Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Effects of growth hormone-releasing hormone receptor antagonist MIA-602 in mice with emotional disorders: a potential treatment for PTSD

Abstract

Anxiety and depression have been suggested to increase the risk for post-traumatic stress disorders (PTSD). A link between all these mental illnesses, inflammation and oxidative stress is also well established. Recent behavior studies by our group clearly demonstrate a powerful anxiolytic and antidepressant-like effects of a novel growth hormone releasing hormone (GHRH) antagonist of MIAMI class, MIA-690, probably related to modulatory effects on the inflammatory and oxidative status. In the present work we investigated the potential beneficial effects of MIA-602, another recently developed GHRH antagonist, in mood disorders, as anxiety and depression, and the possible brain pathways involved in its protective activity, in adult mice. MIA-602 exhibited antinflammatory and antioxidant effects in ex vivo and in vivo experimental models, inducing anxiolytic and antidepressant-like behavior in mice subcutaneously treated for 4 weeks. The beneficial effect of MIA-602 on inflammatory and oxidative status and synaptogenesis resulting in anxiolytic and antidepressant-like effects could be related by increases of nuclear factor erythroid 2-related factor 2 (Nrf2) and of brain-derived neurotrophic factor (BDNF) signaling pathways in the hippocampus and prefrontal cortex. These results strongly suggest that GHRH analogs should be tried clinically for the treatment of mood disorders including PTSD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evaluation of PGE2 and 8-iso-PGF levels and gene expression of COX-2, NF-kB and iNOS in mouse hippocampal and prefrontal cortex specimens following LPS treatment (n = 5 for each group of treatment).
Fig. 2: Analysis of anxiety-related behavior and behavioral despair in mice treated with MIA-690 (5 μg/d) or MIA-602 (5 μg/d) (n = 18 for each group of treatment).
Fig. 3: Haematoxylin-eosin staining and immunohistochemical analysis of Nrf2 and BDNF expression in brain of mice exposed to daily subcutaneous treatment for 4 weeks (n = 9 for each group of treatment).
Fig. 4: Evaluation of PGE2 and 8-iso-PGF levels and gene expression of COX-2, iNOS,  TNF-α and IL-6 in hippocampus and prefrontal cortex regions of mice exposed to daily subcutaneous treatment for 4 weeks (n = 9 for each group of treatment).
Fig. 5: Potential mechanisms of GHRH‐R antagonist in hippocampus and prefrontal cortex.

Similar content being viewed by others

References

  1. Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the national comorbidity survey replication. Arch Gen Psychiatry. 2005;62:617–27.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kalin NH. The critical relationship between anxiety and depression. Am J Psychiatry. 2020;177:365–7.

    Article  PubMed  Google Scholar 

  3. Kessler RC, Sampson NA, Berglund P, Gruber MJ, Al-Hamzawi A, Andrade L, et al. Anxious and non-anxious major depressive disorder in the World Health Organization World Mental Health Surveys. Epidemiol Psychiatr Sci. 2015;24:210–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kessler RC, Sonnega A, Bromet E, Hughes M, Nelson CB. Posttraumatic stress disorder in the National Comorbidity Survey. Arch Gen Psychiatry. 1995;52:1048–60.

    Article  CAS  Google Scholar 

  5. Dunner DL. Management of anxiety disorders: the added challenge of comorbidity. Depress Anxiety. 2001;13:57–71.

    Article  CAS  PubMed  Google Scholar 

  6. Dold M, Bartova L, Souery D, Mendlewicz J, Serretti A, Porcelli S, et al. Clinical characteristics and treatment outcomes of patients with major depressive disorder and comorbid anxiety disorders: results from a European multicenter study. J Psychiatr Res. 2017;91:1–13.

    Article  PubMed  Google Scholar 

  7. Tamagno G, Epelbaum J. Editorial: neurological and psychiatric disorders in endocrine diseases. Front Endocrinol (Lausanne). 2015;6:101.

    Google Scholar 

  8. Kokshoorn NE, Biermasz NR, Roelfsema F, Smit JW, Pereira AM, Romijn JA. GH replacement therapy in elderly GH-deficient patients: a systematic review. Eur J Endocrinol. 2011;164:657–65.

    Article  CAS  PubMed  Google Scholar 

  9. Prodam F, Caputo M, Belcastro S, Garbaccio V, Zavattaro M, Samà MT, et al. Quality of life, mood disturbances and psychological parameters in adult patients with GH deficiency. Panminerva Med. 2012;54:323–31.

