Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

Emerging strategies for the genetic dissection of gene functions, cell types, and neural circuits in the mammalian brain

Abstract

The mammalian brain is composed of a large number of highly diverse cell types with different molecular, anatomical, and functional features. Distinct cellular identities are generated during development under the regulation of intricate genetic programs and manifested through unique combinations of gene expression. Recent advancements in our understanding of the molecular and cellular mechanisms underlying the assembly, function, and pathology of the brain circuitry depend on the invention and application of genetic strategies that engage intrinsic gene regulatory mechanisms. Here we review the strategies for gene regulation on DNA, RNA, and protein levels and their applications in cell type targeting and neural circuit dissection. We highlight newly emerged strategies and emphasize the importance of combinatorial approaches. We also discuss the potential caveats and pitfalls in current methods and suggest future prospects to improve their comprehensiveness and versatility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Regulation strategies at the DNA, RNA, and protein levels.
Fig. 2: Genetic approaches for cell type targeting, conditional gene regulation, and lineage tracing.
Fig. 3: Genetic approaches for circuit mapping and functional interrogations.

Similar content being viewed by others

References

  1. Knott GJ, Doudna JA. CRISPR-Cas guides the future of genetic engineering. Science. 2018;361:866–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Pickar-Oliver A, Gersbach CA. The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol. 2019;20:490–507.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Sandoval A Jr, Elahi H, Ploski JE. Genetically engineering the nervous system with CRISPR-Cas. eNeuro. 2020;7.

  4. Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol. 2020;38:824–44.

    Article  PubMed  CAS  Google Scholar 

  5. Kampmann M. CRISPR-based functional genomics for neurological disease. Nat Rev Neurol. 2020;16:465–80.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Aida T, Feng G. The dawn of non-human primate models for neurodevelopmental disorders. Curr Opin Genet Dev. 2020;65:160–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Zhou Y, Sharma J, Ke Q, Landman R, Yuan J, Chen H, et al. Atypical behaviour and connectivity in SHANK3-mutant macaques. Nature. 2019;570:326–31.

    Article  PubMed  CAS  Google Scholar 

  8. Yan S, Tu Z, Liu Z, Fan N, Yang H, Yang S, et al. A Huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington’s disease. Cell. 2018;173:989–1002.e1013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Staahl BT, Benekareddy M, Coulon-Bainier C, Banfal AA, Floor SN, Sabo JK, et al. Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. Nat Biotechnol. 2017;35:431–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Nishiyama J, Mikuni T, Yasuda R. Virus-mediated genome editing via homology-directed repair in mitotic and postmitotic cells in mammalian brain. Neuron. 2017;96:755–68.e755.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Park H, Oh J, Shim G, Cho B, Chang Y, Kim S, et al. In vivo neuronal gene editing via CRISPR-Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease. Nat Neurosci. 2019;22:524–8.

    Article  PubMed  CAS  Google Scholar 

  12. Cai Y, Cheng T, Yao Y, Li X, Ma Y, Li L, et al. In vivo genome editing rescues photoreceptor degeneration via a Cas9/RecA-mediated homology-directed repair pathway. Sci Adv. 2019;5:eaav3335.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Yeh WH, Shubina-Oleinik O, Levy JM, Pan B, Newby GA, Wornow M, et al. In vivo base editing restores sensory transduction and transiently improves auditory function in a mouse model of recessive deafness. Sci Transl Med. 2020;12:eaay9101.

  14. Paquet D, Kwart D, Chen A, Sproul A, Jacob S, Teo S, et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature. 2016;533:125–9.

    Article  PubMed  CAS  Google Scholar 

  15. McCarty NS, Graham AE, Studena L, Ledesma-Amaro R. Multiplexed CRISPR technologies for gene editing and transcriptional regulation. Nat Commun. 2020;11:1281.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Cheng W, Wang S, Zhang Z, Morgens DW, Hayes LR, Lee S, et al. CRISPR-Cas9 screens identify the RNA helicase DDX3X as a repressor of C9ORF72 (GGGGCC)n repeat-associated non-AUG translation. Neuron. 2019;104:885–98.e888.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Chai N, Haney MS, Couthouis J, Morgens DW, Benjamin A, Wu K, et al. Genome-wide synthetic lethal CRISPR screen identifies FIS1 as a genetic interactor of ALS-linked C9ORF72. Brain Res. 2020;1728:146601.

    Article  PubMed  CAS  Google Scholar 

  18. Mikuni T, Nishiyama J, Sun Y, Kamasawa N, Yasuda R. High-throughput, high-resolution mapping of protein localization in mammalian brain by in vivo genome editing. Cell. 2016;165:1803–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Willems J, de Jong APH, Scheefhals N, Mertens E, Catsburg LAE, Poorthuis RB, et al. ORANGE: a CRISPR/Cas9-based genome editing toolbox for epitope tagging of endogenous proteins in neurons. PLoS Biol. 2020;18:e3000665.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gillmore JD, Gane E, Taubel J, Kao J, Fontana M, Maitland ML, et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. 2021;385:493–502.

  21. Yim YY, Teague CD, Nestler EJ. In vivo locus-specific editing of the neuroepigenome. Nat Rev Neurosci. 2020;21:471–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Lau CH, Suh Y. In vivo epigenome editing and transcriptional modulation using CRISPR technology. Transgenic Res. 2018;27:489–509.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152:1173–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013;154:442–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Moreno AM, Fu X, Zhu J, Katrekar D, Shih YV, Marlett J, et al. In situ gene therapy via AAV-CRISPR-Cas9-mediated targeted gene regulation. Mol Ther. 2018;26:1818–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Stover JD, Farhang N, Berrett KC, Gertz J, Lawrence B, Bowles RD. CRISPR epigenome editing of AKAP150 in DRG neurons abolishes degenerative IVD-induced neuronal activation. Mol Ther. 2017;25:2014–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Zheng Y, Shen W, Zhang J, Yang B, Liu YN, Qi H, et al. CRISPR interference-based specific and efficient gene inactivation in the brain. Nat Neurosci. 2018;21:447–54.

