Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Angiogenic gene networks are dysregulated in opioid use disorder: evidence from multi-omics and imaging of postmortem human brain

Abstract

Opioid use disorder (OUD) is a public health crisis in the U.S. that causes over 50 thousand deaths annually due to overdose. Using next-generation RNA sequencing and proteomics techniques, we identified 394 differentially expressed (DE) coding and long noncoding (lnc) RNAs as well as 213 DE proteins in Brodmann Area 9 of OUD subjects. The RNA and protein changes converged on pro-angiogenic gene networks and cytokine signaling pathways. Four genes (LGALS3, SLC2A1, PCLD1, and VAMP1) were dysregulated in both RNA and protein. Dissecting these DE genes and networks, we found cell type-specific effects with enrichment in astrocyte, endothelial, and microglia correlated genes. Weighted-genome correlation network analysis (WGCNA) revealed cell-type correlated networks including an astrocytic/endothelial/microglia network involved in angiogenic cytokine signaling as well as a neuronal network involved in synaptic vesicle formation. In addition, using ex vivo magnetic resonance imaging, we identified increased vascularization in postmortem brains from a subset of subjects with OUD. This is the first study integrating dysregulation of angiogenic gene networks in OUD with qualitative imaging evidence of hypervascularization in postmortem brain. Understanding the neurovascular effects of OUD is critical in this time of widespread opioid use.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Differential expression of RNAs and proteins in BA9 of OUD subjects.
Fig. 2: Convergent pathways of differentially expressed genes and proteins.
Fig. 3: Cell type deconvolution and WGCNA.
Fig. 4: Ex Vivo MRI of postmortem brain.

References

  1. 1.

    Hedegaard H, Miniño AM, Warner M. Drug overdose deaths in the United States, 1999–2018. NCHS Data Brief. 2020:1–8.

  2. 2.

    National Institute on Drug Abuse (NIDA). Overdose death rates. 2019. https://www.drugabuse.gov/related-topics/trends-statistics/overdose-death-rates. Accessed 16 Sep 2019.

  3. 3.

    Opioid Overdose Crisis | National Institute on Drug Abuse (NIDA). https://www.drugabuse.gov/drug-topics/opioids/opioid-overdose-crisis. Accessed 1 Jan 2021.

  4. 4.

    Browne CJ, Godino A, Salery M, Nestler EJ. Epigenetic mechanisms of opioid addiction. Biol Psychiatry. 2020;87(Jan):22–33.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Encode Project Consortium T. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007;447:799–816.

    Article  CAS  Google Scholar 

  6. 6.

    Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, et al. Molecular biology: The transcriptional landscape of the mammalian genome. Science (80-) 2005;309:1559–63.

    CAS  Article  Google Scholar 

  7. 7.

    Lee JT. Epigenetic regulation by long noncoding RNAs. Science (80-) 2012;338:1435–9.

    CAS  Article  Google Scholar 

  8. 8.

    Monoranu CM, Apfelbacher M, Grünblatt E, Puppe B, Alafuzoff I, Ferrer I, et al. pH measurement as quality control on human post mortem brain tissue: a study of the BrainNet Europe consortium HHS Public Access. Neuropathol Appl Neurobiol. 2009;35:329–37.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Bateman A. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47:D506–15.

    Article  CAS  Google Scholar 

  10. 10.

    Zhang X, Smits AH, Van Tilburg GBA, Ovaa H, Huber W, Vermeulen M. Proteome-wide identification of ubiquitin interactions using UbIA-MS. Nat Protoc. 2018;13:530–50.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  12. 12.

    McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012;40:4288–97.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:R25.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. 14.

    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–8.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Huang SY, Lu W, Ge D, Meng N, Li Y, Su L. et al. A new microRNA signal pathway regulated by long noncoding RNA TGFB2-OT1 in autophagy and inflammation of vascular endothelial cells. Autophagy. 2015;11:2172–83.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Steen CB, Liu CL, Alizadeh AA, Newman AM. Profiling cell type abundance and expression in bulk tissues with CIBERSORTx. Methods Mol Biol. 2020;2117:135–57.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Yu Q, He Z. Comprehensive investigation of temporal and autism-associated cell type composition-dependent and independent gene expression changes in human brains. Sci Rep. 2017;7:1–12.

    Article  CAS  Google Scholar 

  19. 19.

    Darmanis S, Sloan SA, Zhang Y, Enge M, Caneda C, Shuer LM, et al. A survey of human brain transcriptome diversity at the single cell level. Proc Natl Acad Sci USA. 2015;112:7285–90.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    McKenzie AT, Wang M, Hauberg ME, Fullard JF, Kozlenkov A, Keenan A, et al. Brain cell type specific gene expression and co-expression network architectures. Sci Rep. 2018;8:1–19.

