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Major depressive disorder (MDD) is defined differently across genetic research studies and this may be a key source of
heterogeneity. While previous literature highlights differences between minimal and strict phenotypes, the components
contributing to this heterogeneity have not been identified. Using the cardinal symptoms (depressed mood/anhedonia) as a
baseline, we build MDD phenotypes using five components—(1) five or more symptoms, (2) episode duration, (3) functional
impairment, (4) episode persistence, and (5) episode recurrence—to determine the contributors to such heterogeneity. Thirty-two
depression phenotypes which systematically incorporate different combinations of MDD components were created using the
mental health questionnaire data within the UK Biobank. SNP-based heritabilities and genetic correlations with three previously
defined major depression phenotypes were calculated (Psychiatric Genomics Consortium (PGC) defined depression, 23andMe self-
reported depression and broad depression) and differences between estimates analysed. All phenotypes were heritable (h2SNP
range: 0.102–0.162) and showed substantial genetic correlations with other major depression phenotypes (Rg range: 0.651–0.895
(PGC); 0.652–0.837 (23andMe); 0.699–0.900 (broad depression)). The strongest effect on SNP-based heritability was from the
requirement for five or more symptoms (1.4% average increase) and for a long episode duration (2.7% average decrease). No
significant differences were noted between genetic correlations. While there is some variation, the two cardinal symptoms largely
reflect the genetic aetiology of phenotypes incorporating more MDD components. These components may index severity, however,
their impact on heterogeneity in genetic results is likely to be limited.
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INTRODUCTION
Major depressive disorder (MDD) is a common mental health
condition characterised by periods of low mood [1, 2]. Hetero-
geneity within MDD is a key problem in research as it can mask
associations with risk factors and restrict aetiological under-
standing [3]. Cai, Choi and Fried suggest heterogeneity arises in
three ways. ‘Operationalisation’ relates to how the phenotype is
defined and measured, ‘manifestation’ relates to the clinical
presentation and ‘aetiology’ relates to a subgroups risk factor
profile [4]. Heterogeneity research into the genetics of MDD has
proven fruitful, highlighting, among other findings, variation in
genetics of the individual symptoms [5] as well as differential
polygenic risk profiles for atypical depression [6, 7], and early-
onset MDD [8].
Operational heterogeneity has received particular attention

recently due to the variation in phenotypes used in genome-wide
association studies (GWAS) [3]. Major depression (MD)—a general
definition of MDD in which cases may not have been defined
using a structured clinical interview—has a significant heritable
component, with estimates in the range of 20 and 50% [9–12]. It is
a polygenic trait, meaning the genetic variance is explained partly
by multiple common genetic variants of individually small effect in
the population [13]. Due to its genetic architecture, large sample

sizes of MD cases and controls are required to identify these
variants [14]. Many GWAS have therefore used a pragmatic
‘minimal phenotyping’ approach where MD cases are identified
according to a single, self-report, question [15–17]. Hyde et al.
performed a GWAS on data from 23andMe taking the union of six
self-report questions asking if the participant has ever been
diagnosed with clinical depression [15]. Similarly, Howard et al.
included a ‘broad depression’ phenotype derived in the UK
Biobank from self-report responses to the question ‘Have you ever
seen a general practitioner/psychiatrist for nerves, anxiety or
depression?’ [16].
This approach has identified genetic variants associated with

MD [18], however, the minimal phenotype approach has been
criticised for its lack of specificity to MDD [19]. Using the UK
Biobank, Cai et al. [19], analysed the impact of the minimal
phenotyping approach compared to a strict definition of MD,
derived from responses to the Composite International Diagnostic
Interview-Short Form (CIDI-SF) [20]. The strict MD phenotypes
showed higher SNP-based heritability than the minimal pheno-
types, and the genetic correlations between them were below 1.
This confirms that GWAS results depend on phenotype definition,
but the study did not explore the richness of MDD phenotypes
available beyond the case-control definition.
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MDD has many components including (1) five or more of the
nine depressive symptoms listed in DSM-5 (inclusive of at least
one cardinal symptom, depressed mood or anhedonia), (2)
functional impairment, (3) episode duration of at least 2 weeks,
(4) persistence of depression during the episode and (5) episode
recurrence. We note that episode recurrence is not required for
diagnosis, but it is often used as an indicator of severity in
research studies [9, 19, 21, 22].
In this study, we sought to understand how genetic aetiology