    CAS  PubMed  Google Scholar 

  10. Recinella L, Chiavaroli A, Orlando G, Ferrante C, Marconi GD, Gesmundo I, et al. Antinflammatory, antioxidant, and behavioral effects induced by administration of growth hormone-releasing hormone analogs in mice. Sci Rep. 2020;10:4850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Engin E, Stellbrink J, Treit D, Dickson CT. Anxiolytic and antidepressant effects of intracerebroventricularly administered somatostatin: behavioral and neurophysiological evidence. Neuroscience. 2008;157:666–76.

    Article  CAS  PubMed  Google Scholar 

  12. Yeung M, Treit D. The anxiolytic effects of somatostatin following intra-septal and intra-amygdalar microinfusions are reversed by the selective sst2 antagonist PRL2903. Pharm Biochem Behav. 2012;101:88–92.

    Article  CAS  Google Scholar 

  13. Leone S, Shohreh R, Manippa F, Recinella L, Ferrante C, Orlando G, et al. Behavioural phenotyping of male growth hormone-releasing hormone (GHRH) knockout mice. Growth Horm IGF Res. 2014;24:192–7.

    Article  CAS  PubMed  Google Scholar 

  14. Schally AV, Zhang X, Cai R, Hare JM, Granata R, Bartoli M. Actions and potential therapeutic applications of growth hormone-releasing hormone agonists. Endocrinology. 2019;160:1600–12.

    Article  CAS  PubMed  Google Scholar 

  15. Villanova T, Gesmundo I, Audrito V, Vitale N, Silvagno F, Musuraca C, et al. Antagonists of growth hormone-releasing hormone (GHRH) inhibit the growth of human malignant pleural mesothelioma. Proc Natl Acad Sci USA. 2019;116:2226–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zarandi M, Cai R, Kovacs M, Popovics P, Szalontay L, Cui T, et al. Synthesis and structure-activity studies on novel analogs of human growth hormone releasing hormone (GHRH) with enhanced inhibitory activities on tumor growth. Peptides. 2017;89:60–70.

    Article  CAS  PubMed  Google Scholar 

  17. Recinella L, Chiavaroli A, Orlando G, Menghini L, Ferrante C, Di Cesare ML. et al. Protective effects induced by two polyphenolic liquid complexes from olive (Olea europaea, mainly Cultivar Coratina) pressing juice in rat isolated tissues challenged with LPS. Molecules. 2019;24:E3002.

    Article  PubMed  Google Scholar 

  18. Ferrante C, Orlando G, Recinella L, Leone S, Chiavaroli A, Di Nisio C, et al. Central apelin-13 administration modulates hypothalamic control of feeding. J Biol Regul Homeost Agents. 2016;30:883–8.

    CAS  PubMed  Google Scholar 

  19. Recinella L, Shohreh R, Salvatori R, Orlando G, Vacca M, Brunetti L. Effects of isolated GH deficiency on adipose tissue, feeding and adipokines in mice. Growth Horm IGF Res. 2013;23:237–42.

    Article  CAS  PubMed  Google Scholar 

  20. Leone S, Chiavaroli A, Shohreh R, Ferrante C, Ricciuti A, Manippa F, et al. Increased locomotor and thermogenic activity in mice with targeted ablation of the GHRH gene. Growth Horm IGF Res. 2015;25:80–4.

    Article  CAS  PubMed  Google Scholar 

  21. Leone S, Recinella L, Chiavaroli A, Ferrante C, Orlando G, Vacca M, et al. Behavioural phenotyping, learning and memory in young and aged growth hormone-releasing hormone-knockout mice. Endocr Connect. 2018;7:924–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chiavaroli A, Recinella L, Ferrante C, Martinotti S, Vacca M, Brunetti L, et al. Effects of central fibroblast growth factor 21 and irisin in anxiety-like behavior. J Biol Regul Homeost Agents. 2017;31:797–802.

    CAS  PubMed  Google Scholar 

  23. Leone S, Recinella L, Chiavaroli A, Martinotti S, Ferrante C, Mollica A, et al. Emotional disorders induced by Hemopressin and RVD-hemopressin(α) administration in rats. Pharm Rep. 2017;69:1247–53.

