Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An assessment of the existence of adult neurogenesis in humans and value of its rodent models for neuropsychiatric diseases

Abstract

In sub-mammalian vertebrates like fishes, amphibians, and reptiles, new neurons are produced during the entire lifespan. This capacity diminishes considerably in birds and even more in mammals where it persists only in the olfactory system and hippocampal dentate gyrus. Adult neurogenesis declines even more drastically in nonhuman primates and recent evidence shows that this is basically extinct in humans. Why should such seemingly useful capacity diminish during primate evolution? It has been proposed that this occurs because of the need to retain acquired complex knowledge in stable populations of neurons and their synaptic connections during many decades of human life. In this review, we will assess critically the claim of significant adult neurogenesis in humans and show how current evidence strongly indicates that humans lack this trait. In addition, we will discuss the allegation of many rodent studies that adult neurogenesis is involved in psychiatric diseases and that it is a potential mechanism for human neuron replacement and regeneration. We argue that these reports, which usually neglect significant structural and functional species-specific differences, mislead the general population into believing that there might be a cure for a variety of neuropsychiatric diseases as well as stroke and brain trauma by genesis of new neurons and their incorporation into existing synaptic circuitry.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic representation of the general relation between the amount of adult neurogenesis and cognitive abilities in different vertebrates derived from a common ancestor ().

References

  1. 1.

    Lois C, Alvarez-Buylla A. Long-distance neuronal migration in the adult mammalian brain. Science. 1994;264:1145–8.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Cameron HA, Woolley CS, McEwen BS, Gould E. Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience. 1993;56:337–44.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Gould E, Tanapat P, McEwen BS, Flugge G, Fuchs E. Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci USA. 1998;95:3168–71.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Kornack DR, Rakic P. Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc Natl Acad Sci USA. 1999;96:5768–73.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Nowakowski RS, Rakic P. The site of origin and route and rate of migration of neurons to the hippocampal region of the rhesus monkey. J Comp Neurol. 1981;196:129–54.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Rakic P, Nowakowski RS. The time of origin of neurons in the hippocampal region of the rhesus monkey. J Comp Neurol. 1981;196:99–128.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Gould E, Reeves AJ, Graziano MS, Gross CG. Neurogenesis in the neocortex of adult primates. Science. 1999;286:548–52.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Rakic P. Limits of neurogenesis in primates. Science. 1985;227:1054–6.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Kornack DR, Rakic P. The generation, migration, and differentiation of olfactory neurons in the adult primate brain. Proc Natl Acad Sci USA. 2001;98:4752–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Eckenhoff MF, Rakic P. Nature and fate of proliferative cells in the hippocampal dentate gyrus during the life span of the rhesus monkey. J Neurosci. 1988;8:2729–47.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Kornack DR, Rakic P. Cell proliferation without neurogenesis in adult primate neocortex. Science. 2001;294:2127–30.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Koketsu D, Mikami A, Miyamoto Y, Hisatsune T. Nonrenewal of neurons in the cerebral neocortex of adult macaque monkeys. J Neurosci. 2003;23:937–42.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, et al. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4:1313–7.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Arellano JI, Harding B, Thomas JL. Adult human hippocampus: no new neurons in sight. Cereb Cortex. 2018;28:2479–81.

    PubMed  Article  Google Scholar 

  15. 15.

    Knoth R, Singec I, Ditter M, Pantazis G, Capetian P, Meyer RP, et al. Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PLoS ONE. 2010;5:e8809.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  16. 16.

    Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, et al. Dynamics of hippocampal neurogenesis in adult humans. Cell. 2013;153:1219–27.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Boldrini M, Fulmore CA, Tartt AN, Simeon LR, Pavlova I, Poposka V, et al. Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell. 2018;22:589.e5–99.e5.

    Article  CAS  Google Scholar 

  18. 18.

    Moreno-Jimenez EP, Flor-Garcia M, Terreros-Roncal J, Rabano A, Cafini F, Pallas-Bazarra N, et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Med. 2019;25:554–60.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Tobin MK, Musaraca K, Disouky A, Shetti A, Bheri A, Honer WG, et al. Human hippocampal neurogenesis persists in aged adults and Alzheimer’s disease patients. Cell Stem Cell. 2019;24:974.e3–82.e3.

  20. 20.