varies when these components of MDD are included in a
phenotype. For example, episode recurrence may index a
phenotype with a stronger genetic contribution and may also
capture a subset of genetic variants associated with recurrence.
Previous literature investigating the role of each component
suggests recurrence increases the twin heritability of MD,
however, findings for functional impairment, episode duration
and number of symptoms have been inconsistent [9, 23–26]. No
studies have yet assessed how these findings translate to
molecular studies and heritability estimates from genome-wide
variants.
We used mental health data from the UK Biobank to define 32

depression phenotypes which systematically incorporate the five
components. Through assessing patterns in SNP-based heritability
and genetic correlations between the 32 depression phenotypes
and the current European ancestries gold standard PGC MDD
cohort, we aim to explore how the genetic aetiology of a MD
phenotype varies in the presence of the five components. As a
secondary aim, we repeated the genetic correlation analysis with
two minimal phenotypes (23andMe self-reported and broad
depression) to determine if these definitions show different
patterns from the PGC MDD cohort, consistent with minimal
phenotypes accounting for the MD components to differing
degrees.

METHODS
Data
The UK Biobank, a health study of 502,655 individuals, was used for this
study [27]. We used responses to the CIDI-SF which formed part of the
Mental Health Questionnaire (MHQ) to define our phenotypes [20, 28]. This
voluntary web-based questionnaire was completed by 157 366 UK Biobank
participants aged between 45 and 82 when completing the questionnaire.

Characterisation of the phenotypes
The CIDI-SF contains questions relating to an individual’s worst episode of
depression during their lifetime [20]. A phenotype which required either of
the two cardinal symptoms (depressed mood/anhedonia) to be endorsed
acted as a baseline definition of MD. Five components for MD, which build
upon the cardinal symptoms, were defined from CIDI-SF questions,
corresponding to: episode recurrence (Two or more depressive episodes
in lifetime), the presence of five or more depressive symptoms, a long
episode duration (episode > 6 months), the presence of functional
impairment (affected life/activities either ‘somewhat’ or ‘a lot’) and the
persistence of the depressive symptoms during the episode (felt depressed
‘almost every day’ or ‘every day’). For brevity, these components will be
referred to as recurrence, symptoms, duration, impairment, and persistence,
respectively. For each component, we derived a binary variable indicating if
the individual endorsed this aspect of depression. For more detail as to how
these binary variables were defined, please see Supplementary Table 1.
In addition to the baseline phenotype which consists of all participants

endorsing either of the two cardinal symptoms, phenotypes were created
through taking every combination of each of the five binary components
at the varying levels of enrichment. We use the term ‘enrichment’ to refer
to the number of phenotypic components used to define a phenotype
(between 1 and 5). This results in a total of 32 different phenotypes (Fig. 1).
The naming convention for each phenotype throughout the rest of the

paper relates to which components are endorsed to be designated case
status (Supplementary Table 2). For example, the phenotype ‘Cardinal+
Recurrence+ Impairment’ reflects all individuals who endorsed at least
one cardinal symptom, report more than one major depressive episode

and were at least somewhat functionally impaired during their worst
episode.
Participants were designated as controls if one component within the

phenotype was not endorsed. For example, where cardinal symptoms,
recurrence and impairment are required for case status, if at least one of
the three is not endorsed, the participant would be a control. Therefore, as
a depression phenotype includes more components, the number of cases
drops while the number of controls increases (Supplementary Table 3). For
an evaluation of this approach to defining controls and its influence on the
results, refer to the Supplementary Information. Controls were not ‘double-
screened’ for the presence of any other psychiatric disorders, including
MD, as to avoid upwardly biasing the SNP-based heritability and genetic
correlation estimates [29–31]. However, participants were excluded
independently of case/control status if they were identified as a possible
case for schizophrenia, bipolar disorder or substance abuse (Nexcluded=
3,032). This was determined through an individual self-reporting either the
disorder or a relevant medication (Supplementary Table 4).

