Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Resolving heterogeneity in schizophrenia through a novel systems approach to brain structure: individualized structural covariance network analysis

Abstract

Reliable mapping of system-level individual differences is a critical first step toward precision medicine for complex disorders such as schizophrenia. Disrupted structural covariance indicates a system-level brain maturational disruption in schizophrenia. However, most studies examine structural covariance at the group level. This prevents subject-level inferences. Here, we introduce a Network Template Perturbation approach to construct individual differential structural covariance network (IDSCN) using regional gray-matter volume. IDSCN quantifies how structural covariance between two nodes in a patient deviates from the normative covariance in healthy subjects. We analyzed T1 images from 1287 subjects, including 107 first-episode (drug-naive) patients and 71 controls in the discovery datasets and established robustness in 213 first-episode (drug-naive), 294 chronic, 99 clinical high-risk patients, and 494 controls from the replication datasets. Patients with schizophrenia were highly variable in their altered structural covariance edges; the number of altered edges was related to severity of hallucinations. Despite this variability, a subset of covariance edges, including the left hippocampus–bilateral putamen/globus pallidus edges, clustered patients into two distinct subgroups with opposing changes in covariance compared to controls, and significant differences in their anxiety and depression scores. These subgroup differences were stable across all seven datasets with meaningful genetic associations and functional annotation for the affected edges. We conclude that the underlying physiology of affective symptoms in schizophrenia involves the hippocampus and putamen/pallidum, predates disease onset, and is sufficiently consistent to resolve morphological heterogeneity throughout the illness course. The two schizophrenia subgroups identified thus have implications for the nosology and clinical treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The workflow for constructing individual differential structural covariance network (IDSCN).
Fig. 2: Division of patients into two different subgroups in the primary FES dataset.
Fig. 3: Significant difference in depression and anxiety score between the two patient subgroups in the primary FES dataset.
Fig. 4: Validation of the patient subgroup results in two independent FES datasets.
Fig. 5: Patient subgroup results in three chronic schizophrenia datasets.
Fig. 6: Patient subgroup results for the clinical high-risk dataset.

Similar content being viewed by others

References

  1. Horváth S, Mirnics K. Schizophrenia as a disorder of molecular pathways. Biol Psychiatry. 2015;77: 22–8.

  2. Yang GJ, Murray JD, Wang X-J, Glahn DC, Pearlson GD, Repovs G, et al. Functional hierarchy underlies preferential connectivity disturbances in schizophrenia. Proc Natl Acad Sci USA. 2016;113:E219–28.

  3. Lo C-YZ, Su T-W, Huang C-C, Hung C-C, Chen W-L, Lan T-H, et al. Randomization and resilience of brain functional networks as systems-level endophenotypes of schizophrenia. Proc Natl Acad Sci USA. 2015;112:9123–8.

  4. Alexander-Bloch A, Giedd JN, Bullmore E. Imaging structural co-variance between human brain regions. Nat Rev Neurosci. 2013;14:322–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yun J-Y, Boedhoe PS, Vriend C, Jahanshad N, Abe Y, Ameis SH, et al. Brain structural covariance networks in obsessive-compulsive disorder: a graph analysis from the ENIGMA Consortium. Brain. 2020;143:684–700.

    PubMed  PubMed Central  Google Scholar 

  6. Palaniyappan L, Park B, Balain V, Dangi R, Liddle P. Abnormalities in structural covariance of cortical gyrification in schizophrenia. Brain Struct Funct. 2015;220:2059–71.

    Article  CAS  PubMed  Google Scholar 

  7. Seidlitz J, Váša F, Shinn M, Romero-Garcia R, Whitaker KJ, Vértes PE, et al. Morphometric similarity networks detect microscale cortical organization and predict inter-individual cognitive variation. Neuron. 2018;97:231–47. e237

    Article  CAS  PubMed  Google Scholar 

  8. Mechelli A, Friston KJ, Frackowiak RS, Price CJ. Structural covariance in the human cortex. J Neurosci. 2005;25:8303–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. He Y, Chen ZJ, Evans AC. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex. 2007;17:2407–19.