    Article  PubMed  CAS  Google Scholar 

  28. Liu XS, Wu H, Krzisch M, Wu X, Graef J, Muffat J, et al. Rescue of fragile X syndrome neurons by DNA methylation editing of the FMR1 gene. Cell. 2018;172:979–92.e976.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods. 2013;10:973–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, et al. Editing DNA methylation in the mammalian genome. Cell. 2016;167:233–47.e217.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Tian R, Gachechiladze MA, Ludwig CH, Laurie MT, Hong JY, Nathaniel D, et al. CRISPR interference-based platform for multimodal genetic screens in human iPSC-derived. Neurons Neuron. 2019;104:239–55.e212.

    Article  PubMed  CAS  Google Scholar 

  32. Tian R, Abarientos A, Hong J, Hashemi SH, Yan R, Nalls MA, et al. Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis. Nat Neurosci. 2021;24:1020–34.

  33. Geng Y, Pertsinidis A. Simple and versatile imaging of genomic loci in live mammalian cells and early pre-implantation embryos using CAS-LiveFISH. Sci Rep. 2021;11:12220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Montiel-Gonzalez MF, Diaz Quiroz JF, Rosenthal JJC. Current strategies for site-directed RNA editing using ADARs. Methods. 2019;156:16–24.

    Article  PubMed  CAS  Google Scholar 

  35. Abudayyeh OO, Gootenberg JS, Franklin B, Koob J, Kellner MJ, Ladha A, et al. A cytosine deaminase for programmable single-base RNA editing. Science. 2019;365:382–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Jepson JE, Savva YA, Jay KA, Reenan RA. Visualizing adenosine-to-inosine RNA editing in the Drosophila nervous system. Nat Methods. 2011;9:189–94.

    Article  PubMed  Google Scholar 

  37. Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, et al. RNA editing with CRISPR-Cas13. Science. 2017;358:1019–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Sinnamon JR, Kim SY, Fisk JR, Song Z, Nakai H, Jeng S, et al. In vivo repair of a protein underlying a neurological disorder by programmable RNA editing. Cell Rep. 2020;32:107878.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Li JJ, Lin X, Tang C, Lu YQ, Hu XD, Zuo EW, et al. Disruption of splicing-regulatory elements using CRISPR/Cas9 to rescue spinal muscular atrophy in human iPSCs and mice. Natl Sci Rev. 2020;7:92–101.

    Article  PubMed  CAS  Google Scholar 

  40. Konermann S, Lotfy P, Brideau NJ, Oki J, Shokhirev MN, Hsu PD. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell. 2018;173:665–76.e614.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Avale ME, Rodriguez-Martin T, Gallo JM. Trans-splicing correction of tau isoform imbalance in a mouse model of tau mis-splicing. Hum Mol Genet. 2013;22:2603–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Schoch KM, Miller TM. Antisense oligonucleotides: translation from mouse models to human neurodegenerative diseases. Neuron. 2017;94:1056–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Abreu NJ, Waldrop MA. Overview of gene therapy in spinal muscular atrophy and Duchenne muscular dystrophy. Pediatr Pulmonol. 2021;56:710–20.

  44. Miniarikova J, Zanella I, Huseinovic A, van der Zon T, Hanemaaijer E, Martier R, et al. Design, characterization, and lead selection of therapeutic miRNAs targeting huntingtin for development of gene therapy for Huntington’s disease. Mol Ther Nucleic Acids. 2016;5:e297.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Pfister EL, DiNardo N, Mondo E, Borel F, Conroy F, Fraser C, et al. Artificial miRNAs reduce human mutant huntingtin throughout the striatum in a transgenic sheep model of Huntington’s disease. Hum Gene Ther. 2018;29:663–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Borel F, Gernoux G, Sun H, Stock R, Blackwood M, Brown RH Jr., et al. Safe and effective superoxide dismutase 1 silencing using artificial microRNA in macaques. Sci Transl Med. 2018;10:465.

    Article  Google Scholar 

  47. Petrescu GED, Sabo AA, Torsin LI, Calin GA, Dragomir MP. MicroRNA based theranostics for brain cancer: basic principles. J Exp Clin Cancer Res. 2019;38:231.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bhaskaran V, Nowicki MO, Idriss M, Jimenez MA, Lugli G, Hayes JL, et al. The functional synergism of microRNA clustering provides therapeutically relevant epigenetic interference in glioblastoma. Nat Commun. 2019;10:442.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Wang L, Adamski CJ, Bondar VV, Craigen E, Collette JR, Pang K, et al. A kinome-wide RNAi screen identifies ERK2 as a druggable regulator of Shank3 stability. Mol Psychiatry. 2020;25:2504–16.

    Article  PubMed  CAS  Google Scholar 

  50. Smargon AA, Shi YJ, Yeo GW. RNA-targeting CRISPR systems from metagenomic discovery to transcriptomic engineering. Nat Cell Biol. 2020;22:143–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Burmistrz M, Krakowski K, Krawczyk-Balska A. RNA-targeting CRISPR-Cas systems and their applications. Int J Mol Sci. 2020;21:1122.

  52. Batra R, Nelles DA, Pirie E, Blue SM, Marina RJ, Wang H, et al. Elimination of toxic microsatellite repeat expansion RNA by RNA-targeting Cas9. Cell. 2017;170:899–912.e810.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Scoles DR, Minikel EV, Pulst SM. Antisense oligonucleotides: a primer. Neurol Genet. 2019;5:e323.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Mortada I, Farah R, Nabha S, Ojcius DM, Fares Y, Almawi WY, et al. Immunotherapies for neurodegenerative diseases. Front Neurol. 2021;12:654739.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lu M, Liu T, Jiao Q, Ji J, Tao M, Liu Y, et al. Discovery of a Keap1-dependent peptide PROTAC to knockdown Tau by ubiquitination-proteasome degradation pathway. Eur J Med Chem. 2018;146:251–9.