    Article  CAS  Google Scholar 

  24. Recinella L, Chiavaroli A, Ferrante C, Mollica A, Macedonio G, Stefanucci A, et al. Effects of central RVD-hemopressin(α) administration on anxiety, feeding behavior and hypothalamic neuromodulators in the rat. Pharm Rep. 2018;70:650–7.

    Article  CAS  Google Scholar 

  25. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. 6th ed. Elsevier Academy Press: 2007.

  26. Di Giulio C, Marconi GD, Zara S, Di Tano A, Porzionato A, Pokorski M, et al. Selective expression of galanin in neuronal-like cells of the human carotid body. Adv Exp Med Biol. 2015;860:315–23.

    Article  PubMed  Google Scholar 

  27. Veschi S, De Lellis L, Florio R, Lanuti P, Massucci A, Tinari N, et al. Effects of repurposed drug candidates nitroxoline and nelfinavir as single agents or in combination with erlotinib in pancreatic cancer cells. J Exp Clin Cancer Res. 2018;37:236.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real- time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  29. Barabutis N, Schally AV, Siejka A. P53, GHRH, inflammation and cancer. EBioMed. 2018;37:557–62.

    Article  Google Scholar 

  30. Barabutis N, Schally AV. Antioxidant activity of growth hormone-releasing hormone antagonists in LNCaP human prostate cancer line. Proc Natl Acad Sci USA. 2008;105:20470–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Popovics P, Cai R, Sha W, Rick FG, Schally AV. Growth hormone-releasing hormone antagonists reduce prostatic enlargement and inflammation in carrageenan-induced chronic prostatitis. Prostate. 2018;78:970–80.

    Article  CAS  PubMed  Google Scholar 

  32. Qin YJ, Chan SO, Chong KK, Li BF, Ng TK, Yip YW, et al. Antagonist of GH-releasing hormone receptors alleviates experimental ocular inflammation. Proc Natl Acad Sci USA. 2014;111:18303–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ren JL, Yu QX, Ma D, Liang WC, Leung PY, Ng TK, et al. Growth hormone-releasing hormone receptor mediates cytokine production in ciliary and iris epithelial cells during LPS-induced ocular inflammation. Exp Eye Res. 2019;181:277–84.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang C, Cai R, Lazerson A, Delcroix G, Wangpaichitr M, Mirsaeidi M, et al. Growth hormone-releasing hormone receptor antagonist modulates lung inflammation and fibrosis due to bleomycin. Lung. 2019;197:541–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Banks WA, Morley JE, Farr SA, Price TO, Ercal N, Vidaurre I, et al. Effects of a growth hormone-releasing hormone antagonist on telomerase activity, oxidative stress, longevity, and aging in mice. Proc Natl Acad Sci USA. 2010;107:22272–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fahrenholtz CD, Rick FG, Garcia MI, Zarandi M, Cai R, Block NL, et al. Preclinical efficacy of growth hormone-releasing hormone antagonists for androgen-dependent and castration-resistant human prostate cancer. Proc Natl Acad Sci USA. 2014;111:1084–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vitiello MV, Moe KE, Merriam GR, Mazzoni G, Buchner DH, Schwartz RS. Growth hormone releasing hormone improves the cognition of healthy older adults. Neurobiol Aging. 2006;27:318–23.

    Article  CAS  PubMed  Google Scholar 

  38. Baker LD, Barsness SM, Borson S, Merriam GR, Friedman SD, Craft S, et al. Effects of growth hormone–releasing hormone on cognitive function in adults with mild cognitive impairment and healthy older adults: results of a controlled trial. Arch Neurol. 2012;69:1420–9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kalueff AV, Wheaton M, Murphy DL. What’s wrong with my mouse model? Advances and strategies in animal modeling of anxiety and depression. Behav Brain Res. 2007;179:1–18.

    Article  CAS  PubMed  Google Scholar 

  40. Matsubara S, Sato M, Mizobuchi M, Niimi M, Takahara J. Differential gene expression of growth hormone (GH)-releasing hormone (GRH) and GRH receptor in various rat tissues. Endocrinology. 1995;136:4147–50.