    Article  PubMed  Google Scholar 

  10. Chen ZJ, He Y, Rosa-Neto P, Germann J, Evans AC. Revealing modular architecture of human brain structural networks by using cortical thickness from MRI. Cereb Cortex. 2008;18:2374–81.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lerch JP, Worsley K, Shaw WP, Greenstein DK, Lenroot RK, Giedd J, et al. Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI. Neuroimage. 2006;31:993–1003.

    Article  PubMed  Google Scholar 

  12. Gong G, He Y, Chen ZJ, Evans AC. Convergence and divergence of thickness correlations with diffusion connections across the human cerebral cortex. Neuroimage. 2012;59:1239–48.

    Article  PubMed  Google Scholar 

  13. Pezawas L, Verchinski BA, Mattay VS, Callicott JH, Kolachana BS, Straub RE, et al. The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. J Neurosci. 2004;24:10099–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A. Neuroplasticity: changes in grey matter induced by training. Nature. 2004;427:311–2.

    Article  CAS  PubMed  Google Scholar 

  15. Zielinski BA, Gennatas ED, Zhou J, Seeley WW. Network-level structural covariance in the developing brain. Proc Natl Acad Sci USA. 2010;107:18191–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mitelman SA, Buchsbaum MS, Brickman AM, Shihabuddin L. Cortical intercorrelations of frontal area volumes in schizophrenia. Neuroimage. 2005;27:753–70.

    Article  PubMed  Google Scholar 

  17. Modinos G, Vercammen A, Mechelli A, Knegtering H, McGuire PK, Aleman A. Structural covariance in the hallucinating brain: a voxel-based morphometry study. J Psychiatry Neurosci. 2009;34:465.

    PubMed  PubMed Central  Google Scholar 

  18. McAlonan GM, Cheung V, Cheung C, Suckling J, Lam GY, Tai K, et al. Mapping the brain in autism. A voxel-based MRI study of volumetric differences and intercorrelations in autism. Brain. 2005;128:268–76.

    Article  PubMed  Google Scholar 

  19. He Y, Chen Z, Evans A. Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease. J Neurosci. 2008;28:4756–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD. Neurodegenerative diseases target large-scale human brain networks. Neuron. 2009;62:42–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moberget T, Doan N, Alnæs D, Kaufmann T, Córdova-Palomera A, Lagerberg T, et al. Cerebellar volume and cerebellocerebral structural covariance in schizophrenia: a multisite mega-analysis of 983 patients and 1349 healthy controls. Mol Psychiatry. 2018;23:1512–20.

    Article  CAS  PubMed  Google Scholar 

  22. Evans AC. Networks of anatomical covariance. Neuroimage. 2013;80:489–504.

    Article  CAS  PubMed  Google Scholar 

  23. Rodriguez-Murillo L, Gogos JA, Karayiorgou M. The genetic architecture of schizophrenia: new mutations and emerging paradigms. Annu Rev Med. 2012;63:63–80.

    Article  CAS  PubMed  Google Scholar 

  24. Catts VS, Fung SJ, Long LE, Joshi D, Vercammen A, Allen KM, et al. Rethinking schizophrenia in the context of normal neurodevelopment. Front Cell Neurosci. 2013;7:60.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ajnakina O, Das T, Lally J, Di Forti M, Pariante CM, Marques TR, et al. Structural covariance of cortical gyrification at illness onset in treatment resistance: a longitudinal study of first-episode psychoses. Schizophr Bull. 2021;sbab035.