    Article  PubMed  CAS  Google Scholar 

  56. Silva MC, Ferguson FM, Cai Q, Donovan KA, Nandi G, Patnaik D, et al. Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models. Elife. 2019;8:e45457.

  57. Tomoshige S, Nomura S, Ohgane K, Hashimoto Y, Ishikawa M. Discovery of small molecules that induce the degradation of huntingtin. Angew Chem Int Ed Engl. 2017;56:11530–3.

    Article  PubMed  CAS  Google Scholar 

  58. Li Z, Wang C, Wang Z, Zhu C, Li J, Sha T, et al. Allele-selective lowering of mutant HTT protein by HTT-LC3 linker compounds. Nature. 2019;575:203–9.

    Article  PubMed  CAS  Google Scholar 

  59. Ahn G, Banik SM, Miller CL, Riley NM, Cochran JR, Bertozzi CR. LYTACs that engage the asialoglycoprotein receptor for targeted protein degradation. Nat Chem Biol. 2021;17:937–46.

  60. Luo L, Callaway EM, Svoboda K. Genetic dissection of neural circuits: a decade of progress. Neuron. 2018;98:256–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. He M, Huang ZJ. Genetic approaches to access cell types in mammalian nervous systems. Curr Opin Neurobiol. 2018;50:109–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Schnutgen F, Doerflinger N, Calleja C, Wendling O, Chambon P, Ghyselinck NB. A directional strategy for monitoring Cre-mediated recombination at the cellular level in the mouse. Nat Biotechnol. 2003;21:562–5.

    Article  PubMed  Google Scholar 

  63. Guy J, Gan J, Selfridge J, Cobb S, Bird A. Reversal of neurological defects in a mouse model of Rett syndrome. Science. 2007;315:1143–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Mei Y, Monteiro P, Zhou Y, Kim JA, Gao X, Fu Z, et al. Adult restoration of Shank3 expression rescues selective autistic-like phenotypes. Nature. 2016;530:481–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Cobb S, Guy J, Bird A. Reversibility of functional deficits in experimental models of Rett syndrome. Biochemical Soc Trans. 2010;38:498–506.

    Article  CAS  Google Scholar 

  66. Chaiyachati BH, Kaundal RK, Zhao J, Wu J, Flavell R, Chi T. LoxP-FRT Trap (LOFT): a simple and flexible system for conventional and reversible gene targeting. BMC Biol. 2012;10:96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Robles-Oteiza C, Taylor S, Yates T, Cicchini M, Lauderback B, Cashman CR, et al. Recombinase-based conditional and reversible gene regulation via XTR alleles. Nat Commun. 2015;6:8783.

    Article  PubMed  CAS  Google Scholar 

  68. Andersson-Rolf A, Mustata RC, Merenda A, Kim J, Perera S, Grego T, et al. One-step generation of conditional and reversible gene knockouts. Nat Methods. 2017;14:287–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Liu X, Ma L, Liu H, Gan J, Xu Y, Zhang T, et al. Cell-type-specific gene inactivation and in situ restoration via recombinase-based flipping of targeted genomic region. J Neurosci. 2020;40:7169–86.

  70. Feil R, Wagner J, Metzger D, Chambon P. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun. 1997;237:752–7.

    Article  PubMed  CAS  Google Scholar 

  71. Lao Z, Raju GP, Bai CB, Joyner AL. MASTR: a technique for mosaic mutant analysis with spatial and temporal control of recombination using conditional floxed alleles in mice. Cell Rep. 2012;2:386–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Jung H, Kim SW, Kim M, Hong J, Yu D, Kim JH, et al. Noninvasive optical activation of Flp recombinase for genetic manipulation in deep mouse brain regions. Nat Commun. 2019;10:314.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wu J, Wang M, Yang X, Yi C, Jiang J, Yu Y, et al. A non-invasive far-red light-induced split-Cre recombinase system for controllable genome engineering in mice. Nat Commun. 2020;11:3708.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Morikawa K, Furuhashi K, de Sena-Tomas C, Garcia-Garcia AL, Bekdash R, Klein AD, et al. Photoactivatable Cre recombinase 3.0 for in vivo mouse applications. Nat Commun. 2020;11:2141.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Yao S, Yuan P, Ouellette B, Zhou T, Mortrud M, Balaram P, et al. RecV recombinase system for in vivo targeted optogenomic modifications of single cells or cell populations. Nat Methods. 2020;17:422–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Kim Y, Yang GR, Pradhan K, Venkataraju KU, Bota M, Garcia Del Molino LC, et al. Brain-wide maps reveal stereotyped cell-type-based cortical architecture and subcortical sexual dimorphism. Cell. 2017;171:456–69.e422.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Paul A, Crow M, Raudales R, He M, Gillis J, Huang ZJ. Transcriptional architecture of synaptic communication delineates GABAergic neuron identity. Cell. 2017;171:522–39.e520.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Loulier K, Barry R, Mahou P, Le Franc Y, Supatto W, Matho KS, et al. Multiplex cell and lineage tracking with combinatorial labels. Neuron. 2014;81:505–20.

    Article  PubMed  CAS  Google Scholar 

  79. Kim J, Zhao T, Petralia RS, Yu Y, Peng H, Myers E, et al. mGRASP enables mapping mammalian synaptic connectivity with light microscopy. Nat Methods. 2011;9:96–102.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Shemesh OA, Linghu C, Piatkevich KD, Goodwin D, Celiker OT, Gritton HJ, et al. Precision calcium imaging of dense neural populations via a cell-body-targeted calcium indicator. Neuron. 2020;107:470–86.e11.