    Article  CAS  PubMed  Google Scholar 

  41. Müller EE, Locatelli V, Cocchi D. Neuroendocrine control of growth hormone secretion. Physiol Rev. 1999;79:511–607.

    Article  PubMed  Google Scholar 

  42. Hallschmid M, Wilhelm I, Michel C, Perras B, Born J. A role for central nervous growth hormone-releasing hormone signaling in the consolidation of declarative memories. PLoS One. 2011;6:e23435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Telegdy G, Tanaka M, Schally AV. Effects of the growth hormone-releasing hormone (GH-RH) antagonist on brain functions in mice. Behav Brain Res. 2011;24:155–8.

    Article  Google Scholar 

  44. Telegdy G, Schally AV. Involvement of neurotransmitters in the action of growth hormone-releasing hormone antagonist on passive avoidance learning. Behav Brain Res. 2012;233:326–30.

    Article  CAS  PubMed  Google Scholar 

  45. Telegdy G, Schally AV. Neurotransmitter-mediated action of an antagonist of growth hormone-releasing hormone on anxiolysis in mice. Behav Brain Res. 2012;233:232–6.

    Article  CAS  PubMed  Google Scholar 

  46. Jaszberenyi M, Rick FG, Szalontay L, Block NL, Zarandi M, Cai R, et al. Beneficial effects of novel antagonists of GHRH in different models of Alzheimer’s disease. Aging (Albany NY). 2012;4:755–67.

    Article  CAS  Google Scholar 

  47. Arwert LI, Veltman DJ, Deijen JB, van Dam PS, Delemarre-van deWaal HA, Drent ML. Growth hormone deficiency and memory functioning in adults visualized by functional magnetic resonance imaging. Neuroendocrinology. 2005;82:32–40.

    Article  CAS  PubMed  Google Scholar 

  48. Engin E, Treit D. Anxiolytic and antidepressant actions of somatostatin: the role of sst2 and sst3 receptors. Psychopharmacol (Berl). 2009;206:281–9.

    Article  CAS  Google Scholar 

  49. Genzel L, Dresler M, Cornu M, Jäger E, Konrad B, Adamczyk M, et al. Medial prefrontal-hippocampal connectivity and motor memory consolidation in depression and schizophrenia. Biol Psychiatry. 2015;77:177–86.

    Article  PubMed  Google Scholar 

  50. Godsil BP, Kiss JP, Spedding M, Jay TM. The hippocampal-prefrontal pathway: the weak link in psychiatric disorders? Eur Neuropsychopharmacol. 2013;23:1165–81.

    Article  CAS  PubMed  Google Scholar 

  51. Li M, Long C, Yang L. Hippocampal-prefrontal circuit and disrupted functional connectivity in psychiatric and neurodegenerative disorders. Biomed Res Int. 2015;2015:810548.

    PubMed  PubMed Central  Google Scholar 

  52. Fenster RJ, Lebois LAM, Ressler KJ, Suh J. Brain circuit dysfunction in post-traumatic stress disorder: from mouse to man. Nat Rev Neurosci. 2018;19:535–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mendez-David I, Tritschler L, El Ali Z, Damiens MH, Pallardy M, David DJ, et al. Nrf2-signaling and BDNF: A new target for the antidepressant-like activity of chronic fluoxetine treatment in a mouse model of anxiety/depression. Neurosci Lett. 2015;597:121–6.

    Article  CAS  PubMed  Google Scholar 

  54. Green CR, Corsi-Travali S, Neumeister A. The role of BDNF-TrkB signaling in the pathogenesis of PTSD. J Depress Anxiety. 2013;2013:006.

    PubMed  PubMed Central  Google Scholar 

  55. Prasadan KN, Bondy SC. Common biochemical defects linkage between post-traumatic stress disorders, mild traumatic brain injury (TBI) and penetrating TBI. Brain Res. 2015;1599:103–14.

    Article  Google Scholar 

  56. Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharm Toxicol. 2007;47:89–116.

    Article  CAS  Google Scholar 

  57. Kobayashi EH, Suzuki T, Funayama R, Nagashima T, Hayashi M, Sekine H, et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun. 2016;7:11624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ma Q. Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharm Toxicol. 2013;53:401–26.

    Article  CAS  Google Scholar 

  59. Hashimoto K. Essential role of Keap1-Nrf2 signaling in mood disorders: overview and future perspective. Front Pharm. 2018;9:1182.

    Article  CAS  Google Scholar 

  60. Martín-de-Saavedra MD, Budni J, Cunha MP, Gómez-Rangel V, Lorrio S, Del Barrio L, et al. Nrf2 participates in depressive disorders through an anti-inflammatory mechanism. Psychoneuroendocrinology. 2013;38:2010–22.

