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Integrative brain transcriptome analysis links complement
component 4 and HSPA2 to the APOE ε2 protective effect in
Alzheimer disease
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Mechanisms underlying the protective effect of apolipoprotein E (APOE) ε2 against Alzheimer disease (AD) are not well understood.
We analyzed gene expression data derived from autopsied brains donated by 982 individuals including 135 APOE ɛ2/ɛ3 carriers.
Complement pathway genes C4A and C4B were among the most significantly differentially expressed genes between ɛ2/ɛ3 AD
cases and controls. We also identified an APOE ε2/ε3 AD-specific co-expression network enriched for astrocytes, oligodendrocytes
and oligodendrocyte progenitor cells containing the genes C4A, C4B, and HSPA2. These genes were significantly associated with the
ratio of phosphorylated tau at position 231 to total Tau but not with amyloid-β 42 level, suggesting this APOE ɛ2 related co-
expression network may primarily be involved with tau pathology. HSPA2 expression was oligodendrocyte-specific and significantly
associated with C4B protein. Our findings provide the first evidence of a crucial role of the complement pathway in the protective
effect of APOE ε2 for AD.
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INTRODUCTION
Apolipoprotein E (APOE) genotype, the strongest genetic risk
factor for late onset Alzheimer disease (AD), is determined by the
combination of amino acids at positions at 112 and 158 yielding
three common alleles (ε2, ε3, and ε4) [1, 2]. Among persons of
European ancestry, a single copy of the ε4 allele is associated with
a 3–4 fold increased risk of AD and ε4 homozygotes have a 10–12
fold increased risk compared to those with the common ε3/ε3
genotype [3–5]. In persons of European ancestry, the APOE ε2
allele is associated with a 60% and 90% decreased risk of AD
among heterozygotes and homozygotes, respectively, compared
to the ε3/ε3 genotype [3, 6]. By comparison, the AD/ε4 association
is greater among East Asians and attenuated in African Americans
[3, 5]. Population differences in the frequency of ε4 may account
for some of the ε4 effect variability, but other factors are likely
involved including the modifying effect of a polymorphic variant
in the APOE promoter region which has been shown to influence
APOE expression in vitro [5].
The opposing effects of ε2 and ε4 on AD risk have been ascribed

to similar mechanisms including amyloid-β (Aβ) aggregation and
clearance and neurofibrillary tangle formation [7, 8], however,
studies are contradictory or ambiguous about the relationship of
these effects, especially the less studied ε2 protective effect, with

AD-related pathology [9]. In brains with an autopsy-confirmed
diagnosis of AD without evidence of other neurodegenerative
disease, ε2 is generally associated with decreased neurofibrillary
tangles and with reduced neuritic plaques [10], hallmarks of AD
neuropathology [11], except in elderly subjects (aged 90 or older)
where ε2 is associated with increased neuritic plaques [12]. The
mechanism underlying the ε4-associated risk has been linked to
many AD pathways including Aβ aggregation and lipid metabo-
lism, and AD brains with the APOE ε4 allele and without other
pathologies are associated with increased neuritic plaques but not
associated with neurofibrillary tangles [2, 10, 13, 14]. While the ε4/
AD risk mechanism has been extensively researched, the biological
underpinning of the protective effect of ε2 is not well understood.
The advent of next-generation sequencing technology has

enabled transcriptomic studies (e.g., differential expression
analyses, alternative splicing, and gene expression networks
[15, 16]) using RNA-sequencing (RNA-seq) data derived from
neuropathologically evaluated brain tissue [17]. Multiple studies
have linked expression of AD-associated genes to several path-
ways in the brain including synapse function, cytoskeleton
structure, and immune function [18, 19]. We analyzed differential
gene expression, gene expression networks, and immunoassay
levels of AD-related proteins in brain tissue from pathologically
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confirmed AD cases and controls according to APOE genotype to
identify genes and biological pathways that may be functionally
involved in the mechanism underlying the protective effect of
APOE ε2.

MATERIALS AND METHODS
Sources of brain transcriptomic and phenotypic data
Publicly available RNA sequencing and neuropathological data were
obtained from the CommonMind Consortium portal (http://www.synapse.
org) including preprocessed, quality controlled, and normalized gene
expression data derived from dorsolateral prefrontal cortex area tissue
donated by 627 participants (380 autopsy-confirmed AD cases and 247
controls) of the Religious Orders Study and Rush Memory and Aging
Project (ROSMAP; https://www.radc.rush.edu) [20] and from temporal
cortex area tissue donated by 162 participants (82 autopsy-confirmed AD
cases and 80 controls) of the Mayo Clinic Study of Aging (MAYO) [21–23].
AD diagnosis was established according to the National Institute of Aging
(NIA) Reagan criteria for intermediate or high probability of AD [24].
Available neuropathological measures for ROSMAP participants included
Braak staging for neurofibrillary tangles and the Consortium to Establish a
Registry for Alzheimer Disease (CERAD) semi-quantitative criteria for
neuritic plaques (CERAD Score) [25]. No neuropathological data were
available for MAYO participants. APOE genotype information was available
for all subjects. Gene expression levels were quantified as normalized
fragments per kilobase of transcript per million (FPKM) reads in the
ROSMAP dataset and as normalized gene counts in the MAYO dataset.
We obtained frontal cortex tissue specimens from 208 participants (64

autopsy-confirmed AD cases and 129 controls) of the Framingham Heart
Study (FHS) and Boston University Alzheimer’s Disease Center (BUADC)
that were examined by the Neuropathology Core of the BUADC. The FHS is
a community-based multi-generational longitudinal study of health that
surveilles participants for cognitive decline and dementia using protocols
described elsewhere [26]. Brain tissue was collected after death from 184
participants who enrolled in the FHS brain donation with informed consent
from the next of kin. The second cohort consisted of 24 participants from
the BUADC with and without cognitive impairment who prior to death
underwent annual cognitive evaluations using the National Alzheimer’s
Disease Coordinating Center (NACC) Uniform Data Set (UDS) protocol [27].
Neuropathological assessment was performed following procedures and
criteria established by the Department of Veterans Affairs-Boston
University Brain bank [28]. AD was diagnosed using the NIA Reagan
criteria. Braak stages were assigned using the same criteria as described
above and CERAD scores were derived using semi-quantitative criteria for
neuritic plaques [29]. Neuritic plaques were defined as plaques with
argyrophilic dystrophic neurites, with or without dense amyloid cores. This
study was approved by the institutional review boards from Boston
University Medical Center and the Edith Nourse Rogers Memorial Veterans
Hospital, Bedford, MA.

