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Aberrant topological organization of whole-brain networks has been inconsistently reported in studies of patients with major
depressive disorder (MDD), reflecting limited sample sizes. To address this issue, we utilized a big data sample of MDD patients from
the REST-meta-MDD Project, including 821 MDD patients and 765 normal controls (NCs) from 16 sites. Using the Dosenbach 160
node atlas, we examined whole-brain functional networks and extracted topological features (e.g., global and local efficiency, nodal
efficiency, and degree) using graph theory-based methods. Linear mixed-effect models were used for group comparisons to control
for site variability; robustness of results was confirmed (e.g., multiple topological parameters, different node definitions, and several
head motion control strategies were applied). We found decreased global and local efficiency in patients with MDD compared to
NCs. At the nodal level, patients with MDD were characterized by decreased nodal degrees in the somatomotor network (SMN),
dorsal attention network (DAN) and visual network (VN) and decreased nodal efficiency in the default mode network (DMN), SMN,
DAN, and VN. These topological differences were mostly driven by recurrent MDD patients, rather than first-episode drug naive
(FEDN) patients with MDD. In this highly powered multisite study, we observed disrupted topological architecture of functional
brain networks in MDD, suggesting both locally and globally decreased efficiency in brain networks.
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INTRODUCTION
Major depressive disorder (MDD) is a widespread and debilitating
psychiatric disorder that accounts for a significant share of illness-
related disability around the world [1]. MDD is typified by chronic
feelings of sadness, guilt, and worthlessness and an increased risk
of suicide [2, 3]. However, the pathophysiological mechanisms
underlying MDD remain elusive. A growing literature has
conceptualized MDD as a disease reflecting abnormal functional
integration of distributed brain regions that regulate both
emotional and cognitive functions [4–6]. However, patterns of
brain abnormalities in MDD have not been consistently repro-
ducible due to limited sample sizes and flexibility of data analysis
workflows in previous studies. Accordingly, we initiated the REST-
meta-MDD consortium (http://rfmri.org/REST-meta-MDD), a coor-
dinated multisite project that released the largest resting-state
functional magnetic resonance imaging (R-fMRI) MDD dataset
comprising over 1000 depressed patients and normal controls
(NCs). Based on this highly powered sample, we reported

decreased functional connectivity (FC) within the default mode
network (DMN) in recurrent MDD [7], implicating abnormalities in
the functional coupling of brain networks in the pathophysiology
of MDD. Such robust functional alterations in MDD are crucial
because they can provide a firm basis for potential biomarkers and
the development of new treatment targets for MDD.
Brain functional networks exhibit topological properties that are

intermediate between purely random and regular [8–11]. Specific
topological features of brain networks, such as the combination of
high local and global efficiency, are thought to support
information processing and mental representations through
segregated and integrated information processing [12]. Accord-
ingly, MDD could reflect abnormalities in the topological features
of functional brain networks (i.e., abnormal global and local
efficiency) [13]. Previous studies have reported altered topology of
the functional connectome in MDD, but the results have been
inconsistent. Specifically, patients with MDD have been found to
have increased global efficiency [14, 15] and local efficiency [16].
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However, studies similar in scale and design have also reported
decreased global and local efficiency [17–19] or no significant
alterations [20–23]. Given these contradictory results, reproducible
and reliable findings would be highly novel and provide solid
foundations for the field. The lack of reproducibility may reflect
the low statistical power of small sample sizes (N < 60 per group)
and highly variable analytical pipelines (i.e., large number of
“researcher degrees of freedom”) [24, 25]. A study’s capacity to
detect true effects is limited by low power, while statistically
significant findings in small sample size studies may not reflect
true effects [26, 27]. A recent study found substantial variations in
conclusions drawn by independent groups analyzing an identical
dataset, showing the sizeable impact of analytical flexibility on
scientific conclusions [28]. Another confounding factor may be the
number of depressive episodes (first episode or recurrence)
[29, 30]. Specifically, the topological structure of FC has been
found to differ between first episode and patients with recurrent
MDD [19].
Here, we aimed to use a highly powered multisite sample (REST-

