Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The GNE-KLH anti-cocaine vaccine protects dams and offspring from cocaine-induced effects during the prenatal and lactating periods

A Correction to this article was published on 22 September 2021

This article has been updated

Abstract

Protecting children from prenatal cocaine exposure is a significant challenge for physicians and childbearing women with cocaine use disorder. Cocaine use is highly prevalent among reproductive-aged women and prenatal cocaine exposure produces obstetric, foetal neurodevelopmental and long-term behavioural impairments. Cocaine crosses the maternal and foetal blood-brain barrier and the placenta by diffusion. The best approach to prevent prenatal cocaine exposure is to stop cocaine use. However, only 25% of cocaine users can discontinue their use during pregnancy. Anti-cocaine vaccination decreases cocaine passage through the blood-brain barrier. This study describes an innovative approach for preventing prenatal cocaine exposure using the GNE-KLH anti-cocaine vaccine, a novel use for the named anti-drug vaccines. Here, we show that anti-cocaine vaccination with GNE-KLH produced and maintained anti-cocaine IgG antibody titres and avidity during pregnancy. These antibodies protected the pregnant rats and their pups against prenatal cocaine damage during pregnancy until weaning. The present work is the first preclinical evidence of the efficacy of an innovative mechanism to prevent prenatal cocaine exposure damage, a worldwide public health care issue. In the future, this mechanism may be useful in pregnant women with cocaine use disorder. Further studies to understand the mechanisms of how anti-cocaine antibodies exert their protective effects in pregnancy are warranted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Results from the first experiment of vaccination of female rats in the gestational period.
Fig. 2: Second experiment timeline and dam’s results.
Fig. 3: Second experiment offspring’s results.

Similar content being viewed by others

Data availability

The datasets generated and analysed in this study are available from the corresponding author upon request.

Change history

References

  1. Krishna RB, Levitz M, Dancis J. Transfer of cocaine by the perfused human placenta: the effect of binding to serum proteins. Am J Obstet Gynecol. 1993;169:1418–23.

    Article  CAS  PubMed  Google Scholar 

  2. Sheinkopf SJ, Lagasse LL, Lester BM, Liu J, Seifer R, Bauer CR, et al. Prenatal cocaine exposure: cardiorespiratory function and resilience. Ann N Y Acad Sci. 2006;1094:354–8.

    Article  PubMed  Google Scholar 

  3. Sharma A, Plessinger MA, Sherer DM, Liang CS, Miller RK, Woods JR Jr. Pregnancy enhances cardiotoxicity of cocaine: role of progesterone. Toxicol Appl Pharm. 1992;113:30–5.

    Article  CAS  Google Scholar 

  4. Dos Santos JF, de Melo Bastos Cavalcante C, Barbosa FT, Gitai DLG, Duzzioni M, Tilelli CQ, et al. Maternal, fetal and neonatal consequences associated with the use of crack cocaine during the gestational period: a systematic review and meta-analysis. Arch Gynecol Obstet. 2018;298:487–503.

    Article  PubMed  Google Scholar 

  5. Chasnoff IJ, Lewis DE, Squires L. Cocaine intoxication in a breast-fed infant. Pediatrics. 1987;80:836–8.

    CAS  PubMed  Google Scholar 

  6. American Academy of Pediatrics Committee on D. Transfer of drugs and other chemicals into human milk. Pediatrics. 2001;108:776–89.

    Article  Google Scholar 

  7. Richardson GA, De Genna NM, Goldschmidt L, Larkby C, Donovan JE. Prenatal cocaine exposure: direct and indirect associations with 21-year-old offspring substance use and behavior problems. Drug Alcohol Depend. 2019;195:121–31.

    Article  CAS  PubMed  Google Scholar 

  8. Cressman AM, Koren G, Pupco A, Kim E, Ito S, Bozzo P. Maternal cocaine use during breastfeeding. Can Fam Phys. 2012;58:1218–9.

    Google Scholar 

  9. Latuskie KA, Leibson T, Andrews NCZ, Motz M, Pepler DJ, Ito S. Substance Use in Pregnancy Among Vulnerable Women Seeking Addiction and Parenting Support. Int J Ment Health Addict. 2019;17:137–50.

    Article  Google Scholar 

  10. Orson FM, Wang R, Brimijoin S, Kinsey BM, Singh RA, Ramakrishnan M, et al. The future potential for cocaine vaccines. Expert Opin Biol Ther. 2014;14:1271–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Martell BA, Mitchell E, Poling J, Gonsai K, Kosten TR. Vaccine pharmacotherapy for the treatment of cocaine dependence. Biol Psychiatry. 2005;58:158–64.

    Article  CAS  PubMed  Google Scholar 

  12. Zalewska-Kaszubska J. Is immunotherapy an opportunity for effective treatment of drug addiction? Vaccine. 2015;33:6545–51.

