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Extensive research has been carried out on the metabolomic changes in animal models of depression; however, there is no general
agreement about which metabolites exhibit constant changes. Therefore, the aim of this study was to identify consistently altered
metabolites in large-scale metabolomics studies of depression models. We performed vote counting analyses to identify
consistently upregulated or downregulated metabolites in the brain, blood, and urine of animal models of depression based on
3743 differential metabolites from 241 animal metabolomics studies. We found that serotonin, dopamine, gamma-aminobutyric
acid, norepinephrine, N-acetyl-L-aspartic acid, anandamide, and tryptophan were downregulated in the brain, while kynurenine,
myo-inositol, hydroxykynurenine, and the kynurenine to tryptophan ratio were upregulated. Regarding blood metabolites,
tryptophan, leucine, tyrosine, valine, trimethylamine N-oxide, proline, oleamide, pyruvic acid, and serotonin were downregulated,
while N-acetyl glycoprotein, corticosterone, and glutamine were upregulated. Moreover, citric acid, oxoglutaric acid, proline,
tryptophan, creatine, betaine, L-dopa, palmitic acid, and pimelic acid were downregulated, and hippuric acid was upregulated in
urine. We also identified consistently altered metabolites in the hippocampus, prefrontal cortex, serum, and plasma. These findings
suggested that metabolomic changes in depression models are characterized by decreased neurotransmitter and increased
kynurenine metabolite levels in the brain, decreased amino acid and increased corticosterone levels in blood, and imbalanced
energy metabolism and microbial metabolites in urine. This study contributes to existing knowledge of metabolomic changes in
depression and revealed that the reproducibility of candidate metabolites was inadequate in previous studies.
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INTRODUCTION
Depression is a mental illness that severely impairs the social
function of patients. The lifetime prevalence of depression is ~6.8
to 20.6% [1, 2]. In addition, depression severely impairs the quality
of life of patients and has become one of the primary diseases
leading to mental disability [3]. Despite a large body of evidence
supporting the pathophysiology of depression, the underlying
molecular mechanisms that mediate its onset remain unclear.
Depression has complex and diverse causal factors, a lack of clear
pathological alterations or risk genes, and a high degree of
heterogeneity in clinical presentation [4, 5].
Metabolites are products of upstream gene and protein regulatory

networks that are involved in a variety of physiological and
pathological conditions [6, 7]. Metabolomics techniques have been
rapidly developed in the last two decades [8]. Because of the
important physiological role of metabolites, these metabolomics
techniques have been widely used to identify biochemical dis-
turbances in diseases [9]. To date, hundreds of metabolomics studies
have been conducted to investigate the metabolite alterations in
animal models of depression, which expanded the knowledge of the
physiopathology of depression [10–12]. Moreover, supplementation
with certain metabolites could exert antidepressant effects,

suggesting that metabolomics techniques are potential strategies
for screening and developing new antidepressants [13–15].
Although extensive research has been carried out on the

metabolomic changes in animal models of depression, there are
concerns regarding the generalizability of these metabolomics
studies, as their results are not consistent [16]. To our knowledge,
no previous study has assessed the reproducibility of metabo-
lomics studies, and there is no general agreement about which
metabolites show constant changes in animal models of depres-
sion. Therefore, the aim of this study was to perform a systematic
analysis to identify consistently altered metabolites in animal
models of depression by integrating the totality of evidence from
these large-scale metabolomics studies. Using a knowledgebase-
driven approach, we performed vote counting analyses to identify
consistently upregulated or downregulated metabolites in the
brain, blood, and urine in animal models of depression.

MATERIALS AND METHODS
Data source
Candidate metabolites were derived from our metabolite database of
depression called the Metabolite Network of Depression Database
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(MENDA) (http://menda.cqmu.edu.cn:8080/index.php). Briefly, this data-
base included 464 clinical and preclinical studies that investigated
metabolite changes in depression and its treatment using metabolomics
and magnetic resonance spectroscopy (MRS) techniques as of March 20,
2018 [17]. The search strategy and study selection criteria can be found in
a previously published article [17]. We then manually curated 5675
differential metabolites from these studies. The ratios of two metabolites
were also included in this database.
In this study, we updated this database up to April 1, 2021, which nearly

doubled the numbers of included studies and metabolites. After researching
PubMed, the Cochrane Library, Embase, Web of Science, and PsycINFO, we
cumulatively reviewed 2177 full-text articles and excluded 1409 studies
(Supplementary Data 1). Finally, we included 768 clinical and preclinical
metabolomics and MRS studies that investigated metabolic alterations in
depression and its treatment. We did not exclude studies that none of the
metabolites tested reached significant levels. A total of 12,097 differential
metabolites were manually obtained from these studies based on the
significance levels reported in the original studies. We did not use uniform
statistical criteria for data reanalysis because only 3% of these studies
provided raw data. In addition, we used the Human Metabolome Database
(HMDB) [18], PubChem [19], and Kyoto Encyclopedia of Genes and Genomes
(KEGG) [20] databases to standardize the synonyms of candidate metabolites.