meta-MDD project, including >1000 MDD samples) [7] to reliably
reveal the topological architecture of functional brain networks in
MDD and investigate whether episode status contributes to
topological abnormalities. To avoid excessive flexibility in data
analysis, data were preprocessed at local sites using a standar-
dized protocol, and the preprocessed time series were openly
shared. To ensure the robustness of findings, we also tested
various analysis strategies (e.g., different topological parameters,
node definitions and head motion control strategies). We
hypothesized that MDD would be characterized by abnormal
topological features of functional networks (reduced global and
local efficiency) and that such abnormalities would differ for
patients with single and recurrent depressive episodes.

MATERIALS AND METHODS
Sample composition
We used R-fMRI data that come from the REST-meta-MDD consortium [7],
which included 25 datasets of 2428 individuals (1300 MDD patients and
1128 NCs) from 17 hospitals. Among MDD patients, 562 were first episode
patients with MDD and 282 were recurrent MDD patients (medication
status and illness duration information were unavailable for the remaining
patients). All participants underwent at least a T1-weighted structural scan
and a R-fMRI scan. Table S1 shows the sample size and scanning
parameters for each site. Following our previous study [7], we used
incomplete information, spatial normalization with bad quality, poor
coverage, large head motion, and sites with less than 10 individuals in
either group as exclusion criteria. This yielded a sample of 821 MDD
patients and 765 NCs from 16 datasets/sites (for details, see SI Methods).
Only binary information regarding medication treatment was available.
Among this sample, 527 patients provided information on medication
usage, including 219 patients currently taking antidepressant medications.
As expected, most patients were female (522 females vs. 299 males). With
respect to subgroups, two research groups contributed data on 117 first-
episode drug naïve (FEDN) patients as well as 72 recurrent MDD patients,
five research groups contributed data on 227 FEDN patients and 388 NCs
and 6 research groups contributed data on 189 patients with recurrent
MDD and 423 NCs. All data have been deidentified and anonymized. Local
Institutional Review Boards have approved all contributing studies. A
written informed consent was signed by participants at each local
institution.

Data preprocessing
R-fMRI and structural MRI data were acquired and preprocessed at each
site using the same DPARSF protocol [31] (SI Methods).

Functional brain network construction
Nodes and edges between nodes make up a topological network. Brain
nodes were defined using Dosenbach’s 160 atlas [32]. Brain edges were
defined by FC between brain nodes. For each node, a sphere was created
with a 5mm radius, centered on the atlas coordinates. Then, the neural

signal of each node was derived by averaging the preprocessed blood
oxygen level-dependent (BOLD) signals of all voxels within the sphere. To
derive the connectivity matrix of the brain, we computed Pearson
correlation coefficients of BOLD signals between all pairs of nodes, which
were then Fisher transformed to z values. For each subject, we calculated
weighted topological parameters of the FC matrices over a wide range of
network edge sparsities [33] (SI Methods).

Network analysis
Global and nodal network metrics of the brain were calculated at each
sparsity threshold with the Brain Connectivity Toolbox (downloaded from
https://sites.google.com/site/bctnet/Home) [34]. Global network metrics
included global efficiency (Eglob) as well as local efficiency (Eloc). Path
length (Lp) and clustering coefficient (Cp) were used in validation analysis
as they generally reflect the same information (for details, see SI Methods).
The area under the curve (AUC) across the sparsity range was calculated

for each network measure. The AUC was selected for statistical analyses
because of its superior sensitivity [33]. We grouped significant nodes
according to a well-defined functional parcellation derived from 1000
healthy participants [35] and reported the brain networks to which they
correspond. The Yeo atlas divided the human cortex into seven networks;
of these, we used the following six: the somatomotor network (SMN),
ventral attention network (VAN), visual network (VN), dorsal attention
network (DAN), default mode network (DMN), and frontoparietal network
(FPN). Note that the limbic network from Yeo et al. was not included in the
present study because none of the 160 Dosenbach ROIs were located
within this network. Instead, we defined subcortical ROIs as the
“subcortical network,” one of the seven networks in our model.