    Flor-Garcia M, Terreros-Roncal J, Moreno-Jimenez EP, Avila J, Rabano A, Llorens-Martin M. Unraveling human adult hippocampal neurogenesis. Nat Protoc. 2020;15:668–93.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Moreno-Jimenez EP, Terreros-Roncal J, Flor-Garcia M, Rabano A, Llorens-Martin M. Evidences for adult hippocampal neurogenesis in humans. J Neurosci. 2021;41:2541–53.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Morrison JI, Loof S, He P, Simon A. Salamander limb regeneration involves the activation of a multipotent skeletal muscle satellite cell population. J Cell Biol. 2006;172:433–40.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Stangl D, Thuret S. Impact of diet on adult hippocampal neurogenesis. Genes Nutr. 2009;4:271–82.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Lindqvist A, Mohapel P, Bouter B, Frielingsdorf H, Pizzo D, Brundin P, et al. High-fat diet impairs hippocampal neurogenesis in male rats. Eur J Neurol. 2006;13:1385–8.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Aoki H, Kimoto K, Hori N, Toyoda M. Cell proliferation in the dentate gyrus of rat hippocampus is inhibited by soft diet feeding. Gerontology. 2005;51:369–74.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Wentz CT, Magavi SS. Caffeine alters proliferation of neuronal precursors in the adult hippocampus. Neuropharmacology. 2009;56:994–1000.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Zhao C, Deng W, Gage FH. Mechanisms and functional implications of adult neurogenesis. Cell. 2008;132:645–60.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Poulose SM, Miller MG, Scott T, Shukitt-Hale B. Nutritional factors affecting adult neurogenesis and cognitive function. Adv Nutr. 2017;8:804–11.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Clark PJ, Brzezinska WJ, Thomas MW, Ryzhenko NA, Toshkov SA, Rhodes JS. Intact neurogenesis is required for benefits of exercise on spatial memory but not motor performance or contextual fear conditioning in C57BL/6J mice. Neuroscience. 2008;155:1048–58.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Klaus F, Amrein I. Running in laboratory and wild rodents: differences in context sensitivity and plasticity of hippocampal neurogenesis. Behav Brain Res. 2012;227:363–70.

    PubMed  Article  Google Scholar 

  31. 31.

    Schaefers AT. Rearing conditions and domestication background determine regulation of hippocampal cell proliferation and survival in adulthood-laboratory CD1 and C57Bl/6 mice versus wild house mice. Neuroscience. 2013;228:120–7.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Hauser T, Klaus F, Lipp HP, Amrein I. No effect of running and laboratory housing on adult hippocampal neurogenesis in wild caught long-tailed wood mouse. BMC Neurosci. 2009;10:43.

    PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Duque A, Spector R. A balanced evaluation of the evidence for adult neurogenesis in humans: implication for neuropsychiatric disorders. Brain Struct Funct. 2019;224:2281–95.

    PubMed Central  Article  PubMed  Google Scholar 

  34. 34.

    Henn FA, Vollmayr B. Neurogenesis and depression: etiology or epiphenomenon? Biol Psychiatry. 2004;56:146–50.

    PubMed  Article  Google Scholar 

  35. 35.

    Filipkowski RK, Kaczmarek L. Severely impaired adult brain neurogenesis in cyclin D2 knock-out mice produces very limited phenotypic changes. Prog Neuropsychopharmacol Biol Psychiatry. 2018;80:63–7.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Abdallah CG, Sanacora G, Duman RS, Krystal JH. Ketamine and rapid-acting antidepressants: a window into a new neurobiology for mood disorder therapeutics. Annu Rev Med. 2015;66:509–23.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Akers KG, Martinez-Canabal A, Restivo L, Yiu AP, De Cristofaro A, Hsiang HL, et al. Hippocampal neurogenesis regulates forgetting during adulthood and infancy. Science. 2014;344:598–602.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    La Rosa C, Parolisi R, Bonfanti L. Brain structural plasticity: from adult neurogenesis to immature neurons. Front Neurosci. 2020;14:75.

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Rakic P. Neurogenesis in adult primate neocortex: an evaluation of the evidence. Nat Rev Neurosci. 2002;3:65–71.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Taupin P. BrdU immunohistochemistry for studying adult neurogenesis: paradigms, pitfalls, limitations, and validation. Brain Res Rev. 2007;53:198–214.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Breunig JJ, Arellano JI, Macklis JD, Rakic P. Everything that glitters isn’t gold: a critical review of postnatal neural precursor analyses. Cell Stem Cell. 2007;1:612–27.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Duque A, Rakic P. Identification of proliferating and migrating cells by BrdU and other thymidine analogues. Benefits and limitations. In: Merighi A, Lossi L, editors. Immunocytochemistry and related techniques. Totowa, NJ: Springer; 2015, p. 123–9.