    Article  CAS  PubMed  Google Scholar 

  13. Skolnick P. Biologic Approaches to Treat Substance-Use Disorders. Trends Pharm Sci. 2015;36:628–35.

    Article  CAS  PubMed  Google Scholar 

  14. Carrera MR, Ashley JA, Zhou B, Wirsching P, Koob GF, Janda KD. Cocaine vaccines: antibody protection against relapse in a rat model. Proc Natl Acad Sci USA. 2000;97:6202–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Haney M, Gunderson EW, Jiang H, Collins ED, Foltin RW. Cocaine-specific antibodies blunt the subjective effects of smoked cocaine in humans. Biol Psychiatry. 2010;67:59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Martell BA, Orson FM, Poling J, Mitchell E, Rossen RD, Gardner T, et al. Cocaine vaccine for the treatment of cocaine dependence in methadone-maintained patients: a randomized, double-blind, placebo-controlled efficacy trial. Arch Gen Psychiatry. 2009;66:1116–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Medawar P. Some immunological and endocrinological problems raised by the evolution of viviparity in vertebrates. Symp Soc Exp Biol. 1952;7:320–38.

    Google Scholar 

  18. Dhillon NK, Williams R, Peng F, Tsai YJ, Dhillon S, Nicolay B, et al. Cocaine-mediated enhancement of virus replication in macrophages: implications for human immunodeficiency virus-associated dementia. J Neurovirol. 2007;13:483–95.

    Article  CAS  PubMed  Google Scholar 

  19. Friedman H, Pross S, Klein TW. Addictive drugs and their relationship with infectious diseases. FEMS Immunol Med Microbiol. 2006;47:330–42.

    Article  CAS  PubMed  Google Scholar 

  20. Irwin MR, Olmos L, Wang M, Valladares EM, Motivala SJ, Fong T, et al. Cocaine dependence and acute cocaine induce decreases of monocyte proinflammatory cytokine expression across the diurnal period: autonomic mechanisms. J Pharm Exp Ther. 2007;320:507–15.

    Article  CAS  Google Scholar 

  21. Pellegrino TC, Dunn KL, Bayer BM. Mechanisms of cocaine-induced decreases in immune cell function. Int Immunopharmacol. 2001;1:665–75.

    Article  CAS  PubMed  Google Scholar 

  22. Xu W, Flick T, Mitchel J, Knowles C, Ault K. Cocaine effects on immunocompetent cells: an observation of in vitro cocaine exposure. Int J Immunopharmacol. 1999;21:463–72.

    Article  CAS  PubMed  Google Scholar 

  23. Zaparte A, Schuch JB, Viola TW, Baptista TAS, Beidacki AS, do Prado CH, et al. Cocaine Use Disorder Is Associated With Changes in Th1/Th2/Th17 Cytokines and Lymphocytes Subsets. Front Immunol. 2019;10:2435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Coelho MPP, Diniz KGD, Bering T, Ferreira L, Vieira DA, Castro MRC, et al. Skeletal muscle mass index and phase angle are decreased in individuals with dependence on alcohol and other substances. Nutrition. 2020;71:110614.

    Article  PubMed  Google Scholar 

  25. Cai X, Whitfield T, Hixon MS, Grant Y, Koob GF, Janda KD. Probing active cocaine vaccination performance through catalytic and noncatalytic hapten design. J Med Chem. 2013;56:3701–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lockner JW, Eubanks LM, Choi JL, Lively JM, Schlosburg JE, Collins KC, et al. Flagellin as carrier and adjuvant in cocaine vaccine development. Mol Pharm. 2015;12:653–62.

    Article  CAS  PubMed  Google Scholar 

  27. Kimishima A, Olson ME, Natori Y, Janda KD. Efficient Syntheses of Cocaine Vaccines and Their in Vivo Evaluation. ACS Med Chem Lett. 2018;9:411–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sithisarn T, Bada HS, Dai H, Randall DC, Legan SJ. Effects of perinatal cocaine exposure on open field behavior and the response to corticotropin releasing hormone (CRH) in rat offspring. Brain Res. 2011;1370:136–44.

    Article  CAS  PubMed  Google Scholar 

  29. Paul HA, Hallam MC, Reimer RA. Milk Collection in the Rat Using Capillary Tubes and Estimation of Milk Fat Content by Creamatocrit. J Vis Exp. 2015;(106):e53476.

  30. Aluvihare VR, Kallikourdis M, Betz AG. Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol. 2004;5:266–71.

    Article  CAS  PubMed  Google Scholar 

  31. Jorgensen N, Persson G, Hviid TVF. The Tolerogenic Function of Regulatory T Cells in Pregnancy and Cancer. Front Immunol. 2019;10:911.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Choi SJ, Mazzio E, Kolta MG, Soliman KF. Prenatal cocaine exposure affects postnatal dopaminergic systems in various regions of the rat brain. Ann N Y Acad Sci. 1998;844:293–302.

    Article  CAS  PubMed  Google Scholar 

  33. Choi SJ, Mazzio E, Soliman KF. The effects of gestational cocaine exposure on pregnancy outcome, postnatal development, cognition and locomotion in rats. Ann N Y Acad Sci. 1998;844:324–35.

    Article  CAS  PubMed  Google Scholar 

  34. Cochrane C, Malcolm R, Brewerton T. The role of weight control as a motivation for cocaine abuse. Addict Behav. 1998;23:201–7.