Statistical analysis
To control for potential systematic site-related confounding factors, we
employed the linear mixed effect (LME) model to conduct statistical
analyses: y ~ 1 + group + age + sex + education + head motion + (1 |
site) + (group | site). In this LME model, the intercept and the group
variable contained random effects specific to site and fixed effects
independent of site. Other variables were considered covariates of no
interest. The AUC was compared between patients with MDD and NCs for
each global network measure and for each nodal network measure across
160 nodes. Multiple comparisons were corrected for with FDR correction.
To further test relationships between network measures and symptom
severity, the group variable in the LME model was replaced with HAMD
scores.
In addition, subgroup analyses were conducted using the LME model.

We compared the abovementioned network measures between FEDN
MDD patients and NCs. Recurrent MDD patients and NCs as well as
recurrent MDD patients and NCs were also compared.

Validation analysis
We performed a number of validation analyses to test the robustness of
our results. (1) Different topological parameters with equivalent meanings,
i.e., Cp and Lp were evaluated. (2) We also verified results by additionally
employing scrubbing (discarding time points which have framewise
displacement > 0.2 mm) for head motion control, besides including the
individual level Friston 24 model and the group level motion covariate in
primary analyses. (3) Another functional atlas (i.e., Craddock’s functional
clustering atlas [36]) was also used to construct functional brain networks.
Further analyses on the effect of overall connectivity strength, medication
treatment/illness duration and sex differences are provided in the SI
Methods.

RESULTS
Comparisons between all patients with MDD and NCs
Alteration of network topologies in patients with MDD. LME
analyses revealed alterations in network properties in patients
with MDD. Regarding network efficiency, Eglob (t=−2.601, p=
0.009) and Eloc (t=−2.771, p= 0.006) values were significantly
decreased in patients with MDD compared to NCs (Fig. 1a and b).

MDD-related alterations in regional nodal features. Patients with
MDD had a decreased nodal degree in the SMN (bilateral parietal
lobe, left precentral gyrus and right temporal lobe), VN (bilateral
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occipital lobe) and DAN (left post parietal lobe) compared with
NCs. We also found decreased nodal efficiency in the DMN
(bilateral ventral medial prefrontal cortex (vmPFC), bilateral
precuneus, bilateral posterior cingulate gyrus, bilateral angular
gyrus, right ACC and intraparietal sulcus (IPS)), SMN (dorsal frontal
cortex (dFC), right precentral gyrus, bilateral parietal and temporal
lobe and posterior insula), DAN (left precentral gyrus, parietal lobe,
inferior parietal lobe (IPL) as well as temporal parietal junction
(TPJ)) and VN (bilateral occipital lobe) in patients compared with
the nodal degree in these regions in NCs (Fig. 1c).

Comparison between FEDN patients with MDD and NCs
Network topologies in FEDN patients and NCs. After sample
selection, we compared the remaining 227 FEDN patients with 388
NCs from five research groups. No significant differences were
revealed in network efficiency between FEDN patients and NCs
(Fig. 2a and Figure S1a).

Alterations in regional nodal features in FEDN patients and
NCs. Compared with NCs, nodal degree in FEDN MDD patients
was decreased in the VN (left occipital lobe) and SMN (right
precentral gyrus). No significant differences in nodal efficiency or
betweenness were found between FEDN patients with MDD and
NCs (Fig. 3).

Comparisons between recurrent patients with MDD and NCs
Network topologies in recurrent patients with MDD and NCs. We
found significantly decreased Eglob (t=−3.893, p < 0.001) and Eloc

(t=−4.429, p < 0.001) values in recurrent patients compared with
NCs (Figs. 2b and S1b).