  43. 43.

    Busser J, Geldmacher DS, Herrup K. Ectopic cell cycle proteins predict the sites of neuronal cell death in Alzheimer’s disease brain. J Neurosci. 1998;18:2801–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Hoozemans JJ, Veerhuis R, Rozemuller AJ, Eikelenboom P. The pathological cascade of Alzheimer’s disease: the role of inflammation and its therapeutic implications. Drugs Today. 2002;38:429–43.

    CAS  Article  Google Scholar 

  45. 45.

    Yang Y, Mufson EJ, Herrup K. Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer’s disease. J Neurosci. 2003;23:2557–63.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Kuan CY, Schloemer AJ, Lu A, Burns KA, Weng WL, Williams MT, et al. Hypoxia-ischemia induces DNA synthesis without cell proliferation in dying neurons in adult rodent brain. J Neurosci. 2004;24:10763–72.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Munzel M, Globisch D, Bruckl T, Wagner M, Welzmiller V, Michalakis S, et al. Quantification of the sixth DNA base hydroxymethylcytosine in the brain. Angew Chem Int Ed Engl. 2010;49:5375–7.

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Guo JU, Su Y, Zhong C, Ming GL, Song H. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell. 2011;145:423–34.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Arendt T, Holzer M, Gartner U, Bruckner MK. Aberrancies in signal transduction and cell cycle related events in Alzheimer’s disease. J Neural Transm Suppl. 1998;54:147–58.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Mattiesen WR, Tauber SC, Gerber J, Bunkowski S, Bruck W, Nau R. Increased neurogenesis after hypoxic-ischemic encephalopathy in humans is age related. Acta Neuropathol. 2009;117:525–34.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Sorrells SF, Paredes MF, Zhang Z, Kang G, Pastor-Alonso O, Biagiotti S, et al. Positive controls in adults and children support that very few, if any, new neurons are born in the adult human hippocampus. J Neurosci. 2021;41:2554–65.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Dennis CV, Suh LS, Rodriguez ML, Kril JJ, Sutherland GT. Human adult neurogenesis across the ages: an immunohistochemical study. Neuropathol Appl Neurobiol. 2016;42:621–38.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Sorrells SF, Paredes MF, Cebrian-Silla A, Sandoval K, Qi D, Kelley KW, et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature. 2018;555:377–81.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Parakalan R, Jiang B, Nimmi B, Janani M, Jayapal M, Lu J, et al. Transcriptome analysis of amoeboid and ramified microglia isolated from the corpus callosum of rat brain. BMC Neurosci. 2012;13:64.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34:11929–47.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Ernst A, Alkass K, Bernard S, Salehpour M, Perl S, Tisdale J, et al. Neurogenesis in the striatum of the adult human brain. Cell. 2014;156:1072–83.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Wang C, You Y, Qi D, Zhou X, Wang L, Wei S, et al. Human and monkey striatal interneurons are derived from the medial ganglionic eminence but not from the adult subventricular zone. J Neurosci. 2014;34:10906–23.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  58. 58.

    Doorn KJ, Drukarch B, van Dam AM, Lucassen PJ. Hippocampal proliferation is increased in presymptomatic Parkinson’s disease and due to microglia. Neural Plast. 2014;2014:959154.

    PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Mathews KJ, Allen KM, Boerrigter D, Ball H, Shannon Weickert C, Double KL. Evidence for reduced neurogenesis in the aging human hippocampus despite stable stem cell markers. Aging Cell. 2017;16:1195–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Cipriani S, Ferrer I, Aronica E, Kovacs GG, Verney C, Nardelli J, et al. Hippocampal radial glial subtypes and their neurogenic potential in human fetuses and healthy and Alzheimer’s disease adults. Cereb Cortex. 2018;28:2458–78.

    PubMed  Article  Google Scholar 

  61. 61.

    Seki T, Hori T, Miyata H, Maehara M, Namba T. Analysis of proliferating neuronal progenitors and immature neurons in the human hippocampus surgically removed from control and epileptic patients. Sci Rep. 2019;9:18194.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Sloviter RS, Sollas AL, Barbaro NM, Laxer KD. Calcium-binding protein (calbindin-D28K) and parvalbumin immunocytochemistry in the normal and epileptic human hippocampus. J Comp Neurol. 1991;308:381–96.