Genetic data—quality control, SNP-based heritability and
genetic correlations
Quality control. Participants in the final sample were unrelated and of
European ancestries which were identified using a previously described
analytical pipeline (Supplementary Methods) [27, 32, 33].
A total of 560,173 genotyped and 9,940,918 imputed SNPs remained

after QC. Genotyped SNPs were used to estimate heritabilities and imputed
SNPs were used to compute genetic correlations.

SNP-based Heritability. Phenotype-Correlation-Genotype-Correlation (PCGC;
https://github.com/omerwe/S-PCGC) was used to estimate the SNP-based
heritability of the 32 depression phenotypes [34, 35]. To convert to the
liability scale, population prevalence was assumed to equal the sample
prevalence prior to the application of any exclusion criteria for each
phenotype (Supplementary Table 3). As recommended, the major histo-
compatibility complex region was removed (chromosome 6;
28,866,528–33,775,446 bp) reducing the total number of SNPs used to
estimate the SNP-based heritability to 554,059 [36]. The first six genetic
principal components, genotyping batch and assessment centre were
included as covariates for all phenotypes.

Genetic correlation. Genetic correlations were computed using linkage
disequilibrium score regression (LDSC) [37]. LDSC was chosen for this
analysis as the summary statistics necessary for PCGC estimation were not
available for the three external MD phenotypes and we did not have
access to the individual level data to compute these. Correlations were
estimated for each of the 32 phenotypes and PGC defined depression,
using summary statistics from Wray et al. with 23andMe and UK Biobank
samples removed (Ncases= 45,396, Ncontrols= 97,250) [17]. We repeated this
analysis for broad depression, and 23andMe self-reported depression using
summary statistics from Howard et al. (Ncases= 113,769, Ncontrols= 208,811)
and Hyde et al. (Ncases= 75,607, Ncontrols= 231,747), respectively [15, 16].
The 32 depression phenotypes were residualised by the first six genetic
principal components, genotyping batch and assessment centre, then a
GWAS performed using PLINK 2.0 (cog-genomics.org/plink/2.0 [38, 39]) to
obtain summary statistics for each phenotype. Pre-computed linkage
disequilibrium scores, HapMap3 SNPs and the default settings of LDSC
were used to calculate the genetic correlations for all phenotypes.

Statistical analysis
How does enriching the major depression phenotype impact SNP-based
heritability and genetic correlation? We initially investigated the trend in
SNP-based heritability and genetic correlations with enrichment of the
MD phenotype to determine if the depth of information within a
phenotype influences the genetic aetiology. Using the phenotype
requiring only cardinal symptoms as a reference, we calculated
differences in SNP-based heritability and genetic correlation estimates
for the remaining 31 MD phenotypes. This was performed using a
previously described block jackknife methodology with 200 blocks
(Supplementary Methods) [40, 41]. The differences were then grouped
according to the phenotypes level of enrichment, i.e. all differences for
phenotypes requiring cardinal symptoms and one other component were
grouped. Averages within these groups were then calculated by taking
the inverse-variance weighted mean of the SNP-based heritability and
genetic correlations (Supplementary Methods).
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Component importance. We then investigated the relative effect each
component had in driving any general pattern in the SNP-based heritability
and genetic correlation estimates. For this test, differences in estimates are
calculated using the same block jackknife approach. Differences were
calculated between all combinations of phenotypes which differ by only
one component. For example, the two phenotypes; ‘cardinal symptoms+
recurrence’ and ‘cardinal symptoms+ recurrence+ symptoms’ would be
compared as the phenotypes are identical other than for the symptoms
component. Any difference in estimates is attributed to the component
that differs between the two phenotypes (symptoms, in the example
above). Each component may be added to multiple phenotypes with the
same level of enrichment, for example, recurrence may be added to
‘cardinal symptoms+ impairment’ and ‘cardinal symptoms+ persistence’.
To understand the average impact at this level of enrichment, the inverse
variance weighted average difference was calculated.

RESULTS
Phenotypes
From the 123,548 unrelated UKB participants of European
ancestries who provided at least one non-missing response to
the cardinal symptom items within the MHQ, 69,586 endorsed at
least one cardinal symptom, and 9,670 of these endorsed all five
components. Final sample sizes for all phenotypes are shown in
Supplementary Table 3.