  81. Chen Y, Jang H, Spratt PWE, Kosar S, Taylor DE, Essner RA, et al. Soma-targeted imaging of neural circuits by ribosome tethering. Neuron. 2020;107:454–69.e456.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Abdelfattah AS, Kawashima T, Singh A, Novak O, Liu H, Shuai Y, et al. Bright and photostable chemigenetic indicators for extended in vivo voltage imaging. Science. 2019;365:699–704.

    Article  PubMed  CAS  Google Scholar 

  83. Messier JE, Chen H, Cai ZL, Xue M. Targeting light-gated chloride channels to neuronal somatodendritic domain reduces their excitatory effect in the axon. Elife. 2018;7:e38506.

  84. Shemesh OA, Tanese D, Zampini V, Linghu C, Piatkevich K, Ronzitti E, et al. Temporally precise single-cell-resolution optogenetics. Nat Neurosci. 2017;20:1796–806.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Greenberg KP, Pham A, Werblin FS. Differential targeting of optical neuromodulators to ganglion cell soma and dendrites allows dynamic control of center-surround antagonism. Neuron. 2011;69:713–20.

    Article  PubMed  CAS  Google Scholar 

  86. Wu C, Ivanova E, Zhang Y, Pan ZH. rAAV-mediated subcellular targeting of optogenetic tools in retinal ganglion cells in vivo. PLoS One. 2013;8:e66332.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Silberberg SN, Taher L, Lindtner S, Sandberg M, Nord AS, Vogt D, et al. Subpallial enhancer transgenic lines: a data and tool resource to study transcriptional regulation of GABAergic cell fate. Neuron. 2016;92:59–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Cong W, Shi Y, Qi Y, Wu J, Gong L, He M. Viral approaches to study the mammalian brain: lineage tracing, circuit dissection and therapeutic applications. J Neurosci Methods. 2020;335:108629.

  89. Gerfen CR, Paletzki R, Heintz N. GENSAT BAC cre-recombinase driver lines to study the functional organization of cerebral cortical and basal ganglia circuits. Neuron. 2013;80:1368–83.

    Article  PubMed  CAS  Google Scholar 

  90. Hrvatin S, Tzeng CP, Nagy MA, Stroud H, Koutsioumpa C, Wilcox OF, et al. A scalable platform for the development of cell-type-specific viral drivers. Elife. 2019;8:e48089.

  91. Juttner J, Szabo A, Gross-Scherf B, Morikawa RK, Rompani SB, Hantz P, et al. Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates and humans. Nat Neurosci. 2019;22:1345–56.

    Article  PubMed  CAS  Google Scholar 

  92. Vormstein-Schneider D, Lin JD, Pelkey KA, Chittajallu R, Guo B, Arias-Garcia MA, et al. Viral manipulation of functionally distinct interneurons in mice, non-human primates and humans. Nat Neurosci. 2020;23:1629–36.

  93. Mich JK, Graybuck LT, Hess EE, Mahoney JT, Kojima Y, Ding Y, et al. Functional enhancer elements drive subclass-selective expression from mouse to primate neocortex. Cell Rep. 2021;34:108754.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci. 2010;13:133–40.

    Article  PubMed  CAS  Google Scholar 

  95. Madisen L, Garner AR, Shimaoka D, Chuong AS, Klapoetke NC, Li L, et al. Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron. 2015;85:942–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Daigle TL, Madisen L, Hage TA, Valley MT, Knoblich U, Larsen RS, et al. A suite of transgenic driver and reporter mouse lines with enhanced brain cell type targeting and functionality. Cell. 2018;174:465–80.e22.

  97. Livet J, Weissman TA, Kang H, Draft RW, Lu J, Bennis RA, et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature. 2007;450:56–62.

    Article  PubMed  CAS  Google Scholar 

  98. He M, Tucciarone J, Lee S, Nigro MJ, Kim Y, Levine JM, et al. Strategies and tools for combinatorial targeting of GABAergic. Neurons Mouse Cereb Cortex Neuron. 2016;91:1228–43.

    CAS  Google Scholar 

  99. Beattie R, Streicher C, Amberg N, Cheung G, Contreras X, Hansen AH, et al. Lineage tracing and clonal analysis in developing cerebral cortex using mosaic analysis with double markers (MADM). J Vis Exp. 2020.

  100. Veldman MB, Park CS, Eyermann CM, Zhang JY, Zuniga-Sanchez E, Hirano AA, et al. Brainwide genetic sparse cell labeling to illuminate the morphology of neurons and Glia with Cre-dependent MORF mice. Neuron. 2020;108:111–27.e116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Ren SQ, Li Z, Lin S, Bergami M, Shi SH. Precise long-range microcircuit-to-microcircuit communication connects the frontal and sensory cortices in the mammalian brain. Neuron. 2019;104:385–401.e3.

  102. Fenno LE, Ramakrishnan C, Kim YS, Evans KE, Lo M, Vesuna S, et al. Comprehensive dual- and triple-feature intersectional single-vector delivery of diverse functional payloads to cells of behaving mammals. Neuron. 2020;107:836–53.e811.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Jin H, Liu K, Zhou B. Dual recombinases-based genetic lineage tracing for stem cell research with enhanced precision. Sci China Life Sci. 2021.

  104. Fenno LE, Mattis J, Ramakrishnan C, Hyun M, Lee SY, He M, et al. Targeting cells with single vectors using multiple-feature Boolean logic. Nat Methods. 2014;11:763–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Lui JH, Nguyen ND, Grutzner SM, Darmanis S, Peixoto D, Wagner MJ, et al. Differential encoding in prefrontal cortex projection neuron classes across cognitive tasks. Cell. 2021;184:489–506.e426.