    Google Scholar 

  21. 21.

    Alexa A, Rahnenfuhrer J. topGO: enrichment analysis for gene ontology. R package version 2.40.0; 2020.

  22. 22.

    Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;9:559.

    Article  CAS  Google Scholar 

  23. 23.

    Collado-Torres L, Jaffe AE, Burke EE. jaffelab: commonly used functions by the Jaffe lab. 2019. https://github.com/LieberInstitute/jaffelab.

  24. 24.

    Kolde R. pheatmap: pretty heatmaps. R package version 1.0.12; 2019. https://cran.r-project.org/package=pheatmap.

  25. 25.

    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Chavhan GB, Babyn PS, Thomas B, Shroff MM, Haacke EM. Principles, techniques, and applications of T2*-based MR imaging and its special applications. Radiographics. 2009;29:1433–49.

    PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Sosina O, Tran M, Maynard K, Tao R, Taub M, Martinowich K, et al. Strategies for cellular deconvolution in human brain RNA sequencing data. bioRxiv. 2020. 01.19.910976.

  28. 28.

    Harlan RE, Garcia MM. Drugs of abuse and immediate-early genes in the forebrain. Mol Neurobiol. 1998;16:221–67.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Bisagno V, Cadet JL. Expression of immediate early genes in brain reward circuitries: differential regulation by psychostimulant and opioid drugs. Neurochem Int. 2019;124:10–8.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Sosnowski DW, Jaffe AE, Tao R, Deep-Soboslay A, Kleinman JE, Hyde TM, et al. Differential expression of NPAS4 in the dorsolateral prefrontal cortex following acute opioid intoxication. bioRxiv. 2020.12.23.424239.

  31. 31.

    Healy S, Khan P, Davie JR. Immediate early response genes and cell transformation. Pharm Ther. 2013;137:64–77.

    CAS  Article  Google Scholar 

  32. 32.

    Tullai JW, Schaffer ME, Mullenbrock S, Sholder G, Kasif S, Cooper GM. Immediate-early and delayed primary response genes are distinct in function and genomic architecture. J Biol Chem. 2007;282:23981–95.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Fahmy RG, Dass CR, Sun LQ, Chesterman CN, Khachigian LM. Transcription factor Egr-1 supports FGF-dependent angiogenesis during neovascularization and tumor growth. Nat Med. 2003;9:1026–32.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Khachigian LM, Collins T. Inducible expression of Egr-1-dependent genes. Circ Res. 1997;81:457–61.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Santiago FS, Lowe HC, Day FL, Chesterman CN, Khachigian LM. Early growth response factor-1 induction by injury is triggered by release and paracrine activation by fibroblast growth factor-2. Am J Pathol. 1999;154:937–44.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Wang D, Mayo MW, Baldwin AS. Basic fibroblast growth factor transcriptional autoregulation requires EGR-1. Oncogene. 1997;14:2291–9.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Thijssen VL, Barkan B, Shoji H, Aries IM, Mathieu V, Deltour L, et al. Tumor cells secrete galectin-1 to enhance endothelial cell activity. Cancer Res. 2010;70:6216–24.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Hsieh SH, Ying NW, Wu MH, Chiang WF, Hsu CL, Wong TY. et al. Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells. Oncogene. 2008;27:3746–53.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Nangia-Makker P, Honjo Y, Sarvis R, Akahani S, Hogan V, Pienta KJ, et al. Galectin-3 induces endothelial cell morphogenesis and angiogenesis. Am J Pathol. 2000;156:899–909.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Funasaka T, Raz A, Nangia-Makker P. Galectin-3 in angiogenesis and metastasis. Glycobiology. 2014;24:886–91.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Veys K, Fan Z, Ghobrial M, Bouché A, García-Caballero M, Vriens K, et al. Role of the GLUT1 glucose transporter in postnatal CNS angiogenesis and blood-brain barrier integrity. Circ Res. 2020;127:466–82.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Hassan HE, Myers AL, Lee IJ, Chen H, Coop A, Eddington ND. Regulation of gene expression in brain tissues of rats repeatedly treated by the highly abused opioid agonist, oxycodone: microarray profiling and gene mapping analysis. Drug Metab Dispos. 2010;38:157–67.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Ma HL, Su L, Zhang SL, Kung HF, Miao JY. Inhibition of ANXA7 GTPase activity by a small molecule promotes HMBOX1 translation of vascular endothelial cells in vitro and in vivo. Int J Biochem Cell Biol. 2016;79:33–40.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Nelson EC, Agrawal A, Heath AC, Bogdan R, Sherva R, Zhang B, et al. Evidence of CNIH3 involvement in opioid dependence. Mol Psychiatry. 2016;21:608–14.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Niu DG, Peng F, Zhang W, Guan Z, Zhao HD, Li JL. et al. Morphine promotes cancer stem cell properties, contributing to chemoresistance in breast cancer. Oncotarget. 2015;6:3963–76.

    PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Jimenez-Gonzalez A, García-Concejo A, León-Lobera F, Rodriguez RE. Morphine delays neural stem cells differentiation by facilitating Nestin overexpression. Biochim Biophys Acta 2018;1862:474–84.

    CAS  Article  Google Scholar 

  47. 47.

    Eisenstein TK. The role of opioid receptors in immune system function. Front Immunol. 2019;10:2904.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Seney ML, Kim S-M, Glausier JR, Hildebrand MA, Xue X, Zong W, et al. Transcriptional alterations in dorsolateral prefrontal cortex and nucleus accumbens implicate neuroinflammation and synaptic remodeling in opioid use disorder. Biol Psychiatry. 2021. https://doi.org/10.1016/j.biopsych.2021.06.007.

  49. 49.

    Liu A, Dai Y, Mendez EF, Hu R, Fries GR, Najera KE, et al. Genome-wide correlation of DNA methylation and gene expression in postmortem brain tissues of opioid use disorder patients. Int J Neuropsychopharmacol. 2021 https://doi.org/10.1093/ijnp/pyab043.

  50. 50.

    Muñoz-Chápuli R, Quesada AR, Medina MÁ. Angiogenesis and signal transduction in endothelial cells. C. Cell Mol Life Sci. 2004;61:2224–43.

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Liu D, Jia H, Holmes DIR, Stannard A, Zachary I. Vascular endothelial growth factor-regulated gene expression in endothelial cells: KDR-mediated induction of Egr3 and the related nuclear receptors Nur77, Nurr1, and Nor1. Arterioscler Thromb Vasc Biol. 2003;23:2002–7.

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Arkenbout EK, Van Bragt M, Eldering E, Van Bree C, Grimbergen JM, Quax PHA, et al. TR3 orphan receptor is expressed in vascular endothelial cells and mediates cell cycle arrest. Arterioscler Thromb Vasc Biol. 2003;23:1535–40.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Johnson MM, Michelhaugh SK, Bouhamdan M, Schmidt CJ, Bannon MJ. The transcription factor NURR1 exerts concentration-dependent effects on target genes mediating distinct biological processes. Front Neurosci. 2011;5:135.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  54. 54.

    Chen C, Li Y, Hou S, Bourbon PM, Qin L, Zhao K, et al. Orphan nuclear receptor TR3/Nur77 biologics inhibit tumor growth by targeting angiogenesis and tumor cells. Microvasc Res. 2020;128:103934.

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Zeng H, Qin L, Zhao D, Tan X, Manseau EJ, Mien VH, et al. Orphan nuclear receptor TR3/Nur77 regulates VEGF-A-induced angiogenesis through its transcriptional activity. J Exp Med. 2006;203:719–29.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Proia P, Schiera G, Mineo M, Ingrassia AMR, Santoro G, Savettieri G, et al. Astrocytes shed extracellular vesicles that contain fibroblast growth factor-2 and vascular endothelial growth factor. Int J Mol Med. 2008;21:63–7.

    CAS  PubMed  Google Scholar 

  57. 57.

    Vallon M, Chang J, Zhang H, Kuo CJ. Developmental and pathological angiogenesis in the central nervous system. Cell Mol Life Sci. 2014;71:3489–506.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Bernal GM, Peterson DA. Phenotypic and gene expression modification with normal brain aging in GFAP-positive astrocytes and neural stem cells. Aging Cell. 2011;10:466–82.

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Hashimoto K, Noshiro M, Ohno S, Kawamoto T, Satakeda H, Akagawa Y, et al. Characterization of a cartilage-derived 66-kDa protein (RCD-CAP/βig-h3) that binds to collagen. Biochim Biophys Acta. 1997;1355:303–14.