    Article  CAS  PubMed  Google Scholar 

  35. Tonkiss J, Shultz PL, Shumsky JS, Blease SJ, Kemper TL, Galler JR. The effects of cocaine exposure prior to and during pregnancy in rats fed low or adequate protein diets. Neurotoxicol Teratol. 1995;17:593–600.

    Article  CAS  PubMed  Google Scholar 

  36. Dow-Edwards D, Iijima M, Stephenson S, Jackson A, Weedon J. The effects of prenatal cocaine, post-weaning housing and sex on conditioned place preference in adolescent rats. Psychopharmacol (Berl). 2014;231:1543–55.

    Article  CAS  Google Scholar 

  37. De Giovanni N, Marchetti D. Cocaine and its metabolites in the placenta: a systematic review of the literature. Reprod Toxicol. 2012;33:1–14.

    Article  PubMed  Google Scholar 

  38. Bauer CR, Langer JC, Shankaran S, Bada HS, Lester B, Wright LL, et al. Acute neonatal effects of cocaine exposure during pregnancy. Arch Pediatr Adolesc Med. 2005;159:824–34.

    Article  PubMed  Google Scholar 

  39. Schenker S, Yang Y, Johnson RF, Downing JW, Schenken RS, Henderson GI, et al. The transfer of cocaine and its metabolites across the term human placenta. Clin Pharm Ther. 1993;53:329–39.

    Article  CAS  Google Scholar 

  40. Behnke M, Smith VC. Prenatal substance abuse: short and long-term effects on the exposed fetus. Peditrics. 2013;131:e1009–1024.

    Article  Google Scholar 

  41. Benveniste H, Fowler JS, Rooney WD, Scharf BA, Backus WW, Izrailtyan I, et al. Cocaine is pharmacologically active in the nonhuman primate fetal brain. Proc Natl Acad Sci USA. 2010;107:1582–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Iso A, Nakahara K, Barr GA, Cooper TB, Morishima HO. Long-term intravenous perinatal cocaine exposure on the mortality of rat offspring. Neurotoxicol Teratol. 2000;22:165–73.

    Article  CAS  PubMed  Google Scholar 

  43. Strano-Rossi S. Methods used to detect drug abuse in pregnancy: a brief review. Drug Alcohol Depend. 1999;53:257–71.

    Article  CAS  PubMed  Google Scholar 

  44. Gray T, Huestis M. Bioanalytical procedures for monitoring in utero drug exposure. Anal Bioanal Chem. 2007;388:1455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Simone C, Derewlany LO, Oskamp M, Johnson D, Knie B, Koren G. Acetylcholinesterase and butyrylcholinesterase activity in the human term placenta: implications for fetal cocaine exposure. J Lab Clin Med. 1994;123:400–6.

    CAS  PubMed  Google Scholar 

  46. Van de Perre P. Transfer of antibody via mother’s milk. Vaccine. 2003;21:3374–6.

    Article  PubMed  Google Scholar 

  47. van de Vijver KK, Hokke CH, van Remoortere A, Jacobs W, Deelder AM, Van Marck EA. Glycans of Schistosoma mansoni and keyhole limpet haemocyanin induce hepatic granulomas in vivo. Int J Parasitol. 2004;34:951–61.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Mr Hugo Leal and Mr Cloves Benevides, and Professors Renato Cardoso and Florence Thibaut for supporting this project.

Funding

This study was partially supported by FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais, Brazil) under grants APQ-02572-16 and APQ-04347-17; the National Council for Scientific and Technological Development, CNPq (Conselho Nacional de Desenvolvimento Tecnológico, Brazil) under grant 313944/2018-0; the Emenda Parlamentar Federal under grant 23970012; and Secretaria Nacional de Política sobre Drogas under grant 01/2017. Supported by the Pró-Reitoria de Pesquisa (PRPq) da Universidade Federal de Minas Gerais.

Author information

Authors and Affiliations

Authors

Contributions

FDG and MCLN contributed to the conceptualisation, fund acquisition, project administration, validation, formal analysis of data and drafting of the work. PSAA, RLGP, SMG, BS, BRDA, LPES and KDR contributed to the conceptualisation, formal analysis and drafting of the work. GACG and AF contributed to the conceptualisation, formulation design and review of the work.

Corresponding author

Correspondence to Frederico Duarte Garcia.

Ethics declarations

Competing interests

AF, FDG, GACG, and MCLN have stocks and are members of the advisory board of Hargon Ltd., a company dedicated to the development of new treatments for mental health.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: There is “Supported by the Pró-Reitoria de Pesquisa (PRPq) da Universidade Federal de Minas Gerais” text added in funding.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Almeida Augusto, P.S., Pereira, R.L.G., Caligiorne, S.M. et al. The GNE-KLH anti-cocaine vaccine protects dams and offspring from cocaine-induced effects during the prenatal and lactating periods. Mol Psychiatry 26, 7784–7791 (2021). https://doi.org/10.1038/s41380-021-01210-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01210-1

Search

Quick links