  26. Das T, Borgwardt S, Hauke DJ, Harrisberger F, Lang UE, Riecher-Rossler A, et al. Disorganized gyrification network properties during the transition to psychosis. JAMA Psychiatry. 2018;75:613–22.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Marquand AF, Rezek I, Buitelaar J, Beckmann CF. Understanding heterogeneity in clinical cohorts using normative models: beyond case-control studies. Biol Psychiatry. 2016;80:552–61.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Marquand AF, Kia SM, Zabihi M, Wolfers T, Buitelaar JK, Beckmann CF. Conceptualizing mental disorders as deviations from normative functioning. Mol Psychiatry. 2019;24:1415–24.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wolfers T, Doan NT, Kaufmann T, Alnæs D, Moberget T, Agartz I, et al. Mapping the heterogeneous phenotype of schizophrenia and bipolar disorder using normative models. JAMA Psychiatry. 2018;75:1146–55.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lv J, Di Biase M, Cash RF, Cocchi L, Cropley VL, Klauser P, et al. Individual deviations from normative models of brain structure in a large cross-sectional schizophrenia cohort. Mol Psychiatry. 2020. https://doi.org/10.1038/s41380-020-00882-5.

  31. Wolfers T, Beckmann CF, Hoogman M, Buitelaar JK, Franke B, Marquand AF. Individual differences v. the average patient: mapping the heterogeneity in ADHD using normative models. Psychol Med. 2020;50:314–23.

  32. Zabihi M, Oldehinkel M, Wolfers T, Frouin V, Goyard D, Loth E, et al. Dissecting the heterogeneous cortical anatomy of autism spectrum disorder using normative models. Biol Psychiatry Cogn Neurosci Neuroimaging. 2019;4:567–78.

    PubMed  PubMed Central  Google Scholar 

  33. Heinze K, Reniers RL, Nelson B, Yung AR, Lin A, Harrison BJ, et al. Discrete alterations of brain network structural covariance in individuals at ultra-high risk for psychosis. Biol Psychiatry. 2015;77:989–96.

  34. Zhang X, Liu W, Guo F, Li C, Wang X, Wang H, et al. Disrupted structural covariance network in first episode schizophrenia patients: evidence from a large sample MRI-based morphometric study. Schizophr Res. 2020;224:24–32.

  35. Ivarsson T, Larsson B. The Obsessive-Compulsive Symptom (OCS) scale of the Child Behavior Checklist: a comparison between Swedish children with Obsessive-Compulsive Disorder from a specialized unit, regular outpatients and a school sample. J Anxiety Disord. 2008;22:1172–9.

    Article  PubMed  Google Scholar 

  36. Kang S, Hong S-I, Lee J, Peyton L, Baker M, Choi S, et al. Activation of astrocytes in the dorsomedial striatum facilitates transition from habitual to goal-directed reward-seeking behavior. Biol Psychiatry. 2020;88:797–808.

  37. Gollub RL, Shoemaker JM, King MD, White T, Ehrlich S, Sponheim SR, et al. The MCIC collection: a shared repository of multi-modal, multi-site brain image data from a clinical investigation of schizophrenia. Neuroinformatics. 2013;11:367–88.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage. 2007;38:95–113.

    Article  PubMed  Google Scholar 

  39. Rolls ET, Joliot M, Tzourio-Mazoyer N. Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas. Neuroimage. 2015;122:1–5.

    Article  PubMed  Google Scholar 

  40. Liu X, Wang Y, Ji H, Aihara K, Chen L. Personalized characterization of diseases using sample-specific networks. Nucleic Acids Res. 2016;44:e164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull. 1987;13:261–76.

    Article  CAS  PubMed  Google Scholar 

  42. Andreasen NC. Methods for assessing positive and negative symptoms. Mod Probl Pharmacopsychiatry. 1990;24:73–88.

  43. Brent BK, Seidman LJ, Thermenos HW, Holt DJ, Keshavan MS. Self-disturbances as a possible premorbid indicator of schizophrenia risk: a neurodevelopmental perspective. Schizophr Res. 2014;152:73–80.

  44. Liu Z, Rolls ET, Liu Z, Zhang K, Yang M, Du J, et al. Brain annotation toolbox: exploring the functional and genetic associations of neuroimaging results. Bioinformatics. 2019;35:3771–8.