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Nitsch R, Ohm TG. Calretinin immunoreactive structures in the human hippocampal formation. J Comp Neurol. 1995;360:475–87.

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Lawrence YA, Kemper TL, Bauman ML, Blatt GJ. Parvalbumin-, calbindin-, and calretinin-immunoreactive hippocampal interneuron density in autism. Acta Neurol Scand. 2010;121:99–108.

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Cannon JR, Greenamyre JT. NeuN is not a reliable marker of dopamine neurons in rat substantia nigra. Neurosci Lett. 2009;464:14–17.

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Ohira K, Hagihara H, Miwa M, Nakamura K, Miyakawa T. Fluoxetine-induced dematuration of hippocampal neurons and adult cortical neurogenesis in the common marmoset. Mol Brain. 2019;12:69.

    PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Lazic SE. Relating hippocampal neurogenesis to behavior: the dangers of ignoring confounding variables. Neurobiol Aging. 2010;31:2169–71. discussion 2172-2165

    PubMed  Article  Google Scholar 

  68. 68.

    Lazic SE. Modeling hippocampal neurogenesis across the lifespan in seven species. Neurobiol Aging. 2012;33:1664–71.

    PubMed  Article  Google Scholar 

  69. 69.

    Varea E, Castillo-Gomez E, Gomez-Climent MA, Blasco-Ibanez JM, Crespo C, Martinez-Guijarro FJ, et al. PSA-NCAM expression in the human prefrontal cortex. J Chem Neuroanat. 2007;33:202–9.

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Bologna-Molina R, Mosqueda-Taylor A, Molina-Frechero N, Mori-Estevez AD, Sanchez-Acuna G. Comparison of the value of PCNA and Ki-67 as markers of cell proliferation in ameloblastic tumors. Med Oral Patol Oral Cir Bucal. 2013;18:e174–9.

    PubMed  Article  Google Scholar 

  71. 71.

    Sanai N, Berger MS, Garcia-Verdugo JM, Alvarez-Buylla A. Comment on “Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension”. Science. 2007;318:393.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    Blumcke I, Schewe JC, Normann S, Brustle O, Schramm J, Elger CE, et al. Increase of nestin-immunoreactive neural precursor cells in the dentate gyrus of pediatric patients with early-onset temporal lobe epilepsy. Hippocampus. 2001;11:311–21.

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Geha S, Pallud J, Junier MP, Devaux B, Leonard N, Chassoux F, et al. NG2+/Olig2+ cells are the major cycle-related cell population of the adult human normal brain. Brain Pathol. 2010;20:399–411.

    PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Liu YW, Curtis MA, Gibbons HM, Mee EW, Bergin PS, Teoh HH, et al. Doublecortin expression in the normal and epileptic adult human brain. Eur J Neurosci. 2008;28:2254–65.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. 75.

    Liu JYW, Matarin M, Reeves C, McEvoy AW, Miserocchi A, Thompson P, et al. Doublecortin-expressing cell types in temporal lobe epilepsy. Acta Neuropathol Commun. 2018;6:60.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  76. 76.

    D’Alessio L, Konopka H, Escobar E, Acuna A, Oddo S, Solis P, et al. Dentate gyrus expression of nestin-immunoreactivity in patients with drug-resistant temporal lobe epilepsy and hippocampal sclerosis. Seizure. 2015;27:75–79.

    PubMed  Article  PubMed Central  Google Scholar 

  77. 77.

    D’Alessio L, Konopka H, Lopez EM, Seoane E, Consalvo D, Oddo S, et al. Doublecortin (DCX) immunoreactivity in hippocampus of chronic refractory temporal lobe epilepsy patients with hippocampal sclerosis. Seizure. 2010;19:567–72.

    PubMed  Article  PubMed Central  Google Scholar 

  78. 78.

    Lucassen PJ, Stumpel MW, Wang Q, Aronica E. Decreased numbers of progenitor cells but no response to antidepressant drugs in the hippocampus of elderly depressed patients. Neuropharmacology. 2010;58:940–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. 79.