Data selection
For further data analysis, we selected curated data according to the
following criteria. For study type, we included studies that compared
metabolite levels between rodent models of depression and controls and
excluded intervention studies that investigated metabolic changes
associated with antidepressant treatment. Nonhuman primates and cell
studies were excluded. For metabolite detection methods, we included
non-targeted and targeted metabolomics studies and excluded in vivo
MRS studies. In addition, we excluded metabolites with unknown
regulation directions.

Data analysis strategy
For the quantitative analysis, we used the following analytical strategy. In
the main analysis, we analyzed metabolite alterations in brain, blood
(plasma and serum), and urine samples. To further analyze the metabolite
alterations in different tissues, secondary analyses were performed in the
hippocampus, prefrontal cortex, serum, and plasma. Other brain or
peripheral tissues were not included because of the small amount of
data. In addition, we also explored metabolite alterations in the chronic
mild stress (CMS) model, the most commonly used model of depression.
The quality of reporting of the included studies was evaluated according to
the updated STAIR recommendations [21].

Statistical analysis
Merging raw data, mean values, or p values are the optimal strategies for
merging metabolomics data [22, 23]. However, a lack of raw data, mean
values, or fold changes for each metabolite in most of these metabolomics
studies prevented us from conducting a meta-analysis. Alternatively, we
used the vote counting process to analyze whether metabolites were
consistently upregulated or downregulated across studies. The vote
counting method can enrich for candidate molecules that are likely to
be confirmed by independent testing [24]. During the vote counting
process, each metabolite was noted as “1” or “−1” when it was reported as
significantly upregulated or downregulated in each study, respectively.
Where samples were taken from different brain regions in one research,
candidate metabolites were considered to originate from independent
studies and were counted separately. The vote counting statistic (VCS) for
each metabolite was then calculated by summing the scores [25]. Larger or
smaller VCS values indicated that more studies reported the metabolite as
significantly upregulated or downregulated, respectively.
To analyze whether the upregulation or downregulation of each

metabolite was statistically significant, we used a binomial distribution to
determine whether the positive significant findings were attributable to
chance, with the assumption that each candidate metabolite was
upregulated or downregulated in each study with a probability of 50%
[25]. The binomial tests were implemented in R (v 4.0.4, https://www.r-
project.org/) with the function binom.test. The one-tailed p values were
calculated for candidate metabolites that were reported in more than
three data sets, and the minimum p value for fewer data sets was 0.1.
Differences with p < 0.05 were considered to be significant.

RESULTS
Data sets
Through screening of the MENDA database, 8354 differential
metabolites from 527 studies were excluded from the study; see
Supplementary Table 1 and Supplementary Data 2 for the reasons
for exclusion. A total of 3743 differential metabolites from 241
metabolomics studies in animal models of depression were
included in the analysis. The full information of included studies
(title, study design, category of depression model, organism,
tissue, platform, criteria for depression, sample size, original data
availability, and citation) is provided in Supplementary Data 3. The
full information of candidate metabolites (metabolite name,
HMDB ID, KEGG ID, PubChem ID, comparison group, tissue,
organism, category of depression model, platform, and regulation
direction) is presented in Supplementary Data 4.
The characteristics of the included studies and metabolites are

summarized in Supplementary Table 2. Briefly, brain tissues
were used in 151 studies, with 2119 differential metabolites. The
hippocampus (95 studies, 1119 differential metabolites) and
prefrontal cortex (46 studies, 460 differential metabolites) were
the most widely used brain tissues. Regarding peripheral tissues,
plasma (53 studies, 415 differential metabolites) was the most
commonly used sample type, followed by serum (43 studies, 572
differential metabolites), and urine (37 studies, 637 differential
metabolites). Eighty-seven unique metabolites (or metabolite
ratios) in the brain, 58 in blood, and 45 in urine were reported
as dysregulated in at least four studies (Fig. 1). The CMS model
was the most widely used animal model (140 studies, 1955
differential metabolites). The overall quality of reporting is
presented in Supplementary Data 5, and few studies have met
some of these criteria (e.g., sample size calculation and
randomization).