RNA library preparation, sequencing, and sample QC
Total RNA was extracted from the dorsolateral prefrontal cortex (Brodmann
area 8/9) of 208 brains from the FHS/BUADC study using the Promega
Maxwell RSC simplyRNA Tissue Kit (Cat No# AS1340) according to the
manufacturer’s protocol. The integrity and quality of RNA (RNA integrity
number, RIN) was determined using the High Sensitivity RNA Screen Tape
Assay run on an Agilent 2200 Tape Station (Agilent Technologies, Palo Alto,
CA). After excluding brain samples with RIN < 5, brain samples were
randomized into seven library batches based on diagnosis, APOE genotype,
sex, and RIN. Since there were only seven samples from AD cases with
APOE genotypes 2/2 or 2/3, these specimens were included in batches 1–3
only. The BU Microarray & Sequencing Resource Core performed RNA
sequencing (RNA-seq) library preparation. The libraries were prepared from
total RNA enriched for mRNA using NEBNext Poly(A) mRNA Magnetic
Isolation Module and NEBNext Ultra II Directional RNA Library Preparation
Kit for Illumina (New England Biolabs, USA) and sequenced on an Illumina
NextSeq 500 instrument (Illumina, USA). Only 193 of the 208 samples
containing AD status were used in downstream analysis.

Mapping, quality control, and quantification of gene
expression
RNA-seq data from 193 FHS/BUADC brains were processed using an
automated pipeline. Quality control (QC) of the sequence data including

checks for over-abundance of adaptors and over-represented sequence
was performed using FastQC [30]. Low-quality reads (5% of the total) were
filtered out using the Trimmomatic option (version 0.39), which is a fast,
multithreaded command line tool to trim and crop Illumina (FASTQ) data
and remove adapters [31]. After trimming adapter sequences, reads
passing initial QC were aligned to the human reference genome
(GRCh38.95) using STAR (version 2.6.1c) which implements 2-pass mapping
to increase mapping chances of splice reads from novel junctions [32, 33].
We used the readFilesCommand option for reading input files, the
TranscriptomeSAM option for mapping reads translated into transcript
coordinates, and the GeneCounts option for counting mapped reads per
gene under the mapping mode set to quantMode and then twoPassMode
options. This process produced a BAM file of mapped paired-end reads for
each sample with a corresponding alignment report file.
Post alignment quality of BAM files was evaluated for gene coverage

and junction saturation using the RseQC (version 3.0.0, python3) [34]. The
RSeQC program evaluates uniformity of coverage over entire genes using
the gene_Body_coverage option by checking if inner distance between
read pairs is within expecting range of fragments lengths using the
inner_distance option, and ensuring sequencing depth using the
junction_saturation option. Gene and isoform levels were quantified using
RSEM (version 1.3.1) and Bowtie2 (version 2.3.4.1) and annotated using
Homo_sapiens. GRCh38.95.gtf annotation files. This process
generated gene or isoform expression data for each sample containing
gene id, gene length, effective gene length, expected count, counts per
million (CPM), and fragments per kilobase of exon model per million reads
mapped (FPKM) reads. Batch effects of seven different library and three
sequencing batches with the quantified gene expression data were
investigated using principle component analysis (PCA). We did not detect
significant batch effects for both library and sequencing batches
(Supplementary Fig. 1).

Differential gene expression analysis
Evaluation of differential gene expression between AD and control brains
was performed using the LIMMA software, which can accommodate pre-
normalized expression values [35]. After excluding genes with no FPKM reads
or gene counts in the MAYO and ROSMAP datasets and genes with total
FPKM reads <5 across all samples in the FHS/BUADC dataset, expression of
each gene/isoform was compared between AD cases and controls using
linear regression models including the log-transformed normalized expres-
sion values and terms for age of death (AOD), sex, and RIN. Each dataset was
analyzed separately and the number of genes remaining after filtering was
42,413 in the ROSMAP dataset, 47,205 in the MAYO dataset, and 33,476 in
the FHS/BUADC dataset. Models analyzing FHS/BUADC data also included
batch number, and models for ROSMAP data included batch number,
education level, and post-mortem interval (PMI). The ROSMAP sample was
reduced to 568 specimens (339 AD cases and 229 controls) due to missing
RIN. Analyses were conducted in the total sample and separately in APOE
genotype groups (ε2/3, ε3/3, and ε3/4). There were insufficient numbers of
ε2/2 or ε4/4 subjects for analyses within these genotype groups. Results
across datasets and APOE genotype groups within datasets were combined
by a sample size-weighted meta-analysis with log2 of fold change (logFC) as
direction using the software METAL [36]. Only genes included in all three
datasets were considered for follow-up analysis. Significance thresholds were
set according to the number of genes tested in each APOE genotype group
and in the total sample: ε2/ε3 (p= 2.35 × 10−6), ε3/ε3 (p= 1.96 × 10−6), ε3/ε4
(p= 2.42 × 10−6), and total (p= 1.82 × 10−6).

