GCP and gray matter volume at
Ptfce-FWE= 0.217.

DISCUSSION
The aim of this study was to investigate the association between
white matter fiber microstructure and cognitive deficits in MDD
patients over the entire spectrum of the disorder. As expected,
general cognitive performance was associated with FA in a large
bilateral cluster consisting of the CC, the IFOF, the anterior TR, and the
SLF and ILF among other regions. This effect seems to be driven by
deficits in processing speed and sustained attention, semantic
processing, and memory, while small (visuospatial working memory)
or no associations (verbal working memory) could be found for
working memory. The associations between fiber microstructure and
general cognitive performance were very robust even after correction
for general intelligence, educational achievement, medication intake,
and presence of comorbid diagnoses, number of previous hospita-
lizations, and BDI in the MDD subsample. They were confirmed using
a different method of analysis (tractography-based connectome
analysis), and were found at both MRI scanners, respectively. Lastly,
similar associations were found for other DTI measures of fiber
integrity (MD and RD). While the interpretation of single DTI measures
is limited [56], the combination of reduced FA and increased MD and
RD values might suggest neuropathological processes as the basis for

cognitive deficits. This effect seems to be confined to white matter
microstructure and not gray matter volume, as no positive
associations were found between cognitive performance and gray
matter structural MRI data.
These results highlight that intact fiber microstructure is

associated with fast and accurate communication between brain
regions required for optimal cognitive functioning [22]. Previous
studies have already postulated that fine-tuned prefrontal
signaling—with too much or too little signaling reducing
cognitive performance—could be fundamental for sustained
attention [61]. If the communicating fibers between frontal areas
and other brain regions are structurally impaired, as hinted at by
reduced FA in those fibers, this could result in cognitive
impairment. It must be noted, however, that the results in this
study seem to be regionally unspecific, as multiple tracts in a large
bilateral cluster were affected.
Second, we found that MDD patients performed consistently

worse on all cognitive tasks in concordance with previous analyses
[2]. While these effects were found most strongly in tests assessing
processing speed, a wide range of cognitive processes were affected
in MDD patients, reflected by the single general cognitive
performance factor extracted in the PCA. The differences between
HC and acute or (partially) remitted MDD patients, respectively,
support and extent the well-known report that cognitive deficits in
MDD—while being alleviated—seem to persist in remission [14].
Deficits in cognitive performance could influence the inhibition of
inappropriate behavioral or emotional processes, planning of future
behavior, and flexible problem solving [14]. Cognitive deficits in
remitted MDD patients may play a crucial role in sustaining
psychosocial functioning—socially, mentally as well as in more
general societal functions like workplace productivity. The neuro-
biological underpinnings of FA reductions associated with cognitive
performance in MDD patients are most likely complex. It is possible,
that interactive effects of genetic influences and environmental
stressors might result in more pronounced fiber integrity reductions
and, hence, elevated cognitive deficits in MDD [8, 62]. The variation
in time of white matter maturation differs regionally. Especially
association and commissural white matter fibers responsible for
higher cognitive functioning, continue to develop throughout
adolescence to early and middle adulthood [36, 63]. This prolonged
development is the underlying basis for white matter plasticity,
which in turn would be necessary for environmental and (epi-)
genetic factors to in turn influence fiber structure [63–65].
Third, in contrast to our hypothesis, MDD patients’ FA differed

only marginally from HC. Previous studies [38, 66] have already
drawn into question that MDD patients’ microstructure differs
from HC on a general basis. Choi et al. argued that small sample
sizes, tracts prone to artifacts, or other aspects of MDD pathology
(e.g., course of illness, childhood maltreatment experiences,
antidepressant treatment, or specific symptoms) could have
produced the significant differences between MDD patients and
HC in earlier studies [66]. Likewise, the significant reduction in FA
values in acute MDD patients (i.e., those who take more
medication and experience more severe symptoms) compared
with HC in our well-powered analysis suggests that the lifetime
MDD diagnosis by itself might not be the sole driving force of
white matter alterations in patients.
Acute MDD patients take more psychiatric medications and