    Article  PubMed  CAS  Google Scholar 

  106. Gouwens NW, Sorensen SA, Baftizadeh F, Budzillo A, Lee BR, Jarsky T, et al. Integrated morphoelectric and transcriptomic classification of cortical GABAergic. Cells Cell. 2020;183:935–53.e919.

    Article  PubMed  CAS  Google Scholar 

  107. Kim EJ, Zhang Z, Huang L, Ito-Cole T, Jacobs MW, Juavinett AL, et al. Extraction of distinct neuronal cell types from within a genetically continuous population. Neuron. 2020;107:274–82.e276.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Yetman MJ, Washburn E, Hyun JH, Osakada F, Hayano Y, Zeng H, et al. Intersectional monosynaptic tracing for dissecting subtype-specific organization of GABAergic interneuron inputs. Nat Neurosci. 2019;22:492–502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Kelly SM, Raudales R, He M, Lee JH, Kim Y, Gibb LG, et al. Radial glial lineage progression and differential intermediate progenitor amplification underlie striatal compartments and circuit organization. Neuron. 2018;99:345–61.e344.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Hou Y, Zhang Q, Liu H, Wu J, Shi Y, Qi Y, et al. Topographical organization of mammillary neurogenesis and efferent projections in the mouse brain. Cell Rep. 2021;34:108712.

    Article  PubMed  CAS  Google Scholar 

  111. Ma J, Shen Z, Yu YC, Shi SH. Neural lineage tracing in the mammalian brain. Curr Opin Neurobiol. 2017;50:7–16.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Mayer C, Jaglin XH, Cobbs LV, Bandler RC, Streicher C, Cepko CL, et al. Clonally related forebrain interneurons disperse broadly across both functional areas and structural boundaries. Neuron. 2015;87:989–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Harwell CC, Fuentealba LC, Gonzalez-Cerrillo A, Parker PR, Gertz CC, Mazzola E, et al. Wide dispersion and diversity of clonally related inhibitory interneurons. Neuron. 2015;87:999–1007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. McKenna A, Findlay GM, Gagnon JA, Horwitz MS, Schier AF, Shendure J. Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science. 2016;353:aaf7907.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Kalhor R, Mali P, Church GM. Rapidly evolving homing CRISPR barcodes. Nat Methods. 2017;14:195–200.

    Article  PubMed  CAS  Google Scholar 

  116. Frieda KL, Linton JM, Hormoz S, Choi J, Chow KK, Singer ZS, et al. Synthetic recording and in situ readout of lineage information in single cells. Nature. 2017;541:107–11.

    Article  PubMed  CAS  Google Scholar 

  117. Loveless TB, Grotts JH, Schechter MW, Forouzmand E, Carlson CK, Agahi BS, et al. Lineage tracing and analog recording in mammalian cells by single-site DNA writing. Nat Chem Biol. 2021;17:739–47.

    Article  PubMed  CAS  Google Scholar 

  118. Pei W, Wang X, Rossler J, Feyerabend TB, Hofer T, Rodewald HR. Using Cre-recombinase-driven Polylox barcoding for in vivo fate mapping in mice. Nat Protoc. 2019;14:1820–40.

    Article  PubMed  CAS  Google Scholar 

  119. Garcia-Marques J, Espinosa-Medina I, Ku KY, Yang CP, Koyama M, Yu HH, et al. A programmable sequence of reporters for lineage analysis. Nat Neurosci. 2020;23:1618–28.

    Article  PubMed  CAS  Google Scholar 

  120. Davidsson M, Wang G, Aldrin-Kirk P, Cardoso T, Nolbrant S, Hartnor M, et al. A systematic capsid evolution approach performed in vivo for the design of AAV vectors with tailored properties and tropism. Proc Natl Acad Sci USA. 2019;116:27053–62.

  121. Ravindra Kumar S, Miles TF, Chen X, Brown D, Dobreva T, Huang Q, et al. Multiplexed Cre-dependent selection yields systemic AAVs for targeting distinct brain cell types. Nat Methods. 2020;17:541–50.

    Article  PubMed  CAS  Google Scholar 

  122. Chan KY, Jang MJ, Yoo BB, Greenbaum A, Ravi N, Wu WL, et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat Neurosci. 2017;20:1172–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Callaway EM, Luo L. Monosynaptic circuit tracing with glycoprotein-deleted rabies viruses. J Neurosci. 2015;35:8979–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Xu X, Holmes TC, Luo MH, Beier KT, Horwitz GD, Zhao F, et al. Viral vectors for neural circuit mapping and recent advances in trans-synaptic anterograde tracers. Neuron. 2020;107:1029–47.

  125. Li J, Liu T, Dong Y, Kondoh K, Lu Z. Trans-synaptic neural circuit-tracing with neurotropic viruses. Neurosci Bull. 2019;35:909–20.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Nectow AR, Nestler EJ. Viral tools for neuroscience. Nat Rev Neurosci. 2020;21:669–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Lin R, Wang R, Yuan J, Feng Q, Zhou Y, Zeng S, et al. Cell-type-specific and projection-specific brain-wide reconstruction of single neurons. Nat Methods. 2018;15:1033–6.

    Article  PubMed  CAS  Google Scholar 

  128. Winnubst J, Bas E, Ferreira TA, Wu Z, Economo MN, Edson P, et al. Reconstruction of 1,000 projection neurons reveals new cell types and organization of long-range connectivity in the mouse brain. Cell. 2019;179:268–81.e213.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Peng H, Xie P, Liu L, Kuang X, Wang Y, Qu L, et al. Brain-wide single neuron reconstruction reveals morphological diversity in molecularly defined striatal, thalamic, cortical and claustral neuron types. bioRxiv 2020: 675280 [Preprint].