Association analysis of gene expression levels on
neuropathological traits
The distribution of Braak Stage and CERAD Score in the ROSMAP and FHS/
BUADC datasets by APOE genotype is shown in Supplementary Table 6.
Values for each trait were adjusted for age at death and sex, and the
residuals were rank-transformed as previously described [37]. Association
of log2-transformed expression levels for the top-ranked differentially
expressed genes (DEGs) with each rank-transformed neuropathological
trait was evaluated in the total sample using linear regression models that
adjusted for PMI and RIN in the ROSMAP dataset and for RIN in the FHS/
BUADC dataset. Only the 568 ROSMAP samples including RIN were
included in this analysis. We also ran the same linear regression models in
the APOE subgroups (ε2/3, ε3/3, and ε3/4) exclusively in ROSMAP due to
insufficient sample sizes in FHS/BUADC (Supplementary Table 6). Results
obtained for the two datasets analyzed separately were combined by
meta-analysis using the inverse variance model.
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Gene co-expression network and enrichment analyses
Gene co-expression analysis was performed using the weighted correlation
network analysis (WGCNA) in R package [38]. We created a signed
adjacency matrix with a soft-power parameter determined by reaching a
scale-free topological fit to at least 0.8 and maximizing mean connectivity.
Soft-power creates a fuzzy threshold for gene connectivity which reduces
network connectivity noise. We performed hierarchical clustering using a
dissimilatory topological overlap matrix (TOM) which was created based on
the adjacency matrix. Labels were then assigned to networks using the
Dynamic tree cut package with a minimal network size of 100 genes [39].
Networks with highly correlated eigenvalues were merged using the
mergeCloseModules function with a height of 0 [38]. The signedKME
function was used to assign fuzzy membership values to all genes in each
network. This network-building pipeline was applied to each dataset in six
sample partitions defined by APOE genotype and AD status. The soft-
power parameter values in these partitions were determined by
maximizing scale-free topological fit and median connectivity. The soft-
power parameter values for FHS/BUADC partitions were assigned as ε23
controls= 6, ε23 AD cases= 16, ε33 controls= 12, ε33 AD cases= 7, ε34
controls= 12, and ε34 AD cases= 8. Soft-power parameter values for all
partitions in the ROSMAP and the MAYO datasets were set as 12. Network
preservation across datasets with the same APOE genotype and AD status
was evaluated using ZSummary statistics which were calculated using the
modulePreservation function in the WGCNA package [40]. ZSummary values
>10 were considered as highly preserved networks between two datasets.
Gene enrichment analysis was conducted for network networks derived

from subsets of the total sample stratified by APOE genotype and AD status
using the userListEnrichment function in WGCNA. Networks from the
ROSMAP dataset that were highly preserved in at least one other dataset
were tested for AD gene enrichment using the gene-lists of DEGs from the
APOE subgroup and total sample analyses as well as previously known AD
genes from a recent genome-wide association study [1]. These AD gene-
lists included genes from the differential expression analysis (p < 0.01)
corresponding to the network’s APOE genotype group that were also
moderately differentially expressed in the total sample (p < 0.01), genes
that were differentially expressed between AD cases and controls in the
total sample (p < 10−6), and genes that showed modest evidence for
association with AD (p < 10−3) in a recent large GWAS [1]. P values were
adjusted using the Bonferroni method to correct for the number of
separate analyses.

Brain cell-type specific expression profiles and enrichment
analysis
Raw FASTQ single-nucleus RNA sequencing data derived from prefrontal
cortex (Brodmann area 10) of 48 subjects (24 AD cases and 24 controls) in
the ROSMAP dataset were obtained from the Synapse database. Read
counts were aligned to a reference genome (GRCh38) by CellRanger
software (v.3.1.0). We used a cut-off value of 200 for unique molecular
identifiers (UMI) for better detection of the microglia populations due to
their small representation in the dataset [41]. Genes without unique
names, with low expression across all cell types, and that do not encode
proteins were excluded. We included all AD genes contained in the co-
expression networks derived from analyses described above regardless of
single-nuclei expression levels, including genes from AD GWAS annotated
to associated SNPs (p < 10−3) [1], DEGs identified in the corresponding
APOE genotype group analysis (p < 0.01) that were also DEGs in the total
sample (p < 0.01), and DEGs identified in the total sample (p < 10−6). Data
including 69,918 nuclei with 5578 genes after filtering were normalized
and clustered using Seurat (v.3.0.0).
Data were further processed using the NormalizeData, FindVariableFea-

tures, and ScaleData functions. Gene expression measures were scaled by
10,000 multiplied by the total library size and then log-transformed. The
ScaleData method was used to adjust for the total number of counts. We
conducted principle component (PC) analysis to reduce the model
complexity of the high variable expression of 3179 genes (marker genes).
A cell type-specific expression metric was calculated by dividing the
expression in each cell type by the total expression across all cell types. The
top 10 PCs were included in t-SNE analysis. For each cluster, cell-type labels
were assigned by known marker genes [41]. This procedure yielded eight
cell type-specific clusters representing astrocytes, endothelial cells,
excitatory neurons, inhibitory neurons, microglia, oligodendrocytes,
oligodendrocyte progenitor cells, and pericytes. Endothelial cells and
pericytes were not included in subsequent analysis due to their low
proportion in the dataset. The average expression for each cell type per

gene was calculated using the AverageExpression package in Seurat. This
function calculates the average expression for the exponential of raw
counts minus 1. Log transformed fold changes (Log2FC) in expression
between AD and control samples were evaluated for enriched genes in
APOE ε2/ε3 AD network within each cell type using the Wilcoxon rank-sum
test. False discovery rate (FDR) p values were adjusted using the Benjamini-
Hochberg procedure implemented in R [42]. Novel marker genes were
determined for each cell-type cluster using the FindAllMarkers function in
Seurat with default parameters. Marker genes that were differentially
expressed in a given cell-type with a false discovery rate (FDR) adjusted p
> 0.05 were excluded from subsequent analyses. Cell-type enrichment
analysis was conducted for each network using the userListEnrichment
function in WGCNA and cluster markers identified for each cell-type. All
enrichment p values were corrected for the number of separate analyses
using the Bonferroni method.