    Epp JR, Beasley CL, Galea LA. Increased hippocampal neurogenesis and p21 expression in depression: dependent on antidepressants, sex, age, and antipsychotic exposure. Neuropsychopharmacology. 2013;38:2297–306.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Boldrini M, Underwood MD, Hen R, Rosoklija GB, Dwork AJ, John Mann J, et al. Antidepressants increase neural progenitor cells in the human hippocampus. Neuropsychopharmacology. 2009;34:2376–89.

    CAS  PubMed  Article  Google Scholar 

  81. 81.

    Boldrini M, Hen R, Underwood MD, Rosoklija GB, Dwork AJ, Mann JJ, et al. Hippocampal angiogenesis and progenitor cell proliferation are increased with antidepressant use in major depression. Biol Psychiatry. 2012;72:562–71.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Campbell S, Marriott M, Nahmias C, MacQueen GM. Lower hippocampal volume in patients suffering from depression: a meta-analysis. Am J Psychiatry. 2004;161:598–607.

    PubMed  Article  Google Scholar 

  83. 83.

    MacQueen G, Frodl T. The hippocampus in major depression: evidence for the convergence of the bench and bedside in psychiatric research? Mol Psychiatry. 2011;16:252–64.

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    Schmaal L, Hibar DP, Samann PG, Hall GB, Baune BT, Jahanshad N, et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol Psychiatry. 2017;22:900–9.

    CAS  Article  Google Scholar 

  85. 85.

    Nogovitsyn N, Muller M, Souza R, Hassel S, Arnott SR, Davis AD, et al. Hippocampal tail volume as a predictive biomarker of antidepressant treatment outcomes in patients with major depressive disorder: a CAN-BIND report. Neuropsychopharmacology. 2020;45:283–91.

    CAS  PubMed  Article  Google Scholar 

  86. 86.

    Klosovskii B. Fundamental priciples of the development, structure and function of the vaso-capillary network of the brain In: Haigh B, editor. The development of the brain and its disturbance by harmful factors. Oxford: Pergamon Press; 1963, p. 44–54.

  87. 87.

    Pereira AC, Huddleston DE, Brickman AM, Sosunov AA, Hen R, McKhann GM, et al. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA. 2007;104:5638–43.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88.

    Palmer TD, Willhoite AR, Gage FH. Vascular niche for adult hippocampal neurogenesis. J Comp Neurol. 2000;425:479–94.

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Hochgerner H, Zeisel A, Lonnerberg P, Linnarsson S. Conserved properties of dentate gyrus neurogenesis across postnatal development revealed by single-cell RNA sequencing. Nat Neurosci. 2018;21:290–9.

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Kempermann G, Gage FH, Aigner L, Song H, Curtis MA, Thuret S, et al. Human adult neurogenesis: evidence and remaining questions. Cell Stem Cell. 2018;23:25–30.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    Kuhn HG, Toda T, Gage FH. Adult hippocampal neurogenesis: a coming-of-age story. J Neurosci. 2018;38:10401–10.

    PubMed  PubMed Central  Article  Google Scholar 

  92. 92.

    Lee H, Thuret S. Adult human hippocampal neurogenesis: controversy and evidence. Trends Mol Med. 2018;24:521–2.

    PubMed  Article  Google Scholar 

  93. 93.

    Paredes MF, Sorrells SF, Cebrian-Silla A, Sandoval K, Qi D, Kelley KW, et al. Does adult neurogenesis persist in the human hippocampus? Cell Stem Cell. 2018;23:780–1.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Habib N, Avraham-Davidi I, Basu A, Burks T, Shekhar K, Hofree M, et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat Methods. 2017;14:955–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. 95.

    Franjic D, Choi J, Skarica M, Xu C, Li Q, Ma S, et al. Molecular diversity among adult human hippocampal and entorhinal cells. bioRxiv [Preprint] 2020 [cited 2020 Jan 2]: [75 p.]. Available from: https://doi.org/10.1101/2019.12.31.889139.

Download references

Funding

This study was partly supported by the NIH grant DA023999 to PR and MacBrainResource (supported by MH113257 to AD).

Author information

Affiliations

Authors

Contributions

PR was invited to write this Expert Review and conceived the scope of the paper. AD, JIA, and PR examined the literature on this large subject and wrote the manuscript.

Corresponding author

Correspondence to Pasko Rakic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duque, A., Arellano, J.I. & Rakic, P. An assessment of the existence of adult neurogenesis in humans and value of its rodent models for neuropsychiatric diseases. Mol Psychiatry (2021). https://doi.org/10.1038/s41380-021-01314-8

Download citation

Search

Quick links