SNP-based heritability
SNP-based heritability estimates for the 32 phenotypes ranged
from 0.102 (SE= 0.015, Phenotype= Cardinal+ Impairment+ Per-
sistence+ Duration to 0.162 (SE= 0.014, Phenotype= Cardinal+

Fig. 1 Workflow of the study design. A Flow chart of key methodological steps. UKB UK Biobank, PCGC phenotype correlation genotype
correlation, LDSC linkage disequilibrium score regression, PGC psychiatric genomics consortium, MDD major depressive disorder. B
Characterisation of the 32 phenotypes. B Provides a graphical image of each phenotypes composition. Each time a component is added an
additional phenotype is defined. Taking all possible combinations from each addition creates a possible 32 distinct phenotypes. The ellipses
have been included in the graph to represent the additional phenotypes not included within the figure.
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Symptoms) (Fig. 2A). All estimates were significantly different from
0 following Bonferroni correction for multiple testing (αBonferroni <
0.0016 (0.05/32 phenotypes)) (Supplementary Table 5).

Trend with phenotypic enrichment. To understand the effect of
enriching the MD phenotype, differences between the SNP-based
heritability estimates relative to the phenotype of only cardinal
symptoms were computed and averaged by the phenotypic
enrichment, i.e. the number of components. As the phenotypes
become more enriched, the average SNP-based heritability of the
phenotype decreases (Fig. 2B). However, taking each level of
enrichment in turn, none of the SNP-based heritabilities was
significantly different from the SNP-based heritability of the
phenotype with only cardinal symptoms (p > 0.05) (Supplemen-
tary Table 6).

Importance of each component. Analysis by enrichment averages
all phenotypes by number of components, however, the
components used to define the phenotypes within each enrich-
ment group vary. As such, the averaging approach removes any
specific effect of a component. To understand the impact of each

component on SNP-based heritability, we calculated the change in
SNP-based heritability after adding the component and took the
average difference a component had on phenotypes with the
same level of enrichment (see Supplementary Table 7 for every
test performed as well as how the results were averaged).
The requirement of five or more symptoms during the episode

induced a significant increase in SNP-based heritability when the
component was added to the cardinal symptoms only phenotype
after correcting for multiple testing (αBonferroni < 0.002 (25 tests= 5
components over 5 levels of enrichment)) (Difference in SNP-
based heritability= 0.027; SE= 0.008; p value= 9.67 × 10−4).
Inclusion of any components made no significant differences at
all other levels of enrichment (Fig. 2C; Supplementary Table 7). The
lack of significance limits comparisons across components;
however, episode duration decreased SNP-based heritability to
the greatest degree (on average 2.7% across all levels of
enrichment). It is, therefore, likely this component is contributing
greatest to the decrease in SNP-based heritability with increasing
phenotype enrichment. Conversely, the presence of five symp-
toms increased SNP-based heritability to the greatest degree, with
an average increase of 1.4% (Supplementary Table 7).

Fig. 2 Analyses of SNP-based heritability of major depression phenotypes. A SNP-based heritability estimates on the liability scale for each
phenotype grouped by phenotype enrichment. Phenotype enrichment is defined as the number of components considered to define case
status. B Trend in SNP-based heritability estimates by phenotype enrichment. Each point estimate represents the average difference in SNP-
based heritability relative to the phenotype which requires either of the cardinal symptoms to be endorsed. The cardinal symptom phenotype
is the reference under the phenotype enrichment level 1. Error bars represent standard errors of the difference in SNP-based heritability
estimates and averages were taken as the inverse-variance weighted mean of the enrichment group. C Trend in SNP-based heritability
estimates by component. Each point estimate represents the average difference in SNP-based heritability induced from the addition of the
component. Estimates are further grouped by level of phenotype enrichment. The point estimate with a phenotype enrichment of 1 is the
cardinal symptoms phenotype and as such does not show any change due to the presence of no additional components. It is included for
completeness. Errors bars represent standard errors of the difference in SNP-based heritability estimates and averages were taken as the
inverse-variance weighted mean from all component comparisons within the enrichment group.
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Genetic correlation
All genetic correlations were significantly different from 0
following Bonferroni correction for multiple testing (αBonferroni <
0.0016 (0.05/32 phenotypes)) (Supplementary Table 8). Genetic
correlations ranged between 0.651–0.895 for PGC defined
depression, 0.652–0.837 for 23andMe self-reported depression
and 0.699–0.900 for broad depression (Fig. 3A).