  130. Abdeladim L, Matho KS, Clavreul S, Mahou P, Sintes JM, Solinas X, et al. Multicolor multiscale brain imaging with chromatic multiphoton serial microscopy. Nat Commun. 2019;10:1662.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Sakaguchi R, Leiwe MN, Imai T. Bright multicolor labeling of neuronal circuits with fluorescent proteins and chemical tags. Elife. 2018;7:e40350.

  132. Wu X, Zhang Q, Gong L, He M. Sequencing-based high-throughput neuroanatomy: from Mapseq to Bricseq and beyond. Neurosci Bull. 2021;37:746–50.

    Article  PubMed  Google Scholar 

  133. Kebschull JM, Garcia da Silva P, Reid AP, Peikon ID, Albeanu DF, Zador AM. High-throughput mapping of single-neuron projections by sequencing of barcoded RNA. Neuron. 2016;91:975–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Chen X, Sun YC, Zhan H, Kebschull JM, Fischer S, Matho K, et al. High-throughput mapping of long-range neuronal projection using in situ sequencing. Cell. 2019;179:772–86.e719.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Sun YC, Chen X, Fischer S, Lu S, Zhan H, Gillis J, et al. Integrating barcoded neuroanatomy with spatial transcriptional profiling enables identification of gene correlates of projections. Nat Neurosci. 2021;24:873–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Huang L, Kebschull JM, Furth D, Musall S, Kaufman MT, Churchland AK, et al. BRICseq bridges brain-wide interregional connectivity to neural activity and gene expression in single animals. Cell. 2020;182:177–88.e127.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Han Y, Kebschull JM, Campbell RAA, Cowan D, Imhof F, Zador AM, et al. The logic of single-cell projections from visual cortex. Nature. 2018;556:51–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Junyent F, Kremer EJ. CAV-2–why a canine virus is a neurobiologist’s best friend. Curr Opin Pharm. 2015;24:86–93.

    Article  CAS  Google Scholar 

  139. Tervo DGowanlock R, Hwang B-Y, Viswanathan S, Gaj T, Lavzin M, Ritola Kimberly D, et al. A designer AAV variant permits efficient retrograde access to projection. Neurons Neuron. 2016;92:372–82.

    Article  Google Scholar 

  140. Li SJ, Vaughan A, Sturgill JF, Kepecs A. A viral receptor complementation strategy to overcome CAV-2 tropism for efficient retrograde targeting of neurons. Neuron. 2018;98:905–17.e905.

    Article  PubMed  CAS  Google Scholar 

  141. Lin K, Zhong X, Li L, Ying M, Yang T, Zhang Z, et al. AAV9-Retro mediates efficient transduction with axon terminal absorption and blood-brain barrier transportation. Mol Brain. 2020;13:138.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Zeng WB, Jiang HF, Gang YD, Song YG, Shen ZZ, Yang H, et al. Anterograde monosynaptic transneuronal tracers derived from herpes simplex virus 1 strain H129. Mol Neurodegener. 2017;12:38.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Zingg B, Chou XL, Zhang ZG, Mesik L, Liang F, Tao HW, et al. AAV-mediated anterograde transsynaptic tagging: mapping corticocollicular input-defined neural pathways for defense behaviors. Neuron. 2017;93:33–47.

    Article  PubMed  CAS  Google Scholar 

  144. Schwarz LA, Miyamichi K, Gao XJ, Beier KT, Weissbourd B, DeLoach KE, et al. Viral-genetic tracing of the input-output organization of a central noradrenaline circuit. Nature. 2015;524:88–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Sun Q, Li X, Ren M, Zhao M, Zhong Q, Ren Y, et al. A whole-brain map of long-range inputs to GABAergic interneurons in the mouse medial prefrontal cortex. Nat Neurosci. 2019;22:1357–70.

    Article  PubMed  CAS  Google Scholar 

  146. Paoletti P, Ellis-Davies GCR, Mourot A. Optical control of neuronal ion channels and receptors. Nat Rev Neurosci. 2019;20:514–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Sabatini BL, Tian L. Imaging neurotransmitter and neuromodulator dynamics in vivo with genetically encoded indicators. Neuron. 2020;108:17–32.

    Article  PubMed  CAS  Google Scholar 

  148. Knopfel T, Song C. Optical voltage imaging in neurons: moving from technology development to practical tool. Nat Rev Neurosci. 2019;20:719–27.

    Article  PubMed  CAS  Google Scholar 

  149. Liu F, Dai S, Feng D, Peng X, Qin Z, Kearns AC, et al. Versatile cell ablation tools and their applications to study loss of cell functions. Cell Mol Life Sci. 2019;76:4725–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature. 2013;499:295–300.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Dana H, Sun Y, Mohar B, Hulse BK, Kerlin AM, Hasseman JP, et al. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat Methods. 2019;16:649–57.

    Article  PubMed  CAS  Google Scholar 

  152. Inoue M, Takeuchi A, Manita S, Horigane SI, Sakamoto M, Kawakami R, et al. Rational engineering of XCaMPs, a multicolor GECI suite for in vivo imaging of complex brain circuit dynamics. Cell. 2019;177:1346–60.e1324.

    Article  PubMed  CAS  Google Scholar 

  153. Fosque BF, Sun Y, Dana H, Yang CT, Ohyama T, Tadross MR, et al. Neural circuits. Labeling of active neural circuits in vivo with designed calcium integrators. Science. 2015;347:755–60.

    Article  PubMed  CAS  Google Scholar 

  154. Moeyaert B, Holt G, Madangopal R, Perez-Alvarez A, Fearey BC, Trojanowski NF, et al. Improved methods for marking active neuron populations. Nat Commun. 2018;9:4440.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Sha F, Abdelfattah AS, Patel R, Schreiter ER. Erasable labeling of neuronal activity using a reversible calcium marker. Elife. 2020;9:e57249.