    Article  CAS  PubMed  Google Scholar 

  45. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guan J-S, Haggarty SJ, Giacometti E, Dannenberg J-H, Joseph N, Gao J, et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature. 2009;459:55–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Spreng RN, DuPre E, Ji JL, Yang G, Diehl C, Murray JD, et al. Structural covariance reveals alterations in control and salience network integrity in chronic schizophrenia. Cereb Cortex. 2019;29:5269–84.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Antonova E, Sharma T, Morris R, Kumari V. The relationship between brain structure and neurocognition in schizophrenia: a selective review. Schizophr Res. 2004;70:117–45.

    Article  PubMed  Google Scholar 

  49. Kochunov P, Fan F, Ryan MC, Hatch KS, Tan S, Jahanshad N, et al. Translating ENIGMA schizophrenia findings using the regional vulnerability index: association with cognition, symptoms, and disease trajectory. Hum Brain Mapp. 2020. https://doi.org/10.1002/hbm.25045.

  50. Brugger SP, Howes OD. Heterogeneity and homogeneity of regional brain structure in schizophrenia: a meta-analysis. JAMA Psychiatry. 2017;74:1104–11.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Antoniades M, Haas SS, Modabbernia A, Bykowsky O, Frangou S, Borgwardt S, et al. Personalized estimates of brain structural variability in individuals with early psychosis. Schizophr Bull. 2021;sbab005.

  52. Zhou X, Qyang Y, Kelsoe J, Masliah E, Geyer M. Impaired postnatal development of hippocampal dentate gyrus in Sp4 null mutant mice. Genes Brain Behav. 2007;6:269–76.

    Article  PubMed  CAS  Google Scholar 

  53. Zhou X, Long J, Geyer M, Masliah E, Kelsoe J, Wynshaw-Boris A, et al. Reduced expression of the Sp4 gene in mice causes deficits in sensorimotor gating and memory associated with hippocampal vacuolization. Mol Psychiatry. 2005;10:393–406.

    Article  CAS  PubMed  Google Scholar 

  54. Willemsen MH, Fernandez BA, Bacino CA, Gerkes E, de Brouwer AP, Pfundt R, et al. Identification of ANKRD11 and ZNF778 as candidate genes for autism and variable cognitive impairment in the novel 16q24. 3 microdeletion syndrome. Eur J Hum Genet. 2010;18:429–35.

    Article  CAS  PubMed  Google Scholar 

  55. Gray JA. The neuropsychology of anxiety. Issues Ment Health Nurs. 1985;7:201–28.

    Article  CAS  PubMed  Google Scholar 

  56. Roddy DW, Farrell C, Doolin K, Roman E, Tozzi L, Frodl T, et al. The hippocampus in depression: more than the sum of its parts? Advanced hippocampal substructure segmentation in depression. Biol Psychiatry. 2019;85:487–97.

    Article  PubMed  Google Scholar 

  57. Sheline YI, Liston C, McEwen BS. Parsing the hippocampus in depression: chronic stress, hippocampal volume, and major depressive disorder. Biol Psychiatry. 2019;85:436–8.

    Article  PubMed  Google Scholar 

  58. Groenewegen HJ, Trimble M. The ventral striatum as an interface between the limbic and motor systems. CNS Spectr. 2007;12:887–92.

    Article  PubMed  Google Scholar 

  59. Qiao J, Li A, Cao C, Wang Z, Sun J, Xu G. Aberrant functional network connectivity as a biomarker of generalized anxiety disorder. Front Hum Neurosci. 2017;11:626.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wang X, Li J, Yuan Y, Wang M, Ding J, Zhang J, et al. Altered putamen functional connectivity is associated with anxiety disorder in Parkinson’s disease. Oncotarget. 2017;8:81377.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Price JL, Drevets WC. Neural circuits underlying the pathophysiology of mood disorders. Trends Cogn Sci. 2012;16:61–71.

    Article  PubMed  Google Scholar 

  62. Root DH, Melendez RI, Zaborszky L, Napier TC. The ventral pallidum: subregion-specific functional anatomy and roles in motivated behaviors. Prog Neurobiol. 2015;130:29–70.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lago T, Davis A, Grillon C, Ernst M. Striatum on the anxiety map: small detours into adolescence. Brain Res. 2017;1654:177–84.