Immunoassay measurement and their relationship with gene
expression
Frozen tissue from the dorsolateral prefrontal cortex (Brodmann area 8/
9) of the 208 FHS/BUADC autopsied brains was weighed and placed on
dry ice. Freshly prepared, ice cold 5 M Guanidine Hydrochloride in Tris-
buffered saline (20 mM Tris-HCl, 150 mM NaCl, pH 7.4) containing 1:100
Halt protease inhibitor cocktail (Thermo Fischer Scientific, Waltham, MA)
and 1:100 Phosphatase inhibitor cocktail 2 & 3 (Sigma–Aldrich, St. Louis,
MO) was added to the brain tissue at 5:1 (5 M Guanidine Hydrochloride
volume (ml):brain wet weight (g)) and homogenized with Qiagen Tissue
Lyser LT at 50 Hz for five min. The homogenate was then mixed (regular
rocker) overnight at room temperature. The lysate was diluted with 1%
Blocker A (Meso Scale Discovery (MSD), Rockville, Maryland, #R93BA-4) in
wash buffer according to specific immunoassays: 1:300 for total tau,
pTau231 (MSD #K15121D-2), pTau181, and PSD-95 (MSD #K150QND),
and 1:4000 for beta-amyloid 1-42 (MSD #K15200E-2). Samples were
subsequently centrifuged at 17,000 g and 4 °C for 15 min, after which the
supernatant was applied to the immunoassays. To capture tau
phosphorylated at Thr residue 181, antibody AT270 was used and the
detecting antibody was the biotinylated HT7 that recognizes
residues 159–163 of tau (Thermo Scientific, Rockford, IL). Internal
calibrators of p-tau and tau were used (MSD) [43]. Standards with
known concentrations were used for Aβ. For PSD-95, arbitrary values
were assigned to a reference brain lysate, which was run as a standard
curve with every plate. All standards and samples were run in duplicate.
Measurements were performed using the multi-detection SPECTOR 6000
Imager (MSD).
For immunoassays of C4A and C4B, ice cold PBS buffer (Gibco,

ref#10010-023) was added to the brain tissue at 5:1 (PBS in ml vs brain
wet weight in gram), and homogenized with Qiagen Tissue Lyser LT at
50 Hz for five min. The homogenate was centrifuged at 17,000 g and 4 °C
for 15min, then the supernatant was aliquoted and stored at −80 °C.
Lysate was diluted 1:200 (C4A) or left undiluted (C4B) and applied to ELISA
assays according to the manufacturer’s protocol (C4A/C4B: Novus
Biologicals, NBP2-70043 & NBP2-70046). Absorbance was measured at
450 nm using Biotek Synergy HT microplate reader.
We evaluated association of DEGs with rank-transformed immunoassay

measures of Aβ42/Aβ40 ratio, pTau181/tTau ratio, pTau231/tTau ratio, C4A,
and C4B that were adjusted for age at death and sex. We included only the
193 brain samples with information on AD case status in our downstream
analysis. Analyses included DEGs significant in the ε2/ε3 group (C4A, C4B,
GFAP, NPNT), or from the M01 gene network and significant DEGs in
oligodendrocytes (HSPA2, PHLPP1, DOCK1, and LPAR1). Gene expression
values were log2-transformed and tested for association with the level of
each protein using linear regression models adjusted for an additional
covariate, RIN.

RESULTS
Differentially expressed genes in APOE subgroups
Gene expression was examined in post-mortem tissue from the
prefrontal cortex area of 627 ROSMAP participants and 193 FHS/
BUADC participants, and from the temporal cortex area of 162
MAYO participants (Supplementary Table 1 and Supplementary
Fig. 1). The combined sample had the following distribution of
APOE genotypes: ε2/ε3 with 48 AD cases and 87 controls, ε3/ε3
with 280 AD and 302 controls, and ε3/ε4 with 169 AD cases and 45
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controls (Supplementary Table 1). We identified 1114 genes with
differences in expression between AD cases and controls in the
total sample that were transcriptome-wide significant (p < 10−6)
(Supplementary Table 2 and Supplementary Figs. 2–4). Four of
these significant DEGs (WDR81, ICA1, TNIP1, and JAZF1) are new
genome-wide significant loci reported in a recent large AD GWAS
[44] (Supplementary Table 3). All of the top 20 differentially
expressed genes (DEGs) in the total sample were up-regulated in
AD cases compared to controls including EMP3 (p= 1.6 × 10−18),
NPNT (p= 9.3 × 10−18), and SLC4A11 (p= 1.2 × 10−17). The genes
showing the largest differences in expression between AD cases
and controls varied by APOE genotype. Among the transcriptome-
wide significant results in the total sample, the most significant
expression differences in the APOE ε2/ε3 subgroup (p < 10−3) were
observed with C4A, C4B, GFAP and NPNT each of which was up-
regulated in AD cases compared to controls (Table 1 and Fig. 1a).
These genes were consistently up-regulated in each dataset
(Supplementary Table 4). Expression differences of C4A and C4B
were progressively weaker in the ε3/ε3 and ε3/ε4 groups,
respectively (Table 1 and Fig. 1a). The link of C4A and C4B
expression to APOE genotype ε2/ε3 is supported by the
observation that expression of both genes in brain from ROSMAP
controls is significantly lower in ε2/ε3 subjects compared to ε3/ε3
and ε3/ε4 subjects (Supplementary Fig. 5). GFAP and NPNT showed
at least nominally significant differences in expression among ε3/
ε3 but not ε3/ε4 individuals (Table 1).
Eleven of the 1114 transcriptome-wide significant DEGs in the

total sample were also moderately significant (p < 0.01) in each
APOE genotype subgroup (Supplementary Fig. 6 and Supplemen-
tary Table 5). The most significant gene in this group is C1QTNF5
which encodes complement C1q tumor necrosis factor-related
protein 5 (p= 2.8 × 10−17). Contribution of these genes to AD may
be independent of APOE genotype.