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Madry C, Kyrargyri V, Arancibia-Cárcamo IL, Jolivet R, Kohsaka S, Bryan RM. et al. Microglial ramification, surveillance, and interleukin-1β release are regulated by the two-pore domain K+ channel THIK-1. Neuron. 2018;97:299–312.e6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Sha L, MacIntyre L, MacHell JA, Kelly MP, Porteous DJ, Brandon NJ, et al. Transcriptional regulation of neurodevelopmental and metabolic pathways by NPAS3. Mol Psychiatry. 2012;17:267–79.

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Hatakeyama M, Ninomiya I, Kanazawa M. Angiogenesis and neuronal remodeling after ischemic stroke. Neural Regen Res. 2020;15:16–9.

    PubMed  Article  Google Scholar 

  63. 63.

    Borne J, Riascos R, Cuellar H, Vargas D, Rojas R. Neuroimaging in drug and substance abuse part II: opioids and solvents. Top Magn Reson Imaging. 2005;16:239–45.

    PubMed  Article  Google Scholar 

  64. 64.

    Geibprasert S, Gallucci M, Krings T. Addictive illegal drugs: structural neuroimaging. Am J Neuroradiol. 2010;31:803–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Andersen SN, Skullerud K. Hypoxic/ischaemic brain damage, especially pallidal lesions, in heroin addicts. Forensic Sci Int. 1999;102:51–9.

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Brust JCM, Richter RW. Stroke associated with addiction to heroin. J Neurol Neurosurg Psychiatry. 1976;39:194–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Khodneva Y, Muntner P, Kertesz S, Kissela B, Safford MM. Prescription opioid use and risk of coronary heart disease, stroke, and cardiovascular death among adults from a prospective cohort (REGARDS study). Pain Med. 2016;17:444–55.

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Peyravian N, Dikici E, Deo S, Toborek M, Daunert S. Opioid antagonists as potential therapeutics for ischemic stroke. Prog Neurobiol. 2019;182:101679.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Benyó Z, Wahl M. Opiate receptor-mediated mechanisms in the regulation of cerebral blood flow. Cerebrovasc Brain Metab Rev. 1996;8:326–57.

    PubMed  Google Scholar 

  70. 70.

    Volkow ND, Valentine A, Kulkarni M. Radiological and neurological changes in the drug abuse patient: a study with MRI. J Neuroradiol. 1988;15:288–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Wigmore T, Farquhar-Smith P. Opioids and cancer. Curr Opin Support Palliat Care. 2016;10:109–18.

    PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    Leo S, Nuydens R, Meert TF. Opioid-induced proliferation of vascular endothelial cells. J Pain Res. 2009;2:59–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Gupta K, Kshirsagar S, Chang L, Schwartz R, Law P-Y, Yee D, et al. Morphine stimulates angiogenesis by activating proangiogenic and survival-promoting signaling and promotes breast tumor growth 1. Cancer Res. 2002;62:4491–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Koodie L, Ramakrishnan S, Roy S. Morphine suppresses tumor angiogenesis through a HIF-1α/p38MAPK pathway. Am J Pathol. 2010;177:984–97.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Yamamizu K, Furuta S, Hamada Y, Yamashita A, Kuzumaki N, Narita M, et al. Opioids inhibit tumor angiogenesis by suppressing VEGF signaling. Sci Rep. 2013;3:3213.

    PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Yamamizu K, Hamada Y, Narita M. κ Opioid receptor ligands regulate angiogenesis in development and in tumours. Br J Pharmol. 2015;172:268–76.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful for the invaluable donations and participation from families, as well as for the generous collaboration of the medical examiners at the Harris County Institute of Forensic Sciences. This study was supported by R01DA044859 to CWB. ZZ was supported by R01LM012806. The University of Texas System provided funding for the Neuropsychiatric Proteome Database, for which proteomics data from brain tissue was generated by the Mass Spectrometry Core at the University of Texas Medical Branch.

Author information

Affiliations

Authors

Contributions

EM and CWB designed and organized the study, and wrote the manuscript; EM analyzed the data, interpreted the results, and wrote the manuscript; LS, GRF, KN, and KM contributed to data acquisition; HW, RH, ZZ, and JQW contributed to analysis of data; XW, MM, and JQW performed lncRNA validation studies; CML, JK and JX contributed to MRI data acquisition and analysis; KN, TM, SS, and ALT contributed to psychological autopsies and subject diagnosis. All authors revised and approved the final manuscript.

Corresponding author

Correspondence to Consuelo Walss-Bass.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mendez, E.F., Wei, H., Hu, R. et al. Angiogenic gene networks are dysregulated in opioid use disorder: evidence from multi-omics and imaging of postmortem human brain. Mol Psychiatry (2021). https://doi.org/10.1038/s41380-021-01259-y

Download citation

Search

Quick links