    Article  CAS  PubMed  Google Scholar 

  64. Tye KM, Mirzabekov JJ, Warden MR, Ferenczi EA, Tsai H-C, Finkelstein J, et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature. 2013;493:537–41.

    Article  CAS  PubMed  Google Scholar 

  65. Shen C, Luo Q, Chamberlain SR, Morgan S, Romero-Garcia R, Du J, et al. What is the link between attention-deficit/hyperactivity disorder and sleep disturbance? A multimodal examination of longitudinal relationships and brain structure using large-scale population-based cohorts. Biol Psychiatry. 2020;88:459–69.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Schmaal L, Veltman DJ, van Erp TG, Sämann P, Frodl T, Jahanshad N, et al. Subcortical brain alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder working group. Mol Psychiatry. 2016;21:806–12.

    Article  CAS  PubMed  Google Scholar 

  67. Madre M, Canales‐Rodríguez EJ, Ortiz‐Gil J, Murru A, Torrent C, Bramon E, et al. Neuropsychological and neuroimaging underpinnings of schizoaffective disorder: a systematic review. Acta Psychiatr Scandinavica. 2016;134:16–30.

    Article  CAS  Google Scholar 

  68. Arnold SJ, Ivleva EI, Gopal TA, Reddy AP, Jeon-Slaughter H, Sacco CB, et al. Hippocampal volume is reduced in schizophrenia and schizoaffective disorder but not in psychotic bipolar I disorder demonstrated by both manual tracing and automated parcellation (FreeSurfer). Schizophr Bull. 2015;41:233–49.

    Article  PubMed  Google Scholar 

  69. Gregory A, Mallikarjun P, Upthegrove R. Treatment of depression in schizophrenia: systematic review and meta-analysis. Br J Psychiatry. 2017;211:198–204.

    Article  PubMed  Google Scholar 

  70. Upthegrove R, Marwaha S, Birchwood M. Depression and schizophrenia: cause, consequence, or trans-diagnostic issue? Schizophr Bull. 2017;43:240–4.

    PubMed  Google Scholar 

Download references

Acknowledgements

The neuroimaging and genetic data used here are from ZIB Consortium. JZ was supported by Shanghai Municipal Science and Technology Major Project (No.2018SHZDZX01) and ZJLab, 2016YFC0906402 and National Natural Science Foundation of China (NSFC 61973086). JF was supported by the 111 Project (No. B18015), the key project of Shanghai Science and Technology (No. 16JC1420402), National Key R&D Program of China (No. 2018YFC1312900), and National Natural Science Foundation of China (NSFC 91630314). LP acknowledges salary support from the Tanna Schulich Chair of Neuroscience and Mental Health. JW was supported by National Natural Science Foundation of China (81971251), Science and Technology Commission of Shanghai Municipality (No. 19411969100, 19410710800), and Clinical Research Center at Shanghai Mental Health Center (CRC2018ZD01, CRC2018ZD04, CRC2018YB01, and CRC2019ZD02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingliang Cheng, Jie Zhang or Jianfeng Feng.

Ethics declarations

Competing interests

LP reports personal fees from Janssen Canada, Otsuka Canada, SPMM Course Limited, UK, Canadian Psychiatric Association; book royalties from Oxford University Press; investigator-initiated educational grants from Janssen Canada, Sunovion, and Otsuka Canada outside the submitted work. All other authors report no biomedical financial interests or potential conflicts of interest. None of the above-listed companies or funding agencies have had any influence on the content of this article.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Palaniyappan, L., Wu, X. et al. Resolving heterogeneity in schizophrenia through a novel systems approach to brain structure: individualized structural covariance network analysis. Mol Psychiatry 26, 7719–7731 (2021). https://doi.org/10.1038/s41380-021-01229-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01229-4

This article is cited by

Search

Quick links