Expression of top DEGs in APOE ε2/ε3 subjects is associated
with AD-related neuropathology
Primary neuropathological hallmarks of AD in the ROSMAP and
FHS/BUADC datasets, density of neurofibrillary tangles (NFT)
measured by Braak Stage and neuritic plaques measured
according to the Consortium to Establish a Registry for
Alzheimer Disease (CERAD) Score, were comparable across the
two datasets (Fig. 1b and Supplementary Table 6). Expression of
all four top-ranked DEGs in the APOE ε2/ε3 subgroup (C4A, C4B,
GFAP, and NPNT) was moderately associated (P < 0.01) with both
Braak stage and plaque score in the combined datasets (Fig. 1c
and Supplementary Table 7). Expression of C4A, C4B, and
GFAP in the ROSMAP dataset was at least nominally associated
with Braak stage among ε2/ε3 and ε3/ε3 subjects and with
neuritic plaque density in ε2/ε3 subjects only, whereas
expression of NPNT was significantly associated with these
traits only among ε3/ε3 subjects (Fig. 1c, Fig. 1d, and
Supplementary Table 8).

AD enriched brain co-expression networks classified by APOE
genotype and AD status
Weighted gene co-expression network analysis (WGCNA) was
conducted separately in AD cases and controls within each APOE
genotype groups using data from the largest brain sample
(ROSMAP) (Supplementary Table 1). Twenty-three gene co-
expression networks, each enriched with differentially expressed
genes (Supplementary Table 2) and AD risk genes established by
large genome-wide association studies (GWAS) [1], were repro-
duced in the MAYO or FHS/BUADC datasets (Supplementary
Table 9). We evaluated brain cell-type enrichment derived from
analysis of single-nuclei RNA sequencing data for these 23
networks (Supplementary Figs. 7 and 8). Eleven networks (notably
not M01) were enriched in both inhibitory and excitatory neurons,
and network M18 was exclusively enriched in these two cell-types.
Four networks (M3, M6, M12, and M19) representing both AD
cases and controls, as well as the APOE ε2/ε3 and ε3/ε4 genotype
groups, were enriched in astrocytes, microglia, oligodendrocytes
and oligodendrocyte progenitor cells (OPCs). Networks M11 and
M15 were exclusively enriched in OPCs (Fig. 2a and Supplemen-
tary Table 10).
The M01 network specific to ε2/ε3 AD cases contained several

complement pathway genes including C4A, C4B, and C3b/C4b
Receptor 1 (CR1) (Fig. 2b). No other networks contained all three of
these genes suggesting that this network may be specific to AD
subjects with the ε2/ε3 genotype. This ε2/ε3-AD network
contained 674 genes of which 96 (10.2%) were differentially
expressed in the total sample (Bonferroni corrected enrichment p
value [ENR-p]= 4.3 × 10−32), eight (1.2%) were differentially
expressed among ε2/ε3 subjects (ENR-p= 0.05), and 66 (9.8%)
were significantly associated with AD risk (ENR-p= 1.2 × 10−5)
(Fig. 2a and Supplementary Table 9). The ε2/ε3-AD network was
also significantly enriched in different cell types including
astrocytes (ENR-p= 5.2 × 10−59), oligodendrocytes (ENR-p= 9.1 ×
10−57), and OPCs (ENR-p= 6.8 × 10−44) (Fig. 2a and Supplemen-
tary Table 10). Of the 154 genes enriched uniquely in the ε2/ε3-AD
network, expression of 19 was nominally associated (p < 0.05) with
Braak Stage and plaque density including C4A and C4B
(Supplementary Table 11). Ten of these 19 genes were expressed
in oligodendrocytes, astrocytes, and/or OPCs and four of these
genes including HSPA2, LPAR1, DOCK1, and PHLPP1 were
significantly (FDR adjusted p < 0.05) differentially expressed
between AD and control oligodendrocytes (Fig. 2c, Supplementary
Fig. 9 and Supplementary Table 12). Although C4A and C4B
expression was not detected in any specific cell types, a previous
study showed that that these genes were expressed at low levels
in mouse astrocytes (Supplementary Fig. 10) [45]. HPSA2 and
DOCK1 were transcriptome-wide significant DEGs in the total
sample, and differential expression of HSPA2 was nominally
significant in the ɛ2/ɛ3 group (p= 0.05) (Supplementary Table 2).
None of these 10 genes were differentially expressed between AD
and control astrocytes and OPCs (Supplementary Table 12).

Table 1. Differentially expressed genes among APOE ε2/ε3 subjects.

Gene APOE ε2/ε3 APOE ε3/ε3 APOE ε3/ε4 Total

Z P value Z P value Z P value Z P value

C4A 4.28 1.9 × 10−5 2.78 5.4 × 10−3 2.48 0.01 5.73 1.0 × 10−8

C4B 4.10 4.2 × 10−5 3.50 4.7 × 10−4 2.17 0.03 6.08 1.2 × 10−9

GFAP 4.12 3.8 × 10−5 4.03 5.6 × 10−5 1.51 0.13 6.89 5.4 × 10−12

NPNT 3.65 2.6 × 10−4 6.34 2.4 × 10−10 1.58 0.11 8.58 9.3 × 10−18

Gene expression levels were compared between AD and control brains separately in the ROSMAP, MAYO, and FHS/BUADC datasets, and results were
combined by meta-analysis.
Selected genes surpassed significance thresholds p < 10−3 in the APOE 2/ε3 group and p < 10−6 in the total sample.
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Association of C4A/B and HSPA2 expression with AD-related
protein levels
We tested association of expression of eight genes from the four
top-ranked DEGs among APOE ɛ2/ɛ3 subjects (Table 1) and the
top-ranked genes in the ε2/ε3-AD network (Supplementary Fig. 9)
with immunoassay measures of pTau181/tTau ratio, pTau231/tTau
ratio, Aβ42/Aβ40 ratio, and postsynaptic density protein 95 (PSD95)
as well as with levels of C4A and C4B proteins in FHS/BUADC brain
tissue (Supplementary Table 13). Expression of C4A, C4B, GFAP,
NPNT, HSPA2, and PHLPP1 was significantly associated with
pTau231/tTau at the multiple test correction threshold of p <
6.3 × 10−3 (Fig. 3a and Supplementary Table 14), and results for
C4A, C4B, and HSPA2 surpassed an even more stringent threshold
of P < 10−4 (Fig. 3b and Table 2). HSPA2 expression was
significantly associated with C4B protein level after multiple
testing correction (P= 6.1 × 10−3) (Fig. 4). Expression of all eight
genes in this group was not associated with Aβ42/Aβ40 ratio,
PSD95 or pTau181/tTau ratio after multiple testing correction.

