Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The ERK phosphorylation levels in the amygdala predict anxiety symptoms in humans and MEK/ERK inhibition dissociates innate and learned defensive behaviors in rats

Abstract

We demonstrate that the rate of extracellular signal-related kinase phosphorylation (P-ERK1,2/Total-ERK1,2) in the amygdala is negatively and independently associated with anxiety symptoms in 23 consecutive patients with drug-resistant mesial temporal lobe epilepsy that was surgically treated. In naive Wistar rats, the P-ERK1,2/Total-ERK1,2 ratio in the amygdala correlates negatively with innate anxiety-related behavior on the elevated plus maze (n = 20) but positively with expression of defensive-learned behavior (i.e., freezing) on Pavlovian aversive (fear) conditioning (n = 29). The microinfusion of ERK1/2 inhibitor (FR180204, n = 8–13/group) or MEK inhibitor (U0126, n = 8–9/group) into the basolateral amygdala did not affect anxiety-related behavior but impaired the evocation (anticipation) of conditioned-defensive behavior (n = 9–11/group). In conclusion, the P-ERK1,2/Total-ERK1,2 ratio in the amygdala predicts anxiety in humans and the innate anxiety- and conditioned freezing behaviors in rats. However, the ERK1/2 in the basolateral AMY is only required for the expression of defensive-learned behavior. These results support a dissociate ERK-dependent mechanism in the amygdala between innate anxiety-like responses and the anticipation of learned-defensive behavior. These findings have implications for understanding highly prevalent psychiatric disorders related to the defensive circuit manifested by anxiety and fear.

Highlights

  • The P-ERK1,2/Total-ERK1,2 ratio in the amygdala (AMY) correlates negatively with anxiety symptoms in patients with mesial temporal lobe epilepsy.

  • The P-ERK1,2/Total-ERK1,2 in the amygdala correlates negatively with the anxiety-like behavior and positively with freezing-learned behavior in naive rats.

  • ERK1,2 in the basolateral amygdala is required for learned-defensive but not for the anxiety-like behavior expression in rats.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Pearson’s correlation between the neurochemical parameter levels according to the brain areas and the HADS anxiety scores (n = 23).
Fig. 2: The P-ERK/Total-ERK levels in the AMY correlates negatively with the anxiety-like behavior, but pharmacological BLA inhibition of MEK/ERK did not change its behavior in rats.
Fig. 3: The P-ERK/Total-ERK levels in the AMY correlates positively with freezing behavior and MEK/ERK activation into the BLA is required for learned-defensive rats.

References

  1. 1.

    Kessler RC, Angermeyer M, Anthony JC, Graaf DE, Demyttenaere R, Gasquet KI. et al. Lifetime prevalence and age-of-onset distributions of mental disorders in the World Health Organization’s World Mental Health Survey Initiative. World Psychiatry. 2007;6:168–76.

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Steimer T. Animal models of anxiety disorders in rats and mice: some conceptual issues. Dialogues Clin Neurosci. 2011;13:495–506.

    PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Sylvers P, Lilienfeld SO, LaPrairie JL. Differences between trait fear and trait anxiety: implications for psychopathology. Clin Psychol Rev. 2011;31:122–37.

    PubMed  Article  Google Scholar 

  4. 4.

    LeDoux JE, Pine DS. Using neuroscience to help understand fear and anxiety: a two-system framework. Am J Psychiatry. 2016;173:1083–93.

    PubMed  Article  Google Scholar 

  5. 5.