Trend with phenotypic enrichment. Similar to the SNP-based
heritability analyses, we analysed the effect of enriching the
depression phenotype on the trend in genetic correlations with
three external MD phenotypes. We compared all differences relative
to the phenotype which required only cardinal symptoms to be
endorsed. Differences in genetic correlation were not significant at
any level of enrichment (p > 0.05) for broad depression, PGC or
23andMe defined depression. Both the broad depression and PGC
defined depression showed an increase in genetic correlations
estimates with enrichment of the depression phenotype, however,
this is speculative and would require a study with greater power to
show conclusively (Fig. 3B; Supplementary Table 9). 23andMe self-
reported depression did not show such an increase by phenotypic
enrichment (Fig. 3B; Supplementary Table 9)

Importance of each component. We analysed the change in
genetic correlation induced by the addition of MD components for
the three MD phenotypes. The addition of duration to the phenotype
requiring only cardinal symptoms decreased the genetic correlation
with all three of the MD phenotypes at a level of nominal significance
(PGC: Δrg=−0.135; 23andMe: Δrg=−0.114; broad depression:
Δrg=−0.113; p< 0.05). Similarly, the addition of persistence to
phenotypes that consisted of cardinal symptoms and one other
component on average increased the genetic correlation with the
23andMe phenotype (23andMe: Δrg= 0.034, p< 0.05. However, none
of these associations survived correction for multiple testing

(αBonferroni < 0.002 (0.05/25)) (Fig. 4; Supplementary Table 10).
Given this lack of association it is difficult to discern any real trend

by component, however, incorporating recurrence into the depres-
sion phenotype resulted in the greatest average increase over all
three of the depression phenotypes (average change: PGC= 8.8%;
23andMe= 4%; Broad depression= 6.4%). Conversely, incorporat-
ing episode duration into the depression phenotype consistently
decreased the genetic correlation for all three depression pheno-
types (average change: PGC=−5.1%; 23andMe=−8.5%; Broad
depression=−4.4%).

DISCUSSION
In this study, we aimed to determine how the genetic aetiology
varies by definition of MD. By defining five depression compo-
nents in addition to the cardinal symptoms, we compared how
the SNP-based heritability and genetic correlations with three
previous depression studies varied with the presence and absence
of each component.
Variability in SNP-based heritability across the phenotypes was

low with a range of 5.9%. Relative to the cardinal symptom
phenotype, the greatest increase in SNP-based heritability was
2.7%. Conversely, the greatest decrease was 3.9%. We caveat the
latter with the fact that this difference is not statistically
significant. This lack of variability suggests the genetic aetiology
of the cardinal symptoms phenotype largely reflects that of other
phenotypes which include more components of MD.
The phenotype with the highest SNP-based heritability was also

parsimonious, requiring a cardinal symptom, and five or more
symptoms during the episode. The increase in SNP-based
heritability, from 12.9% for cardinal symptoms to 16.2% for
cardinal symptoms and five or more symptoms was significant,
which suggests the inclusion of five or more symptoms as a
component leads to a more heritable phenotype. The parsimo-
nious nature of this phenotype, and the fact that richer
phenotypes had lower SNP-based heritability, closer to that of
the cardinal symptoms, is an important finding as it indicates
much of the differentiable heritable signal for MD over and above
the cardinal symptoms may be captured from a careful assess-
ment of symptoms of depression. Thorp et al. [5] show SNP-based
heritability varies between 6 and 9% for individual symptoms of
MD. It is therefore plausible that further heterogeneity for SNP-
based heritability within this component exists and that certain
symptom profiles will be more heritable than others. In practice,
accurately estimating SNP-based heritability depends on selecting
an accurate population prevalence to convert to the liability scale
[42]. If this is mis-estimated, differences in estimates will arise
artificially. All else being equal, the difference in SNP-based
heritability between the cardinal symptoms and ‘Cardinal+
Symptom’ phenotypes would be reduced if we either under-
estimated the cardinal symptom or over-estimated ‘Cardinal
+Symptom’ population prevalence.
While episode duration of greater than 6 months did not