DISCUSSION
The primary purpose of this study was to discern genes and
biological pathways that may have a role in the mechanism

underlying the protective effect of APOE ε2 against AD. We
identified 11 genes that were differentially expressed between
AD cases and controls within APOE ε2/ε3, ε3/ε3, and ε3/ε4
genotype groups, suggesting that their influence on AD risk is
likely not specific to any APOE genotype. We identified
transcriptome-wide significant differential expression of three
genes, C4A, C4B, and GFAP, for which the evidence was strongest
among APOE ε2/ε3 individuals. We also identified 23 brain cell-
type specific networks that are enriched for significant AD-
associated genes and DEGs and characterized by unique
biological pathways. One of these networks, M01, was specific
to AD cases with the APOE ε2/ε3 genotype and contained
multiple genes in the classical complement pathway including
C4A, C4B, and CR1. Expression of C4A, C4B, and HSPA2 was
significantly associated with amyloid plaque and neurofibrillary
tangle density, as well as with the ratio of phosphorylated tau at
protein position 231 to total Tau (pTau231/tTau). Expression of
HSPA2, a significant DEG between AD and control oligoden-
drocytes, was significantly associated with the level of C4B
protein. These findings suggest that the co-regulated top-
ranked genes in the APOE ε2/ε3-AD network are likely involved
in regulation of classical complement activation and tau
phosphorylation.

Fig. 1 Differentially expressed genes (DEGs) among APOE ε2/ε3 individuals and in the total sample. a Boxplots showing distribution of
gene expression level (represented as log2 FPKM) by AD status and APOE genotype for top-ranked DEGs among APOE ε2/ε3 subjects in the
ROSMAP dataset. b Boxplots showing the distribution of rank-transformed plaque score and Braak stage by APOE genotype and AD status
among subjects in the ROSMAP and FHS/BUADC datasets. c, d Scatterplots showing the correlation of expression of the top-ranked DEGs
among APOE ε2/ε3 subjects with rank-transformed Braak stage (c) and plaque score (d) in the ROSMAP dataset according to APOE genotype
depicted by color (ε2/ε3= dark blue, ε3/ε3= light blue, ε3/ε4= red, total= black). Coordinates for expression (quantified as log2 FPKM)
plotted against plaque or Braak score for each subject are shown as dots and their correlation across subjects is represented by fitted
solid lines.
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The role of neuroinflammation in AD has become increasingly
important, especially after repeated disappointing results of drugs
targeting the processing and toxic isoforms of Aβ to ameliorate
symptoms or halt progression of AD [46]. The classical comple-
ment pathway has been consistently linked with neuroinflamma-
tion and neuroimmune response [47], but has garnered much less
attention regarding its role in AD. We found that expression of two
genes in this pathway, C4A and C4B, were significantly up-
regulated in AD cases compared to controls regardless of APOE
genotype, but the difference was larger and more significant
among ε2/ε3 individuals despite the smaller sample size
compared to other APOE genotypes. The astrocyte specific marker
gene, GFAP, was also up-regulated most significantly in ε2/ε3
individuals. GFAP has previously been associated with the increase
of reactive astrocytes in AD [48] and was markedly elevated in
9-month old transgenic mice with the human tau P310S mutation
and APOE ε4 [49]. Reactive astrocytes have been shown to up-
regulate the complement cascade as part of their neuroimmune
response [50].
The complement pathway has recently been linked to APOE

through binding with activated C1q creating a APOE-C1q complex
[51]. CR1, one of the most well-established AD genes [52], was a
member of the unique APOE ε2/ε3 AD co-expression network in
our study which also contained C4A and C4B. CR1 is a known
receptor for C1q as well as C4A and C4B, and can bind to C1q and
C4B simultaneously [53]. ApoE can activate the complement
pathway in vitro and cause deposition of C4B, but only in the

presence of C1q [54], suggesting that C1q could possibly facilitate
an ApoE/C4 interaction through CR1. Future studies are needed to
confirm the binding interactions among members of this network,
and determine whether this network is disrupted in the APOE
genotype dependent manner and, if so, elucidate the nature of
the interaction between the complement pathway and ε2.
The upstream complement components of the classical

complement cascade, C1q and C4, are tightly controlled in CNS
synaptic pruning [55]. A recent large study identified genetic
alterations in C4 that disrupt synaptic pruning in schizophrenia
patients [56]. The disease-associated C4 haplotype is significantly
correlated with elevated C4A/B expression levels in postmortem
brains [56, 57] and poor memory performance [57]. This potential
disease mechanism has been confirmed in C4-deficient mice
manifesting increased C1q immunostaining with defects in
synaptic pruning [55]. The accumulated C1q levels at synapses
were correlated with phosphorylated tau levels and associated
with elevated microglial engulfment and decreased synapse
density [58]. ApoE isoforms (ε2, ε3, and ε4) exhibit differential
rates of synapse pruning by astrocytes (ε2 > ε3 > ε4) and C1q
protein accumulation (ε2 > ε3 > ε4) in the hippocampus from aged
human-APOE ε2/ε3/ε4 knock-in mice [59]. A recent study
demonstrated that ApoE isoforms directly bind to C1q protein
and modulate complement-dependent synapse loss, inflamma-
tion, microglia accumulation, and atherosclerosis [56]. Therefore, it
is important to determine the neuropathological consequences of
genetic and transcriptional risk profiles in classical complement