    Perusini JN, Fanselow MS. Neurobehavioral perspectives on the distinction between fear and anxiety. Learn Mem. 2015;22:417–25.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Sartori SB, Landgraf R, Singewald N. The clinical implications of mouse models of enhanced anxiety. Future Neurol 2011;6:531–71.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Kandel ER. The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol Brain. 2012;5:14.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Medina JH, Viola H. ERK1/2: a key cellular component for the formation, retrieval, reconsolidation and persistence of memory. Front Mol Neurosci. 2018;11:361.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Rodrigues SM, Farb CR, Bauer EP, LeDoux JE, Schafe GE. Pavlovian fear conditioning regulates Thr286 autophosphorylation of Ca2+/calmodulin-dependent protein kinase II at lateral amygdala synapses. J Neurosci. 2004;24:3281–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Chen C, Rainnie DG, Greene RW, Tonegawa S. Abnormal fear response and aggressive behavior in mutant mice deficient for alpha-calcium-calmodulin kinase II. Science. 1994;266:291–4.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Hasegawa S, Furuichi T, Yoshida T, Endoh K, Kato K, Sado M, et al. Transgenic up-regulation of alpha-CaMKII in forebrain leads to increased anxiety-like behaviors and aggression. Mol Brain. 2009;2:6.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  12. 12.

    Schacher S, Castellucci VF, Kandel ER. cAMP evokes long-term facilitation in Aplysia sensory neurons that requires new protein synthesis. Science. 1988;240:1667–9.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Bottaotta P, Demmou L, Kasugai Y, Markovic M, Xu C, Fadok JP, et al. Corrigendum: Regulating anxiety with extrasynaptic inhibition. Nat Neurosci. 2015;18:1862–1862.

    Article  CAS  Google Scholar 

  14. 14.

    Keil MF, Briassoulis G, Stratakis CA, Wu TJ. Protein kinase A and anxiety-related behaviors: a mini-review. Front Endocrinol (Lausanne). 2016;7:83.

    Article  Google Scholar 

  15. 15.

    Yang L, Shi LJ, Yu J, Zhang YQ. Activation of protein kinase A in the amygdala modulates anxiety-like behaviors in social defeat exposed mice. Mol Brain. 2016;9:3.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  16. 16.

    Buscà R, Pouysségur J, Lenormand P. ERK1 and ERK2 Map kinases: specific roles or functional redundancy? Front Cell Dev Biol. 2016;4:53.

    PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Thomas GM, Huganir RL. MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci. 2004;5:173–83.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Duman RS, Voleti B. Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends Neurosci. 2012;35:47–56.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Apazoglou K, Farley S, Gorgievski V, Belzeaux R, Lopez JP, Grenier J, et al. Antidepressive effects of targeting ELK-1 signal transduction. Nat Med. 2018;24:591–7.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Malki K, Pain O, Tosto MG, Du Rietz E, Carboni L, Schalkwyk LC. Identification of genes and gene pathways associated with major depressive disorder by integrative brain analysis of rat and human prefrontal cortex transcriptomes. Transl Psychiatry. 2015;5:e519–e519.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Ailing F, Fan L, Li S, Manji S. Role of extracellular signal-regulated kinase signal transduction pathway in anxiety. J Psychiatr Res. 2008;43:55–63.

    PubMed  Article  Google Scholar 

  22. 22.

    Maldonado NM, Espejo PJ, Martijena ID, Molina VA. Activation of ERK2 in basolateral amygdala underlies the promoting influence of stress on fear memory and anxiety: influence of midazolam pretreatment. Eur Neuropsychopharmacol. 2014;24:262–270.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Iñiguez SD, Vialou V, Warren BL, Cao JL, Alcantara LF, Davis LC, et al. Extracellular signal-regulated kinase-2 within the ventral tegmental area regulates responses to stress. J Neurosci. 2010;30:7652–63.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  24. 24.

    Shen CP, Tsimberg Y, Salvadore C, Meller E. Activation of Erk and JNK MAPK pathways by acute swim stress in rat brain regions. BMC Neurosci. 2004;5:36.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  25. 25.

    Sierra-Fonseca JA, Parise LF, Flores-Ramirez FJ, Robles EH, Garcia-Carachure I, Iñiguez SD. Dorsal hippocampus ERK2 signaling mediates anxiolytic-related behavior in male rats. Chronic Stress (Thousand Oaks). 2019;3:2470547019897030.

  26. 26.