Metabolites altered in the brain
We assessed which metabolites were consistently dysregulated in
the brain. Volcano plots of candidate metabolites in the brain,
hippocampus, and prefrontal cortex are presented in Fig. 2A–C.
Among the 85 candidate metabolites and two metabolite ratios in
the brain, serotonin (VCS=−28, p < 0.001), dopamine (VCS=−24,
p < 0.001), gamma-aminobutyric acid (GABA, VCS=−21, p=
0.002), norepinephrine (VCS=−11, p= 0.017), N-acetyl-L-
aspartic acid (VCS=−11, p= 0.049), anandamide (VCS=−10,
p= 0.015), and tryptophan (VCS=−10, p= 0.049) were down-
regulated, while kynurenine (VCS= 19, p < 0.001), myo-inositol
(VCS= 14, p= 0.003), hydroxykynurenine (VCS= 11, p= 0.002),
and the kynurenine to tryptophan ratio (VCS= 8, p= 0.004) were
upregulated (Fig. 2D and Supplementary Table 3).
Among the 56 candidate metabolites and two metabolite ratios

in the hippocampus, serotonin (VCS=−17, p < 0.001), dopamine
(VCS=−13, p= 0.004), and GABA (VCS=−10, p= 0.038) were
downregulated, and kynurenine (VCS= 11, p= 0.002) and the
kynurenine to tryptophan ratio (VCS= 5, p= 0.031) were upregu-
lated (Fig. 2E and Supplementary Table 4). Among the 15
candidate metabolites in the prefrontal cortex, only glutamic acid
was dysregulated (VCS=−8, p= 0.019; Fig. 2F and Supplemen-
tary Table 5).

Metabolites altered in blood
We further analyzed the metabolite alterations in blood. Volcano
plots of candidate metabolites in blood, plasma, and serum are
presented in Fig. 3A–C. Fifty-seven candidate metabolites and one
metabolite ratio in the blood were introduced in the vote
counting procedure, and the results revealed that tryptophan
(VCS=−18, p < 0.001), leucine (VCS=−10, p= 0.001), tyrosine
(VCS=−9, p= 0.002), valine (VCS=−9, p= 0.006), trimethyla-
mine N-oxide (VCS=−9, p= 0.011), proline (VCS=−8, p= 0.004),
oleamide (VCS=−6, p= 0.016), pyruvic acid (VCS=−6, p=
0.016), and serotonin (VCS=−5, p= 0.031) were downregulated,
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while N-acetyl glycoprotein (VCS= 11, p < 0.001), corticosterone
(VCS= 9, p= 0.002), and glutamine (VCS= 6, p= 0.035) were
upregulated (Fig. 3D and Supplementary Table 6).
Further analysis showed that three and seven candidate

metabolites were consistently dysregulated in plasma and serum
samples, respectively (Fig. 3E, F). Tryptophan (VCS=−11, p <
0.001), tyrosine (VCS=−7, p= 0.008), and corticosterone (VCS=
8, p= 0.004) were dysregulated in plasma samples (Supplemen-
tary Table 7). Leucine (VCS=−8, p= 0.004), tryptophan (VCS=
−7, p= 0.008), isoleucine (VCS=−7, p= 0.020), valine (VCS=−6,
p= 0.016), proline (VCS=−5, p= 0.031), pyruvic acid (VCS=−5,
p= 0.031), and N-acetyl glycoprotein (VCS= 8, p= 0.004) were
dysregulated in serum samples (Supplementary Table 8).

Metabolites altered in urine
The vote counting procedure revealed that 10 of the 45 candidate
metabolites in urine were consistently dysregulated (Fig. 4A).
Citric acid (VCS=−16, p < 0.001), oxoglutaric acid (VCS=−10,
p= 0.003), proline (VCS=−8, p= 0.011), tryptophan (VCS=−6,
p= 0.035), creatine (VCS=−6, p= 0.035), betaine (VCS=−5, p=
0.031), L-dopa (VCS=−5, p= 0.031), palmitic acid (VCS=−5, p=
0.031), and pimelic acid (VCS=−5, p= 0.031) were down-
regulated, and hippuric acid (VCS= 10, p= 0.015) was upregu-
lated (Fig. 4B and Supplementary Table 9).

Metabolites altered in the CMS model
To determine whether the vote counting results were influenced
by types of models, we investigated the altered metabolites in the
CMS model. Six, 13, and five metabolites were consistently
dysregulated in brain, blood, and urine samples, respectively
(Fig. 5A–C; Supplementary Tables 10–12). All but one of these

consistently altered metabolites were shared among the results of
all models (Fig. 5D). Regarding other types of models, the vast
majority of candidate metabolites were reported in less than three
data sets, leaving insufficient data for the vote counting
procedure.