survive correction for multiple testing, the point estimates showed
an effect of decreasing SNP-based heritability when incorporated
into the phenotype. Indeed, a phenotype requiring the cardinal
symptoms and a long episode duration is consistent with the
depressive condition of dysthymia, which is considered a distinct
diagnosis relative to more episodic depressive episodes in the
DSM-5 [1]. This finding is corroborated by a twin study which
showed a negative relationship between monozygotic-dizygotic
concordance ratio and episode duration [23]. While this could
suggest a phenotype closer to that of dysthymia is less heritable,
measurement error in the retrospective assessment of episode
duration can introduce “noise” into the phenotype, reducing
SNP-based heritability. Indeed, test-retest reliability for episode
duration has been shown to be low [43] and it is not a predictor of
a concordant diagnosis at follow-up unlike other components,

Fig. 3 Analyses in genetic correlations with three previously
defined major depression phenotypes. A A heatmap of genetic
correlation estimates for each phenotype. Our defined phenotypes
are displayed on the x-axis. The three previously defined major
depression phenotypes are displayed on the y-axis. Note: the legend
shows the scale for correlation estimate comparisons is between
0.65 and 0.85. B Trend in genetic correlation estimates with PGC
defined major depression by phenotype enrichment. Point esti-
mates show the average difference in genetic correlation relative to
the cardinal symptom only phenotype. This is shown as the
reference point under the first level of phenotype enrichment. Error
bars represent the standard errors of the difference.
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such as impairment or number of symptoms [44]. More generally,
varying degrees of measurement error across items could play a
role in the differences between SNP-based heritabilities and
genetic correlations. Indeed, it has been shown a more reliable
diagnosis of MD leads to increased heritability [45].
Recurrence has consistently been shown to increase the

heritability of MD which we were unable to corroborate
[9, 11, 12, 19, 22]. Given Cai et al. [19] show recurrence increases
heritability using the same data and defined two phenotypes with
similar definitions to ours in the UK Biobank, it offered us the
opportunity to explore methodological reasons behind this lack of
replication (See Supplementary Information for results and in-
depth discussion). SNP-based heritabilities for LifetimeMDD and
MDDRecur were higher in Cai et al. [19] by 12.5% (13.8% vs. 26.3%)
and 17% (15.1% vs. 32.1%), respectively. Our supplementary
analysis shows these can be attributed to two differences in our
phenotypes: definitions of controls, and in the threshold for
functional impairment applied. For controls, we included partici-
pants with sub-threshold levels of impairment as well as single-
episode cases when defining recurrent depression to reduce the
risk of a discontinuity when transforming to the liability scale and
inflating SNP-based heritability estimates [29, 31]. Removing these
participants reduces the difference to 8.1 and 8.9% for Life-
timeMDD and MDDRecur. Further, Cai et al. [19] used a more
severe threshold for functional impairment. Including this thresh-
old, and therefore also removing participants who were ‘some-
what’ impaired, accounts for the remainder of the difference in
SNP-based heritabilities. We recognise our control definition
increases the risk of bias due to misclassification [46], however,
we believe our definition finds a good balance between the two
potential biases (see Supplementary Information for a more
detailed discussion). More broadly, this comparison highlights the
importance of the control group definition in SNP-based
heritability estimates and the appropriate use of liability scale

conversions [29, 31]. In contrast to some of the previous literature,
we used retrospective self-report to define lifetime cases which
has been shown to have recall bias [47, 48]. Prospective
assessment may produce different results.
The genetic correlations between the cardinal symptom only

phenotype and the three depression phenotypes were high (PGC:
rg= 0.807, SE= 0.054; 23andMe: rg= 0.762, SE= 0.041; Broad
depression: rg= 0.815, SE= 0.032). Recurrence and duration were
the two components to increase and decrease the genetic
correlation point estimates, showing a consistent pattern across
the three MD definitions. However, while there was variation
around the correlation estimate given by the cardinal symptom
phenotype (PGC: Range=−15.6–8.8%; 23andMe: Range=
−11.0–7.5%; Broad depression: Range=−11.6–8.4%), we found
no evidence for a statistically significant increase or decrease
either by phenotype enrichment or by component. As such, we
cannot conclude that MD components change the specific set of
associated genetic variants. The relative increase that can be
induced from the components is limited due to the high
correlation between MD and the cardinal symptom only
phenotype. As such, a ceiling effect is imposed which would
require large sample sizes to detect significant differences for such
correlations.
In line with the findings from Cai et al. [19], we previously