have a worse course of illness than (partially) remitted MDD
patients in our sample, this could explain this difference.
Future studies might use the results of this study to use white

matter morphological abnormalities associated with cognitive
deficits in MDD to guide the inquiry of new therapeutic options. It
should be investigated whether current treatment options for
cognitive deficits in MDD [3, 8, 67, 68] like biobehavioral
interventions (e.g., exercise, sleep hygiene, healthy diet), pharmaco-
logical treatments (e.g., vortioxetine), neurostimulation techniques
(e.g., transcranial magnetic stimulation), and psychotherapeutic

Table 2. Using only the participants with MDD diagnosis, an ANCOVA
was calculated with mean extracted FA values as the independent
variable and medication intake, presence of a comorbid diagnosis,
number of hospitalizations, and acute symptomatology on top of age,
sex, TIV, scanner/side variables, IQMVT and number of education years
in SPSS.

Factor/covariate F-statistic, df
(1,459)

P value η²

General cognitive
performance

12.611 <0.001 0.027

Age 24.773 <0.001 0.051

Sex 1.476 0.225 0.003

TIV 38.753 <0.001 0.078

Marburg pre-body-coil 71.228 <0.001 0.134

Marburg post-body-coil 43.299 <0.001 0.086

IQMVT 1.081 0.299 0.002

Number of education years 3.821 0.051 0.008

Medication Load Index 0.835 0.361 0.002

Comorbid disorder 0.275 0.600 0.001

Number of hospitalizations 0.486 0.486 0.001

BDI 0.280 0.597 0.001

ANCOVA analysis of covariance, BDI Beck’s Depression Inventory Score,
FA fractional anisotropy, IQMVT intelligence quotient evaluated with the
multiple-choice vocabulary test version B (dt. “Mehrfachwahl-Wortschatz-
Test Version B”), MDD major depressive disorder, TIV total intracranial
volume.
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interventions (e.g., cognitive behavioral therapy, cognitive remedia-
tion therapy) can be linked to changes in MDD’s fiber structure.

Limitations
Some limitations should be acknowledged. First, while DTI is a
feasible and noninvasive technique, FA can also be influenced by
other, non-pathological factors, e.g., the number and orientation of
axons irrespective of fiber damage [56]. Second, while we tried to
account for influences attributed to current psychiatric medication
intake, the influence of therapy (including psychotherapy, electro-
convulsive therapy, etc.), cannot be ruled out completely. Therefore,
future studies should try to replicate the findings of this study in
untreated MDD patients or systematically investigate the influences
of treatment. Third, while MDD patients and HC did not differ in their
IQMVT scores, we found a significant difference in their educational
achievements. We have to note that, while the MVT is a robust and
efficient estimator for general IQ, it is also prone to slight measuring
inaccuracies [69] and captures crystallized intelligence rather than
fluid intelligence. Hence, even after correcting for educational years
and IQMVT confounding effects of general intelligence cannot be
ruled out entirely. Lastly, this study is correlational, and cannot
evaluate causal effects. To this end, longitudinal studies are needed
that investigate fiber microstructural changes over the course of
MDD or pre-post treatment. Regardless, the major strength of this
study is the use of a large, well-characterized sample reflecting the
entire spectrum of MDD patients.

CONCLUSION
Our findings highlight the importance of neurobiological wiring in
cognitive performance in healthy controls and MDD patients. They
provide robust evidence that global structural connectivity is
associated with cognitive performance in MDD patients and HC.
This association was independent of diagnosis, suggesting a
general association between DTI measures of fiber integrity and
cognitive performance. Efforts to treat cognitive deficits in MDD
should, thus, consider the white matter as one of the underlying
neural mechanisms.
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