  156. Lee D, Hyun JH, Jung K, Hannan P, Kwon HB. A calcium- and light-gated switch to induce gene expression in activated neurons. Nat Biotechnol. 2017;35:858–63.

    Article  PubMed  CAS  Google Scholar 

  157. Wang W, Wildes CP, Pattarabanjird T, Sanchez MI, Glober GF, Matthews GA, et al. A light- and calcium-gated transcription factor for imaging and manipulating activated neurons. Nat Biotechnol. 2017;35:864–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Kim CK, Sanchez MI, Hoerbelt P, Fenno LE, Malenka RC, Deisseroth K, et al. A molecular calcium integrator reveals a striatal cell type driving aversion. Cell. 2020;183:2003–19.e2016.

    Article  PubMed  CAS  Google Scholar 

  159. Reijmers LG, Perkins BL, Matsuo N, Mayford M. Localization of a stable neural correlate of associative memory. Science. 2007;317:1230–3.

    Article  PubMed  CAS  Google Scholar 

  160. Guenthner CJ, Miyamichi K, Yang HH, Heller HC, Luo L. Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations. Neuron. 2013;78:773–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. DeNardo LA, Liu CD, Allen WE, Adams EL, Friedmann D, Fu LS, et al. Temporal evolution of cortical ensembles promoting remote memory retrieval. Nat Neurosci. 2019;22:460. -+

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Sakurai K, Zhao S, Takatoh J, Rodriguez E, Lu J, Leavitt AD, et al. Capturing and manipulating activated neuronal ensembles with CANE delineates a hypothalamic social-fear circuit. Neuron. 2016;92:739–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Kawashima T, Kitamura K, Suzuki K, Nonaka M, Kamijo S, Takemoto-Kimura S, et al. Functional labeling of neurons and their projections using the synthetic activity-dependent promoter E-SARE. Nat Methods. 2013;10:889.

    Article  PubMed  CAS  Google Scholar 

  164. Sorensen AT, Cooper YA, Baratta MV, Weng FJ, Zhang Y, Ramamoorthi K, et al. A robust activity marking system for exploring active neuronal ensembles. Elife. 2016;5:e13918.

  165. Sun X, Bernstein MJ, Meng M, Rao S, Sørensen AT, Yao L, et al. Functionally distinct neuronal ensembles within the memory engram. Cell. 2020;181:410.e417.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Piatkevich KD, Bensussen S, Tseng HA, Shroff SN, Lopez-Huerta VG, Park D, et al. Population imaging of neural activity in awake behaving mice. Nature. 2019;574:413–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Adam Y, Kim JJ, Lou S, Zhao Y, Xie ME, Brinks D, et al. Voltage imaging and optogenetics reveal behaviour-dependent changes in hippocampal dynamics. Nature. 2019;569:413–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Villette V, Chavarha M, Dimov IK, Bradley J, Pradhan L, Mathieu B, et al. Ultrafast two-photon imaging of a high-gain voltage indicator in awake behaving mice. Cell. 2019;179:1590–608.e1523.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Marvin JS, Scholl B, Wilson DE, Podgorski K, Kazemipour A, Muller JA, et al. Stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR. Nat Methods. 2018;15:936–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Marvin JS, Shimoda Y, Magloire V, Leite M, Kawashima T, Jensen TP, et al. A genetically encoded fluorescent sensor for in vivo imaging of GABA. Nat Methods. 2019;16:763–70.

    Article  PubMed  CAS  Google Scholar 

  171. Patriarchi T, Cho JR, Merten K, Howe MW, Marley A, Xiong WH, et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science. 2018;360:eaat4422.

  172. Sun F, Zhou J, Dai B, Qian T, Zeng J, Li X, et al. Next-generation GRAB sensors for monitoring dopaminergic activity in vivo. Nat Methods. 2020;17:1156–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Borden PM, Zhang P, Shivange AV, Marvin JS, Cichon J, Dan C, et al. A fast genetically encoded fluorescent sensor for faithful in vivo acetylcholine detection in mice, fish, worms and flies. bioRxiv 2020:2020.02.07.939504[Preprint].

  174. Jing M, Li Y, Zeng J, Huang P, Skirzewski M, Kljakic O, et al. An optimized acetylcholine sensor for monitoring in vivo cholinergic activity. Nat Methods. 2020;17:1139–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Wan J, Peng W, Li X, Qian T, Song K, Zeng J, et al. A genetically encoded GRAB sensor for measuring serotonin dynamics in vivo. Nat Neurosci. 2021;24:746–52.

  176. Feng J, Zhang C, Lischinsky JE, Jing M, Zhou J, Wang H, et al. A genetically encoded fluorescent sensor for rapid and specific in vivo detection of norepinephrine. Neuron. 2019;102:745–61.e748.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Peng W, Wu Z, Song K, Zhang S, Li Y, Xu M. Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons. Science. 2020;369:eabb0556.

  178. Lobas MA, Tao R, Nagai J, Kronschlager MT, Borden PM, Marvin JS, et al. A genetically encoded single-wavelength sensor for imaging cytosolic and cell surface ATP. Nat Commun. 2019;10:711.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Ma L, Jongbloets BC, Xiong WH, Melander JB, Qin MZ, Lameyer TJ, et al. A highly sensitive a-kinase activity reporter for imaging neuromodulatory events in awake mice. Neuron. 2018;99:665.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Laviv T, Scholl B, Parra-Bueno P, Foote B, Zhang CQ, Yan L, et al. In vivo imaging of the coupling between neuronal and CREB activity in the mouse brain. Neuron. 2020;105:799.