    Tovote P, Fadok JP, Lüthi A. Neuronal circuits for fear and anxiety. Nat Rev Neurosci. 2015;16:317–31.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Belzung C, Philippot P. Anxiety from a phylogenetic perspective: is there a qualitative difference between human and animal anxiety? Neural Plast. 2007;2007:59676–17.

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Strange BA, Witter MP, Lein ES, Moser EI. Functional organization of the hippocampal longitudinal axis. Nat Rev Neurosci. 2014;15:655–69.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    LeDoux JE. Coming to terms with fear. Proc Natl Acad Sci USA. 2014;111:2871–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Pauli C, Schwarzbold ML, Diaz AP, de Oliveira Thais MER, Kondageski C, Linhares MN, et al. Predictors of meaningful improvement in quality of life after temporal lobe epilepsy surgery: a prospective study. Epilepsia. 2017;58:755–63.

    PubMed  Article  Google Scholar 

  31. 31.

    Blümcke I, Thom M, Aronica E, Armstrong DD, Bartolomei F, Bernasconi A, et al. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a Task Force report from the ILAE Commission on Diagnostic Methods. Epilepsia 2013;54:1315–29.

    PubMed  Article  Google Scholar 

  32. 32.

    Kowiański P, Lietzau G, Czuba E, Waśkow M, Steliga A, Moryś J. BDNF: a key factor with multipotent impact on brain signaling and synaptic plasticity. Cell Mol Neurobiol. 2018;38:579–93.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Schafe GE, Atkins CM, Swank MW, Bauer EP, Sweatt JD, LeDoux JE. Activation of ERK/MAP kinase in the amygdala is required for memory consolidation of pavlovian fear conditioning. J Neurosci. 2000;20:8177–87.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Besnard A, Caboche J, Laroche S. Recall and reconsolidation of contextual fear memory: differential control by ERK and Zif268 expression dosage. PLoS ONE. 2013;8:e72006.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Zamorano C, Fernández-Albert J, Storm DR, Carné X, Sindreu C. Memory retrieval re-activates Erk1/2 signaling in the same set of CA1 neurons recruited during conditioning. Neuroscience. 2018;370:101–111.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Wu SL, Hsu LS, Tu WT, Wang WF, Huang YT, Pawlak CR, Ho YJ. Effects of D-cycloserine on the behavior and ERK activity in the amygdala: role of individual anxiety levels. Behav Brain Res. 2008;187:246–253.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Chen X, Garelick MG, Wang H, Lil V, Athos J, Storm DR. PI3 kinase signaling is required for retrieval and extinction of contextual memory. Nat Neurosci. 2005;8:925–31.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Lee JL, Hynds RE. Divergent cellular pathways of hippocampal memory consolidation and reconsolidation. Hippocampus 2013;23:233–44.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Schiff HC, Johansen JP, Hou M, Bush DE, Smith EK, Klein JE, et al. β-Adrenergic receptors regulate the acquisition and consolidation phases of aversive memory formation through distinct, temporally regulated signaling pathways. Neuropsychopharmacology 2017;42:895–903.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Duvarci S, Nader K, LeDoux JE. Activation of extracellular signal-regulated kinase- mitogen-activated protein kinase cascade in the amygdala is required for memory reconsolidation of auditory fear conditioning. Eur J Neurosci. 2005;21:283–9.

    PubMed  Article  Google Scholar 

  41. 41.

    Trifilieff P, Calandreau L, Herry C, Mons N, Micheau J. Biphasic ERK1/2 activation in both the hippocampus and amygdala may reveal a system consolidation of contextual fear memory. Neurobiol Learn Mem. 2007;88:424–34.

    PubMed  Article  Google Scholar 

  42. 42.

    Besnard A, Laroche S, Caboche J. Comparative dynamics of MAPK/ERK signalling components and immediate early genes in the hippocampus and amygdala following contextual fear conditioning and retrieval. Brain Struct Funct. 2014;219:415–30.

    PubMed  Article  Google Scholar 

  43. 43.