    Article  PubMed  Google Scholar 

  61. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010;67:446–57.

    Article  CAS  PubMed  Google Scholar 

  62. Howren MB, Lamkin DM, Suls J. Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med. 2009;71:171–86.

    Article  CAS  PubMed  Google Scholar 

  63. Pace TW, Wingenfeld K, Schmidt I, Meinlschmidt G, Hellhammer DH, Heim CM. Increased peripheral NF-kappaB pathway activity in women with childhood abuse-related posttraumatic stress disorder. Brain Behav Immun. 2012;26:13–7.

    Article  CAS  PubMed  Google Scholar 

  64. Ogłodek EA, Just MJ. The association between inflammatory markers (iNOS, HO-1, IL-33, MIP-1β) and depression with and without posttraumatic stress disorder. Pharm Rep. 2018;70:1065–72.

    Article  Google Scholar 

  65. Schinder AF, Poo M. The neurotrophin hypothesis for synaptic plasticity. Trends Neurosci. 2000;23:639–45.

    Article  CAS  PubMed  Google Scholar 

  66. Reinhart V, Bove S, Volfson D, Lewis D, Kleiman R, Lanz T. Evaluation of TrkB and BDNF transcripts in prefrontal cortex, hippocampus, and striatum from subjects with schizophrenia, bipolar disorder, and major depressive disorder. Neurobiol Dis. 2015;77:220–7.

    Article  CAS  PubMed  Google Scholar 

  67. Rakofsky J, Ressler K, Dunlop B. BDNF function as a potential mediator of bipolar disorder and post-traumatic stress disorder comorbidity. Mol Psychiatry. 2012;17:22–35.

    Article  CAS  PubMed  Google Scholar 

  68. Matrisciano F, Bonaccorso S, Ricciardi A, Scaccianoce S, Panaccione I, Wang L, et al. Changes in BDNF serum levels in patients with major depression disorder (MDD) after 6 months treatment with sertraline, escitalopram, or venlafaxine. J Psychiatr Res. 2009;43:247–54.

    Article  PubMed  Google Scholar 

  69. Saarelainen T, Hendolin P, Lucas G, Koponen E, Sairanen M, MacDonald E, et al. Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J Neurosci. 2003;23:349–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhou C, Zhong J, Zou B, Fang L, Chen J, Deng X, et al. Meta-analyses of comparative efficacy of antidepressant medications on peripheral BDNF concentration in patients with depression. PLoS One. 2017;12:e0172270.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Binder DK, Scharfman HE. Brain-derived neurotrophic factor. Growth Factors. 2004;22:123–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Verbitsky A, Dopfel D, Zhang N. Rodent models of post-traumatic stress disorder: behavioral assessment. Transl Psychiatry. 2020;10:132.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the University G. d’Annunzio of Chieti FAR 2020 (to Sheila Leone) and FAR 2020 (to Lucia Recinella). Work in Miami was supported by the Medical Research Service of the Department of Veterans Affairs and by the University of Miami Miller School of Medicine (to Andrew V. Schally).

Author information

Authors and Affiliations

Authors

Contributions

LR, AVS, LB and SL conceived and coordinated the study and wrote the paper; AC (Annalisa Chiavaroli) performed ex vivo studies, in vivo studies and gene expression analysis and analyzed the data; GO, CF, IG and RG analyzed the data; SV and AC (Alessandro Cama) performed western blot analysis and analyzed the data; GDM and FD performed haematoxylin-eosin staining/light microscopy analysis and immunohistochemistry; RC, WS and AVS contributed new reagents. All authors revised and approved the final version of manuscript.

Corresponding authors

Correspondence to Luigi Brunetti or Sheila Leone.

Ethics declarations

Competing interests

AVS and RC are listed as co-inventors on patents for GHRH antagonists, assigned to the University of Miami, Miami, FL, and the Veterans Affairs Medical Center, Miami, FL. LR, AC, GO, CF, SV, AC, GDM, FD, IG, RG, WS, LB, and SL declare no potential conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Recinella, L., Chiavaroli, A., Orlando, G. et al. Effects of growth hormone-releasing hormone receptor antagonist MIA-602 in mice with emotional disorders: a potential treatment for PTSD. Mol Psychiatry 26, 7465–7474 (2021). https://doi.org/10.1038/s41380-021-01228-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01228-5

Search

Quick links