Fig. 2 AD-related gene co-expression networks in brain. a Heatmaps depicting association of co-expressed gene networks (modules
M1–M23) derived from analysis within a subgroup defined by APOE genotype and AD status according to the color scheme shown on the
right. The far-left vertical bar, the left blue-shaded panel, and the right red-shaded panel represents networks enriched in different APOE
genotype subgroups, in differentially expressed genes between AD and control subjects, and in particular cell types, respectively. The AD
gene heatmap showed enrichment of each gene co-expression network with genes that are differentially expressed in (1) the corresponding
APOE genotype subgroup (stratDEG) or (2) the entire sample (allDEG), or with AD risk genes established by GWAS. The cell-type heatmap
shows enrichment of each gene co-expression network for astrocytes (Ast), excitatory neurons (Exc), inhibitory neurons (Inh), microglia (Mic),
oligodendrocytes (Oli), and oligodendrocyte progenitor cells (OPC). All enrichment p values are Bonferroni corrected. b Gene co-expression
network (M01) that was derived using WGCNA from analysis of APOE ε2/ε3 subjects with AD. Differentially expressed genes in the APOE ε2/ε3
genotype group (p < 0.01) and in the total sample (p < 10−6) are highlighted in turquoise. Genes associated with AD risk in GWAS (p < 10−3)
and differentially expressed in the total sample (p < 10−6) are highlighted in purple. Genes associated with AD risk at the genome-wide
significance level and differentially expressed in the total sample (p < 10−6) as well as in the APOE ε2/ε3 genotype group (p < 0.01) are
highlighted in red. The size of each node inversely corresponds with the p value supporting the association of the gene with AD. c Heatmaps
showing the average expression of genes in ROSMAP subjects across cell-types calculated from analysis of single-nuclei RNA-seq data and in
the bulk RNA-seq data from subjects overlapping the single-cell RNA-seq dataset. Genes are members of the M01 co-expression network
whose expression was nominally associated (p < 0.05) with plaque score and Braak stage. C5orf64 was excluded as it did not occur in the
single-cell expression dataset.
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pathway genes and their APOE genotype-dependent effects.
These studies illustrate that complement-mediated synaptic loss
leading to tau pathology in AD and its interaction with APOE
genotype, is a potential novel therapeutic target for AD.
The only significant co-expression network specific to APOE ε2/

ε3 AD brains was enriched for astrocytes, oligodendrocytes, and
OPCs. Astrocytes have been implicated with the classical
complement pathway and general neuroimmune response, and
can increase expression of complement components [50].
Oligodendrocytes can express complement component mRNAs,
however, their role in the classical complement pathway is not
well understood [60]. One study found complement component 4
exclusively co-localized with oligodendrocytes in APP transgenic
mouse models for AD [61]. Among the significant DEGs genes in
the APOE ε2/ε3-AD network, HSPA2 was expressed predominantly
in oligodendrocytes and is connected to the classical complement
pathway via its association with C4B protein level in the brain.
HSPA2 was previously associated with AD risk using systems
biology approaches for analysis of multi-omics data including
network diffusion which integrates information from protein
network analysis and GWAS [62], analysis of brain region co-
expression networks [63], and Bayesian network analysis [64]. In
addition, heat shock-related 70-kDa protein 2 (encoded by HSPA2)

has been linked to myelination function and fast cognitive decline
[65]. While AD is generally considered a gray matter disease [66],
white matter abnormalities have been observed in AD including
loss of myelination and inability of oligodendrocytes to repair
myelin [67]. Further studies are required to understand the
connection between oligodendrocyte-specific HSPA2 expression
and complement component 4 in AD.
Two other APOE ε2/ε3-AD network genes have also been linked

to AD-related processes. PHLPP1, whose expression was specific to
oligodendrocytes, OPCs, and astrocytes, encodes PH domain and
leucine rich repeat protein phosphatase 1 which helps regulate
protein kinase B (AKT) [68], and the dysregulation of AKT can
cause reduced tau phosphorylation [69]. DOCK1, expressed only in
oligodendrocytes, encodes Dock180 which has a role in dendritic
spine morphogenesis and axon pathfinding [70]. C4A and C4B
were not expressed in any cell-types in our single-nuclei RNA
sequencing data, but were expressed at low levels in mouse
astrocytes, perhaps because C4A and C4BmRNAs localized outside
the nucleus and thus their expression was not detected in our
analysis of snRNA-seq data.
Six of the eight top-ranked genes in the APOE ε2/ε3-AD network

were significantly associated with the pTau231/tTau ratio, but not
with the pTtau181/tTau ratio. This observation is consistent with a

Fig. 3 Association of differentially expressed genes among APOE ε2 carriers with AD-related proteins. a Heatmap showing the association
of gene expression with and AD-related proteins. Genes shown are differentially expressed in the total sample (P < 10−6) and among APOE ε2/
ε3 subjects (P < 10−3), or were selected from the M01 network and are significantly differentially expressed between AD and control
oligodendrocytes. Significant (P < 6.3 × 10−3) associations are marked by an asterisk. b Scatterplots showing association of expression of genes
in APOE ε2/ε3 co-expression network (C4A, C4B, and HSPA2) with rank-transformed pTau231/tTau ratio. Coordinates for each subject are shown
as color-coded dots (red= AD, blue= controls) and their correlation across subjects (within AD cases and control groups, and for the total
group) is represented by fitted solid lines (black= combined sample).

Table 2. Association of expression of co-expressed genes in APOE ε2/ε3 AD cases (Module 1) with levels of AD-related traits and C4 subunit
proteins in FHS/BUADC brains.