DISCUSSION
This study is the first comprehensive investigation of metabolomic
changes in animal models of depression that provided a large
evidence synthesis of 241 studies. Consistently dysregulated
metabolites in brain, blood, and urine samples across these
studies were identified from 3743 differential metabolites using a
vote counting approach. We found that decreased neurotrans-
mitter levels and increased kynurenine metabolite levels were the
main metabolite signatures in the brains of depression models.
Blood was characterized by decreased amino acid concentrations
and increased corticosterone levels. We also provided evidence
of imbalanced energy metabolism and microbial metabolites
in urine.
The main results obtained from this study, contrary to our

expectations, revealed the inadequate reproducibility of metabo-
lomics studies. Although nearly 300 metabolomics studies were
examined, we only identified approximately 10 consistently
altered metabolites in brain, blood, and urine samples. This may
have occurred because many factors may influence the identifica-
tion of differential metabolites. Sample preparation, metabolomics
experiments, and data analysis are decisive factors that affect the
reproducibility of methods [26, 27]. Indeed, any change in
parameter settings in these processes can have substantial effects
on the compound identification and quantification results [28].
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Regarding the issue of result reproducibility, the heterogeneity of
depression also needs to be considered. Our previous animal
study found that different stress paradigms would lead to diverse
patterns of metabolic changes in the hippocampus [29]. Clinical
studies also revealed sex and age differences in the plasma
metabolome signatures of MDD patients [30, 31]. Despite these

concerns, our systematic analysis suggested that certain metabo-
lites were dysregulated across independent animal studies
and expanded the understanding of the physiopathology of
depression.
In the current study, we found that a variety of neurotransmit-

ters were downregulated in the brains of depression models.
Consistent with our expectations, we found that the central levels
of monoamine neurotransmitters, including serotonin, dopamine,
and norepinephrine, were decreased, supporting the classical
monoamine hypothesis of depression [32]. We also found
abnormalities in amino acid neurotransmitters, such as decreases
in GABA levels in the brain and glutamic acid levels in the
prefrontal cortex. These results are in agreement with the findings
of previous meta-analyses, which showed lower brain GABA and
glutamatergic metabolite levels in MDD patients [33–35]. These
findings confirmed the role of altered glutamatergic and
GABAergic neurotransmission in the pathophysiology of depres-
sion, as described in a previous review [36]. Another noteworthy
observation is that we found downregulated anandamide levels in
the brain. A relationship between anandamide, one of the main
endocannabinoid metabolites, and the emotional state of animals
was suggested. Previous studies found that decreasing ananda-
mide levels by depletion of its producing enzyme may be a risk for
the development of depression [37], and increasing its levels by
blocking its hydrolase exerted antidepressant effects [38].
The results of this study showed upregulated kynurenine and

hydroxykynurenine levels, as well as downregulated tryptophan
levels in the brain. Kynurenine is synthesized from tryptophan and
then broken down into hydroxykynurenine. The increased
kynurenine to tryptophan ratio also suggested the activation of
tryptophan metabolism to kynurenine by indoleamine 2,3-
dioxygenase [39]. Disturbances of kynurenine metabolites are
associated with neuroimmune disturbance, as elevated kynur-
enine induced depression-like behaviors in rodents through
monocyte trafficking and regulation of the NLRP2 inflammasome
in astrocytes [40, 41]. Therefore, this evidence highlighted that the
neurotoxicity of kynurenine is a potential contributor to the
pathogenesis of depression. Despite these findings, postmortem
studies demonstrated unaltered in brain tissues of depressed
individuals [42, 43], and previous meta-analyses reported
decreased kynurenine levels and unaltered hydroxykynurenine
concentrations in the blood of MDD patients [44, 45]. Therefore,
further studies that determining the central levels of the
kynurenine metabolites in MDD patients are still needed.
We found that the alterations in the blood of animal models

were mainly characterized by decreases of amino acid concentra-
tions. Two branched-chain amino acids (valine and leucine), two
aromatic amino acids (tryptophan and tyrosine), and one other
amino acid (proline) were downregulated. These results are in line
with those of our recent meta-analysis, which showed a trend or
statistical significance in decreases in these metabolites in the
blood of MDD patients [22]. However, a decrease in the levels of
these amino acids was not demonstrated to be a causal factor in
the pathogenesis of depression, as depletion of these amino acids
did not decrease mood in humans [46, 47]. The possible reason for
these findings is that stressed animals were in chronic catabolic
states because of reduced food intake and weight loss, which may
lead to disturbances in amino acid metabolism. In addition, we
also identified upregulated glutamine levels. The association of
circulating glutamine levels and depression is still controversial in
clinical settings, as our previous meta-analysis reported decreased
glutamine levels in MDD patients [22], while unaltered levels were
reported in other meta-analyses [48, 49]. Therefore, further
research on this topic is still needed.
Our results suggested upregulated corticosterone levels in the