Alterations in regional nodal features in recurrent patients and
NCs. Compared with NCs, patients with recurrent depression
showed decreased nodal degrees in a set of brain areas including
the SMN (right frontal lobe, bilateral parietal lobe, precentral gyrus
and temporal lobe) and VN (bilateral posterior occipital lobe); we
also found decreased nodal efficiency in the DMN (bilateral
vmPFC, right anterior cingulate cortex (ACC), bilateral precuneus
and posterior cingulate cortex (PCC), bilateral angular gyrus, left
inferior temporal lobe and left IPS), FPN (bilateral dorsal lateral
prefrontal cortex (dlPFC), right anterior prefrontal cortex, bilateral
IPL and right IPS), VAN (right anterior prefrontal cortex, medial and
ventral frontal cortex, dorsal ACC and middle insula), SMN
(bilateral precentral gyrus, bilateral middle insula, bilateral parietal
lobe, bilateral temporal, and left post insula), and VN (bilateral
occipital lobe) (Fig. 3).

Comparisons between recurrent patients and FEDN patients
Network topologies in recurrent patients and FEDN patients. We
found decreased Eglob (t=−2.719, p= 0.007) and Eloc (t=−2.691,
p= 0.008) values in patients with recurrent MDD compared with
the values found in FEDN patients (Figs. 2c and S1c).

Alterations in regional nodal features in recurrent patients and FEDN
patients. Compared with FEDN patients, patients with recurrent
MDD showed decreased nodal degree in the DMN (left inferior

Fig. 1 Group differences in network topological properties between major depressive disorder (MDD) patients and normal controls
(NCs). a Violin plots illustrating the area under the curve (AUC) parameters of the global efficiency (Eglob) and local efficiency (Eloc) for MDD
patients and NCs. Means and standard deviations are depicted. b Eglob and Eloc across a density range between 10% and 34%. Each point and
error bar denote the mean and standard deviation at each density level, respectively. Asterisks indicate a significant difference at this density
threshold. c Group differences in efficiency, degree and betweenness at the nodal level. Insignificant nodes are shown as green spheres,
whereas blue (MDD < NC) and red (MDD > NC) spheres denote significant differences after FDR correction. The size of the significant nodes
reflects the effect sizes of group differences. **: p < 0.01.
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Fig. 2 Subgroup differences in network topological properties (efficiency, Eglob, and local efficiency, Eloc). Distributions of areas under the
curve (AUCs) are depicted. a First episode drug naïve (FEDN) patients with major depressive disorder (MDD) vs. normal controls (NCs).
b Patients with recurrent MDD vs. NCs. c recurrent patients with MDD vs. FEDN patients. **: p < 0.01, ***: p < 0.001.
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temporal lobe) and decreased nodal efficiency in the DMN (left
anterior prefrontal cortex, bilateral PCC and precuneus, left
angular gyrus and left inferior temporal lobe), DAN (left ventral
prefrontal cortex and parietal lobe), SMN (right frontal lobe, left
precentral gyrus, bilateral parietal lobe, left posterior insula and
left temporal lobe), VAN (right ventral prefrontal cortex) and VN
(right occipital lobe) (Fig. 3).

Correlations between behavioral measures and network
metrics
We also employed the LME model with HAMD score as the group
variable to test correlations between symptom severity and
network metrics. However, no results were significant after
multiple comparison corrections.

Validation analyses
Analysis of two confirmatory metrics (path length and clustering
coefficient) confirmed our primary findings. Specifically, patients
with MDD showed significantly higher path length values (t=
3.187, p= 0.001) and lower clustering coefficient values (t=
−2.536, p= 0.011). We also found significantly enhanced path
lengths (t= 4.969, p < 0.001) and decreased clustering coefficients
(t=−4.631, p < 0.001) in recurrent patients with MDD compared
to NCs, whereas FEDN subgroups did not differ significantly
compared to NCs in these measures. Finally, recurrent patients
with MDD also showed increased path lengths (t= 2.488, p=
0.014) and decreased clustering coefficients (t=−2.626, p=
0.009) compared to FEDN patients with MDD (see Fig. 4). Further
validation analyses including scrubbing (Figs. S2–S3) and using an
alternative brain parcellation (Figs. S4–S5) largely confirmed our
main findings. We also found significant differences in overall FC
between patients with MDD and NCs (Table S2) and some
changes in results after controlling overall connectivity strength
(Table S3). Marginally significant effects were revealed when
comparing first episode patients on medication and FEDN