Total Sample APOE ɛ2/ɛ3 APOE ɛ3/ɛ3 APOE ɛ3/ɛ4

β SE P value β SE P value β SE P-value β SE P value

pTau231/tTau:

C4A 0.22 0.05 5.1 × 10−5 0.21 0.10 0.04 0.18 0.08 0.02 0.34 0.12 6.4 × 10−3

C4B 0.21 0.05 7.0 × 10−5 0.19 0.10 0.06 0.18 0.08 0.02 0.34 0.11 5.4 × 10−3

HSPA2 0.30 0.06 4.3 × 10−6 0.31 0.13 0.02 0.20 0.10 0.04 0.41 0.14 6.1 × 10−3

PSD95:

C4A −0.10 0.06 0.08 −0.17 0.12 0.16 −0.06 0.09 0.51 −0.02 0.13 0.86

C4B −0.10 0.06 0.08 −0.15 0.11 0.20 −0.05 0.08 0.55 −0.06 0.13 0.68

HSPA2 −0.10 0.07 0.17 −0.21 0.15 0.17 −0.05 0.10 0.63 −0.02 0.16 0.90

C4B:

C4A 0.06 0.05 0.33 0.14 0.13 0.29 0.01 0.09 0.90 0.19 0.14 0.19

C4B 0.05 0.05 0.43 0.14 0.13 0.26 −0.01 0.09 0.88 0.19 0.14 0.18

HSPA2 0.20 0.07 6.1 × 10−3 0.30 0.17 0.09 0.21 0.11 0.06 0.32 0.16 0.06
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previous study showing that pTau231/tTau may be a better
indicator of AD-related tau mechanisms [71]. None of the top-
ranked genes in this network were associated with Aβ42/Aβ40
ratio, suggesting that this network is more involved in processes
related to tau but not Aβ. The connection of ɛ2 to tau is supported
by evidence that ε2 is associated with increased tau in mice
expressing APOE ε2/ε2 and with increased tau pathology in the
brains of human tauopathy cases [72]. In a separate study, we
linked PPP2CB, a hub of an APOE ɛ2-related gene network
associated with AD, to C4B protein level in brain [71]. In addition,
we demonstrated that expression of PPP2CB, which encodes one
of the catalytic subunits of protein phosphatase 2 A (PP2A), was
significantly correlated with pTau231/tTau in human brain and in
isogenic APOE human induced pluripotent stem cell (iPSC)-derived
neurons co-cultured with astrocytes [71], and dysfunction of PP2A
promotes tau hyperphosphorylation [73]. In the current study, C4A
and C4B expression was not associated with C4A and C4B protein
concentration levels, however, this may be due to altered protein
degradation and/or a variety of gene expression and protein
regulation factors related to spatial and temporal variations of
mRNAs, as well as the local availability of resources for protein
biosynthesis [74].
Although our findings demonstrate that genes in the classical

complement pathway have a role in AD likely through interaction
with APOE ε2, mechanisms underlying the connection between the
complement pathway and the protective effect of APOE ε2 against
AD are still unclear. It is possible that reduced expression of
complement components, such as C4A and C4B, in the presence of
ε2 is neuroprotective, an idea consistent with separate evidence of

neuroprotective effects of ε2 with respect to AD [75, 76].
Complement pathway mRNAs are generally up-regulated in brain
regions affected by AD [77]. Inhibition of several complement
components, including C1q and C3aR, in tau mutation mouse
models can cause attenuation of neurodegeneration especially
synaptic loss [58, 78]. However, it is also possible that increased
complement expression may overwhelm the protective effect of
ε2, an idea supported by the observation of increased expression
in ε2 individuals with AD. Further studies are necessary to examine
the potential neuroprotective effect of reduced mRNA levels of
complement components in AD, especially in relationship to the
APOE ε2 allele.
Our study has several limitations. First, the number of

individuals with the APOE ε2 allele, was small and, hence, power
for analyses specific to ε2 subjects was lower than for those with
other APOE genotypes. There was also an unbalanced distribution
of APOE ε3/ε4 AD and control individuals especially in the
ROSMAP dataset. We were able to mitigate some of these issues
through meta-analysis of results across datasets. However, there
was insufficient power for interaction tests due to the relatively
small sizes of some APOE genotype groups. Second, pooling
results across all datasets may have led to inconsistent findings
because transcriptomic data were derived from temporal cortex in
the MAYO sample and prefrontal cortex in the ROSMAP and
BUADC/FHS samples. Although the pattern of cortical involvement
can vary in AD, in general the temporal cortex may have higher
levels of tau pathology [79]. Third, measures of plaque and tangle
density were unavailable in the MAYO dataset and, thus, results
involving these variables are based on a smaller sample. As a

Fig. 4 Association of HSPA2 gene expression with AD-related proteins. Scatterplots showing association of HSPA2 expression with rank-
transformed (a) Aβ42/Aβ40 ratio, (b) pTau231/tTau ratio, (c) PSD95, and (d) C4B protein level. Coordinates are shown as color-coded dots by
APOE genotype (ε2/ε3= dark blue, ε3/ε3= light blue, ε3/ε4= red) and their correlation across subjects (within APOE subgroups and for the
total group) is represented by fitted solid lines (black= combined sample).
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result, we were unable to conduct meta-analysis of all three
datasets. Fourth, gene expression patterns and levels of AD-
related proteins in brains from AD cases may be indicative of post-
mortem changes unrelated to AD pathogenesis, noting also that
RNA degradation occurs faster than protein degradation [80]. Fifth,
the average age of individuals in the study samples is above 85
years, and older individuals with AD can show unique patterns of
AD pathology [12, 81]. Sixth, although we did not observe sig-
nificant associations with total Aβ levels in the FHS cohort, future
studies should examine associations with soluble Aβ and cerebral
amyloid angiopathy. Sixth, although WGCNA is a powerful
computational tool for identifying gene co-expression patterns,
this method does not consider any biological implications when
creating networks. Finally, single-nuclei RNA sequence analysis,
the best option for assessing expression in post-mortem brain
tissue [82], limits interpretation of expression findings to the
nucleus instead of the whole cell especially because many
mRNA transcripts localize in the cytoplasm for translation
[83]. Taken together, these caveats emphasize the need for
replication in independent samples and validation using other
approaches.
In summary, our findings provide further evidence that the

complement cascade, and the classical complement pathway in
particular, has an important role in AD. Complement proteins
including C4A and C4B, as well as HSPA2 protein that we linked to
the complement pathway, may confer a neuroprotective effect
against AD through interaction with APOE ε2.
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