blood. Consistent with findings in MDD patients [50], increased
circulating corticosterone supported the stress-induced hyperac-
tivity of the hypothalamus–pituitary–adrenal axis, as previously
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discussed [51]. We also found that N-acetyl glycoprotein was
upregulated in the blood, which is consistent with data obtained
in human studies [48]. N-Acetyl glycoprotein is a circulating
marker of systemic inflammation because its concentration
correlates with C-reactive protein, fibrinogen, and interleukin-6
levels [52, 53]. Therefore, these findings support that disturbances
in the hypothalamus–pituitary–adrenal axis and peripheral inflam-
mation are involved in the development of depression.
We found that three metabolites (citric acid, oxoglutaric acid,

and creatine) involved in recycling of adenosine triphosphate
(ATP) were downregulated in the urine of depression models.
Moreover, pyruvic acid, an important metabolite in ATP metabo-
lism, was also downregulated in the blood. These altered
metabolites suggested an imbalance of energy metabolism in
depression, which also could be explained by the chronic
catabolic state. It was noted that supplementation of creatine or
ATP resulted in antidepressant activity in preclinical studies
[54, 55]; therefore, energy metabolism may serve as a potential
target for depression treatment.
Among the altered metabolites in urine, we also found that gut

microbiota contributed to the physiopathology of depression.
Hippuric acid was the only upregulated metabolite in urine, and its
production in rats largely depends on the gut microflora [56]. We
also identified downregulation of L-dopa, betaine, and tryptophan
levels in urine and decreased trimethylamine N-oxide levels in
blood. The biochemical transformations of these metabolites
involve a variety of gut microbiota, as described in a previous
review [57]. Therefore, alterations in these microbial metabolites
suggest the involvement of gut microbes in the development of
depression, while further studies investigating the underlying
pathogenic bacterium are still warranted.
Among the altered metabolites, tryptophan and serotonin

were downregulated in both brain and peripheral tissues, and
proline was downregulated in blood and urine samples. More-
over, some metabolites showed similar dysregulated trends in
central and peripheral tissues. For example, tyrosine is the
precursor of the monoamine neurotransmitters dopamine and
epinephrine, its concentration was reduced in blood and also
showed a downregulation trend in the brain and urine. In

addition, it is also noticed an accumulation of kynurenine in the
brain of depression models, with an increased trend in the blood.
Central kynurenine is mainly synthesized from peripheral
tryptophan degradation and then taken up into brain by
transporters [58]. In MDD patients, plasma kynurenine levels
correlated with its levels in the cerebrospinal fluid [59]. Other
studies reported that attenuating the kynurenine accumulation in
the brain by lowering plasma kynurenine levels or blocking the
entry of kynurenine into the brain can exert an antidepressant
effect [60, 61]. Therefore, these findings highlight the bidirec-
tional interactions of metabolomic changes between the brain
and peripheral tissues.
Our study presents some limitations. First, application of the

vote counting approach cannot identify new differential metabo-
lites other than candidate metabolites. However, because only 3%
of the included studies provided raw data, this method is still the
most feasible way to perform such a large-scale quantitative
analysis. To increase the accessibility of raw data, further studies
with greater statistical power should be performed. Second, some
metabolites were excluded from the semi-quantitative analysis
because of an insufficient number of studies. Moreover, limited
metabolite entries precluded stratified analyses. Future studies
with more included studies are therefore recommended. Third,
the metabolic alterations reported in this study may be caused by
stress and are not specific to depression; therefore, further studies
are needed to determine the causal relationship between these
altered metabolites and the onset of depression. Finally, the
publication bias was not examined as in an ordinary meta-analysis
because of the use of vote counting.
In conclusion, we performed a quantitative analysis to identify

consistently altered metabolites in the brain, blood, and urine of
depression models based on 3743 differential metabolites from
241 metabolomics studies. The findings of this study suggested
that metabolomic changes in depression models are characterized
by decreased neurotransmitter and increased kynurenine meta-
bolite levels in the brain, decreased amino acid and increased
corticosterone levels in the blood, and imbalanced energy
metabolism and microbial metabolites in urine. This study
contributes to the existing knowledge of metabolomic changes
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in depression and reveals that the reproducibility of candidate
metabolites was inadequate in previous studies.
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