hypothesised the two minimal phenotypes (broad depression in
UK Biobank and self-reported depression in 23andMe) are
composed of a case sample with greater heterogeneity. Given
the potential for inclusion of milder cases, we expected the
minimal phenotypes to correlate with milder depression pheno-
types to a greater extent relative to more enriched depression
phenotypes. In contrast, we hypothesised PGC defined depres-
sion, being our gold standard, would show a positive trend
between phenotypic enrichment and genetic correlation. No
conclusive trend could be found by phenotype enrichment in any

Fig. 4 Trend in genetic correlation estimates by component. A Trend using PGC defined major depression phenotype as the comparison for
genetic correlation computation. B Trend using 23andMe defined major depression phenotype as the comparison for genetic correlation
computation. C Trend using broad depression phenotype as the comparison for genetic correlation computation. Each point estimate
represents the average difference in genetic correlation induced from the addition of the component. Estimates are further grouped by level
of phenotype enrichment. The point estimate with a phenotype enrichment of 1 is the cardinal symptoms only phenotype and as such does
not show any change due to the presence of no additional components. It is included for completeness. Errors bars represent standard errors
of the difference in genetic correlation estimates and averages were taken as the inverse-variance weighted mean from all component
comparisons within the enrichment group.
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case suggesting differences are likely to be difficult to find given
the large sample size employed within this study.

LIMITATIONS
The results from this study should be evaluated in the context of the
following limitations. To accurately estimate and compare herit-
abilities, the prevalence of the phenotype within the population
must be estimated accurately. No previous literature exists for most
of our phenotypes, so an assumption was made that UK Biobank
represents a random subset of the population. This assumption is
strong, given participants of the UK Biobank have been shown to
have a higher socio-economic status and lower mortality rates than
the rest of the UK [49]. The subset of participants who responded to
the MHQ also has a lower rate of mental health-related hospital
diagnoses [50]. Future consideration towards developing a repre-
sentative dataset free from selection bias would help improve the
validity of the prevalence’s used in this study.
We assume the difference in SNP-based heritability and genetic

correlation estimates is attributable to the component that has
been changed between the two phenotypes. It is likely in practice
that this component covaries with risk factors for depression and
even other components, such as depression. For example, should
you endorse the five symptoms of depression you are also more
likely to endorse recurrence. This limitation may be unpicked
through investigating the set of participants who endorse one
component but not the other, i.e. those that endorse recurrence
but not the five symptoms, however, much greater sample sizes
are required for such an analysis and the translational interpreta-
tion is less clear.
With respect to the genetic correlation analysis, we considered

the PGC defined phenotype to be the gold standard for comparison
against minimal phenotypes. It is indeed the case that this
phenotype is the most stringently assessed for individuals of
European ancestries, however, given MD’s inherent heterogeneity, it
is unlikely all cases within this phenotype are recurrent or have had
episodes of long duration. An equivalent external phenotype in
which all components were known to be endorsed for all cases
would be able to show more conclusively if the incorporation of the
component provides more genetically comparable phenotypes.
However, this is not how MD is currently defined in the diagnostic
criterion so while more severe MD phenotypes [51–53] may behave
as a better positive control for this study, it would only reflect a small
subset of the total MD cases in the population.

CONCLUSION
Despite an 86% reduction in cases between our least and most
strict definitions of MD, we show comparatively low variability in
SNP-based heritability and genetic correlations, suggesting
diagnostic components do not play a key role in the hetero-
geneity of genetic results. We find evidence that out of the
additional criteria typically used to establish diagnosis or severity
of depression, incorporating five or more symptoms into the
phenotype produces a significant increase in SNP-based herit-
ability. While these components may be used to reduce
misclassification between controls and cases and enhance power
in GWAS, they do not appear key to identifying any distinct
genetic aetiology of MD.
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