    Igaz LM, Winograd M, Cammarota M, Izquierdo LA, Alonso M, Izquierdo I, et al. Early activation of extracellular signal-regulated kinase signaling pathway in the hippocampus is required for short-term memory formation of a fear-motivated learning. Cell Mol Neurobiol. 2006;26:989–1002.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Lopes MW, Leal RB, Guarnieri R, Schwarzbold ML, Hoeller A, Diaz AP, et al. A single high dose of dexamethasone affects the phosphorylation state of glutamate AMPA receptors in the human limbic system. Transl Psychiatry. 2016;6:e986.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Pauli C, de Oliveira Thais MER, Guarnieri R, Schwarzbold ML, Diaz AP, Ben J, et al. Decline in word-finding: the objective cognitive finding most relevant to patients after mesial temporal lobe epilepsy surgery. Epilepsy Behav. 2017;75:218–24.

    PubMed  Article  Google Scholar 

  46. 46.

    Zingano BL, Guarnieri R, Diaz AP, Schwarzbold ML, Wolf P, Lin K, et al. Hospital Anxiety and Depression Scale-Anxiety subscale (HADS-A) and The State-Trait Anxiety Inventory (STAI) accuracy for anxiety disorders detection in drug-resistant mesial temporal lobe epilepsy patients. J Affect Disord. 2019;246:452–7.

    PubMed  Article  Google Scholar 

  47. 47.

    Leal RB, Lopes MW, Formolo DA, de Carvalho CR, Hoeller AA, Latini A, et al. Amygdala levels of the GluA1 subunit of glutamate receptors and its phosphorylation state at serine 845 in the anterior hippocampus are biomarkers of ictal fear but not anxiety. Mol Psychiatry. 2020;25:655–65.

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Paxinos G, Watson, C. The rat brain in stereotaxic coordinates. New York, USA: Academic Press; 1997.

  49. 49.

    Walz R, Roesler R, Quevedo J, Sant'anna MK, Madruga M, Rodrigues C, et al. Time-dependent impairment of inhibitory avoidance retention in rats by posttraining infusion of a mitogen-activated protein kinase kinase inhibitor into cortical and limbic structures. Neurobiol Learn Mem. 2000;73:11–20.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Peterson GL. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977;83:346–56.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by PRONEX Program (Programa de Núcleos de Excelência - NENASC Project) of FAPESC-CNPq-MS, Santa Catarina Brazil (process 56802/2010), MRC 271–05–0712 (ZAB), FAPESC-CONFAP – THE UK ACADEMIES – 2016 (ZAB and RW), and Brazilian National Council for Scientific and Technological Development (CNPq) Grant 408210/2018–4 (RW). We are grateful to the Laboratório Multiusuário de Estudos em Biologia at the Universidade Federal de Santa Catarina (LAMEB/UFSC) for providing its infrastructure for carrying out the western blotting quantification. CRC, CLC, and AAH were supported by scholarships from CAPES/PNPD. RBL, RDP, AL, KL, and RW are researchers from the CNPq.

Author information

Affiliations

Authors

Contributions

Principal investigator (PI): RW. Study design: CRC, RBL, and RW. Method development and data analysis: CRC, MWL, LCC, HMM, AAH, KL, RBL, and RW. Clinical data collection: RG, KL, and RW. Human brain tissue sampling: MNL and RW. Stereotaxic surgery and rat tissue sampling: CRC, HMM, LCC, and AAH. Biochemical assays of human and rat samples: MWL, LCC, AL, and RBL. Experimental and analytical supervision: CRC, AAH, RDP, RBL, and RW. Manuscript writing: CRC and RW. Data interpretation: CRC, LCC, AAH, RDP, AL, ZAB, JL, RBL, and RW. Manuscript edition and approval: all authors.

Corresponding author

Correspondence to Roger Walz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Carvalho, C.R., Lopes, M.W., Constantino, L.C. et al. The ERK phosphorylation levels in the amygdala predict anxiety symptoms in humans and MEK/ERK inhibition dissociates innate and learned defensive behaviors in rats. Mol Psychiatry (2021). https://doi.org/10.1038/s41380-021-01203-0

Download citation

Search

Quick links