patients, whereas no significant effects were found between
patients with the longest and shortest illness durations (Table S4).
In addition, patients with MDD showed no significantly abnormal
topological properties compared to HCs after controlling medica-
tion usage (all ps > 0.05, Table S5). Although significant sex effects
were revealed in the original model, there were no significant
group-by-sex interaction effects when comparing all patients with
MDD and HCs (Tables S6–S7). A more thorough description can be
found in the SI Results.

DISCUSSION
Here, the topological architecture of functional brain networks
was investigated in a large multisite sample of MDD patients and
NCs through analysis with identical rigorous methods. We found
altered topological network properties in patients with MDD,
particularly decreased global and local efficiency compared with
NCs. However, this result, which implicated an impairment of the
normal integration of functional brain networks, was only
significant in patients with recurrent MDD. Notably, at the nodal
level, compared with NCs, we found decreased nodal degrees and
nodal efficiency in several brain functional networks (the DMN,
DAN, SMN, and VN) in MDD patients, which were especially
prominent in patients with recurrent MDD.
Human brain topological organization generally features high

local and global efficiency. High local efficiency benefits from
densely clustered connections among topological neighbors,
whereas high global efficiency reflects efficient information flow
over the entire brain network [13]. This brain network architecture
allows for efficient information separation and integration while
using minimal wiring and energy. This kind of topological
organization can be dramatically altered in neurological and
psychiatric disorders [37]. Abnormal topological organization has
been reported in MDD [16, 18, 38, 39], but the results have been
strikingly inconsistent. Limited power from small sample size

Fig. 3 Subgroup differences in efficiency, degree and betweenness at the nodal level. Nonsignificant nodes are shown as green spheres.
Blue (a: FEDN < NC; b: recurrent MDD < NC; c: recurrent MDD < FEDN) and red (a: FEDN > NC; b: recurrent MDD > NC; c: recurrent MDD > FEDN)
spheres denote significant differences after FDR correction. The sizes of the significant nodes reflect the effect sizes of group differences. NC
normal control, FEDN first-episode drug naïve.
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studies and variability in research methods may have contributed
to the disparate results. Here, with standardized processing and a
highly powered sample, we demonstrated that both global and
local efficiency were significantly decreased in MDD and that this
effect was mainly attributed to recurrent MDD patients. For
decreasing the cost of information transport in brain networks,
information coding is just as important as structural architecture.
Neural information is processed online while passing within and
between subnetworks. This online coding can be done by altering
edge strengths (i.e., connectivity) within the network to dynami-
cally integrate distributed nodes [40]. We hypothesize that in
patients with recurrent MDD, lower information coding capacity is
linked to lower local and global efficiency, reducing the
effectiveness of processes that the local interactions to be
organized to cope with a variety of environmental demands and
to ensure robustness, adaptability, as well as resilience to distress.
Patients with MDD showed decreased nodal degrees and

efficiency in regions belonging to the DMN, DAN, SMN, and VN,
which are involved in cognitive executive processes, emotional
processing, and basic sensory/motor functions. Evidence from
both task-based [41] and resting-state studies has implicated
abnormal visual processing in patients with MDD [42]. One recent
study also reported that disruptions in the visual network were
linked to clinical symptoms in MDD [43]. For the SMN, decreased
regional homogeneity in depressed patients was found in a meta-
analysis [30], which could explain psychomotor retardation, a key
clinical symptom of MDD. Furthermore, the distributed abnorm-
alities in the VN and SMN have been reported to be associated
with MDD in a resting-state dynamic FC study [44, 45]. In
summary, these findings could be interpreted as the neurological
basis of psychomotor retardation’s extensive influence on atten-
tional functions [46].