    Article  PubMed  CAS  Google Scholar 

  181. Mager T, Lopez de la Morena D, Senn V, Schlotte J, DE A, Feldbauer K, et al. High frequency neural spiking and auditory signaling by ultrafast red-shifted optogenetics. Nat Commun. 2018;9:1750.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Govorunova EG, Sineshchekov OA, Li H, Wang Y, Brown LS, Spudich JL. RubyACRs, nonalgal anion channelrhodopsins with highly red-shifted absorption. Proc Natl Acad Sci USA. 2020;117:22833–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Magnus CJ, Lee PH, Bonaventura J, Zemla R, Gomez JL, Ramirez MH, et al. Ultrapotent chemogenetics for research and potential clinical applications. Science. 2019;364:eaav5282.

  184. Nagai Y, Miyakawa N, Takuwa H, Hori Y, Oyama K, Ji B, et al. Deschloroclozapine, a potent and selective chemogenetic actuator enables rapid neuronal and behavioral modulations in mice and monkeys. Nat Neurosci. 2020;23:1157–67.

    Article  PubMed  CAS  Google Scholar 

  185. Gong X, Mendoza-Halliday D, Ting JT, Kaiser T, Sun X, Bastos AM, et al. An ultra-sensitive step-function opsin for minimally invasive optogenetic stimulation in mice and macaques. Neuron. 2020;107:38–51.e8.

  186. Mahn M, Saraf-Sinik I, Patil P, Pulin M, Bitton E, Karalis N, et al. Efficient optogenetic silencing of neurotransmitter release with a mosquito rhodopsin. Neuron. 2021;109:1621–35.e1628.

    Article  PubMed  CAS  Google Scholar 

  187. Vardy E, Robinson JE, Li C, Olsen RHJ, DiBerto JF, Giguere PM, et al. A new DREADD facilitates the multiplexed chemogenetic interrogation of behavior. Neuron. 2015;86:936–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A, Cho YK, et al. Independent optical excitation of distinct neural populations. Nat Methods. 2014;11:338–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Burrone J, O’Byrne M, Murthy VN. Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons. Nature. 2002;420:414–8.

    Article  PubMed  CAS  Google Scholar 

  190. Drexel M, Romanov RA, Wood J, Weger S, Heilbronn R, Wulff P, et al. Selective silencing of hippocampal parvalbumin interneurons induces development of recurrent spontaneous limbic seizures in mice. J Neurosci. 2017;37:8166–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Liu Q, Sinnen BL, Boxer EE, Schneider MW, Grybko MJ, Buchta WC, et al. A photoactivatable botulinum neurotoxin for inducible control of neurotransmission. Neuron. 2019;101:863–75.e866.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Saito M, Iwawaki T, Taya C, Yonekawa H, Noda M, Inui Y, et al. Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice. Nat Biotechnol. 2001;19:746–50.

    Article  PubMed  CAS  Google Scholar 

  193. Joye DAM, Rohr KE, Keller D, Inda T, Telega A, Pancholi H, et al. Reduced VIP expression affects circadian clock function in VIP-IRES-CRE mice (JAX 010908). J Biol Rhythms. 2020;35:340–52.

    Article  PubMed  CAS  Google Scholar 

  194. Luo L, Ambrozkiewicz MC, Benseler F, Chen C, Dumontier E, Falkner S, et al. Optimizing nervous system-specific gene targeting with cre driver lines: prevalence of germline recombination and influencing factors. Neuron. 2020;106:37–65.e35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Fischer KB, Collins HK, Callaway EM. Sources of off-target expression from recombinase-dependent AAV vectors and mitigation with cross-over insensitive ATG-out vectors. Proc Natl Acad Sci USA. 2019;116:27001–10.

  196. Han HJ, Allen CC, Buchovecky CM, Yetman MJ, Born HA, Marin MA, et al. Strain background influences neurotoxicity and behavioral abnormalities in mice expressing the tetracycline transactivator. J Neurosci. 2012;32:10574–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Forni PE, Scuoppo C, Imayoshi I, Taulli R, Dastru W, Sala V, et al. High levels of Cre expression in neuronal progenitors cause defects in brain development leading to microencephaly and hydrocephaly. J Neurosci. 2006;26:9593–602.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Rezai Amin S, Gruszczynski C, Guiard BP, Callebert J, Launay JM, Louis F, et al. Viral vector-mediated Cre recombinase expression in substantia nigra induces lesions of the nigrostriatal pathway associated with perturbations of dopamine-related behaviors and hallmarks of programmed cell death. J Neurochem. 2019;150:330–40.

    Article  PubMed  CAS  Google Scholar 

  199. Steinmetz NA, Buetfering C, Lecoq J, Lee CR, Peters AJ, Jacobs EAK, et al. Aberrant cortical activity in multiple GCaMP6-expressing transgenic mouse lines. eNeuro. 2017;4.

  200. Chen AX, Yan JJ, Zhang W, Wang L, Yu ZX, Ding XJ, et al. Specific hypothalamic neurons required for sensing conspecific male cues relevant to inter-male aggression. Neuron. 2020;108:763–74.e6.

Download references

Acknowledgements

This study was supported by funds from the National Key R&D Program of China 2018YFA0108000, National Natural Science Foundation of China (31970971, 31771196, 32000729), Shanghai Rising-Star Program (18QA1400600), Shanghai Municipal Science and Technology Major Project (No.2018SHZDZX01), and ZJLab.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MH. Writing—original draft: LG, XL, JW, and MH. Writing—review and editing: MH, LG, and XL. All authors reviewed and approved the final version.

Corresponding author

Correspondence to Miao He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, L., Liu, X., Wu, J. et al. Emerging strategies for the genetic dissection of gene functions, cell types, and neural circuits in the mammalian brain. Mol Psychiatry 27, 422–435 (2022). https://doi.org/10.1038/s41380-021-01292-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01292-x

Search

Quick links