MDD studies have highlighted the DMN, which has been
associated with rumination [47, 48], self-referential processing [49]
and emotional appraisal [50, 51]. In the current study, we found
decreased nodal efficiency in patients with MDD. However, further
analysis revealed this decrease was only evident in recurrent
patients with MDD and was not found in FEDN patients, in line
with our previous study [7]. Greater social dysfunction among
patients with MDD has been linked to diminished DMN
connectivity [51], which pinpoints alterations in DMN connections
as potentially germane to social dysfunction in MDD [52]. In our
study, decreased nodal efficiency within the DMN suggests a
weakened coordinating role, presumably in response to accumu-
lating pathology from recurrent episodes of MDD.
Supplementary subgroup analysis found no alterations in

topological properties in the FEDN subgroup. In addition, the
group contrast between all MDD patients and HCs was no longer
significant after including medication usage as a covariate. These
results suggest that the abnormalities in recurrent MDD patients
may be largely due to medication effects. Antidepressant
medications have been found to effectively alter the resting-
state FCs of patients with MDD [53, 54]. Our results indicated that
antidepressant medications may also exert effects on topological
properties. Moreover, we note that more information including
medication type, dose, duration, and even adverse effects (and
reasons for changing or ceasing medications more generally) are
needed to better disentangle medication effects on the patho-
physiology underlying MDD. Sex differences in MDD must be
considered when interpreting the results of this study. Previous
studies have identified depression-related sex differences in
brain networks [55, 56]. We found that men showed higher
global and local efficiency than women but no group-by-sex
interactions were observed. Future large-scale studies focusing

Fig. 4 Lp and Cp differences between major depressive disorder (MDD) patients and normal controls (NCs) as well as subgroup contrasts.
Distributions of areas under the curve (AUCs) are depicted. a MDD vs. NCs. b First-episode drug naïve (FEDN) patients with major depressive
disorder (MDD) vs. normal controls (NCs). c Patients with recurrent MDD vs. NCs. d patients with recurrent MDD vs. FEDN patients. *: p < 0.05,
**: p < 0.01, ***: p < 0.001.
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on the sex differences regarding brain networks in MDD should
be conducted.
The strengths of the present study include the highly powered

sample size, standardized preprocessing pipeline, and robustness
across various analysis workflows. In addition, beyond having
already shared the data through the R-fMRI Maps Project, we also
openly shared the analysis code for the current brain topological
study, thus allowing readers to validate or reuse our codes
(https://github.com/Chaogan-Yan/PaperScripts/tree/master/
Yang_2021_MolecularPsychiatry).
Several limitations must be noted. First, all participants were

Chinese, so applicability to other ethnic/racial and cultural
contexts must be confirmed. Second, our study was retrospective
and cross-sectional, so we could not dissociate disease chronicity
from medication effects. Prospective longitudinal studies includ-
ing studies of remission and recurrence throughout the lives of
MDD patients are needed. Third, substantial evidence has
indicated that patients with MDD exhibit subtle but widespread
deficits in fractional anisotropy of white matter [57–59]. There-
fore, the topological organization of anatomical connectivity may
be another potential biomarker for MDD. A highly powered
anatomical connectivity sample has been created (i.e., The
ENIGMA-MDD DTI Working Group), and further studies are
needed to delineate reliable topological properties of anatomical
connections in MDD patients. Fourth, since it has been well
established that socioeconomic status is associated with the
pathophysiology of MDD [60], further studies with more
comprehensive socioeconomic data are needed. Finally, we note
that MDD is a highly heterogeneous disorder [61]. Though the
present study is based on traditional diagnostic criteria, future
studies adopting the Research Domain Criteria (RDoC) framework
[62] could inform the brain patterns that are associated with core
dimensions of functioning (e.g., abnormal hedonic processing,
threat sensitivity, etc.).
With a highly powered multisite sample, we showed that

recurrent MDD is related to abnormalities in the topological
architecture of functional brain networks, suggesting that the
dampened global and local efficiency caused by this disruption
may have a role in the pathology of MDD and may become more
pronounced with recurrent episodes of MDD.
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