Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A loss-of-function variant in SUV39H2 identified in autism-spectrum disorder causes altered H3K9 trimethylation and dysregulation of protocadherin β-cluster genes in the developing brain

Abstract

Recent evidence has documented the potential roles of histone-modifying enzymes in autism-spectrum disorder (ASD). Aberrant histone H3 lysine 9 (H3K9) dimethylation resulting from genetic variants in histone methyltransferases is known for neurodevelopmental and behavioral anomalies. However, a systematic examination of H3K9 methylation dynamics in ASD is lacking. Here we resequenced nine genes for histone methyltransferases and demethylases involved in H3K9 methylation in individuals with ASD and healthy controls using targeted next-generation sequencing. We identified a novel rare variant (A211S) in the SUV39H2, which was predicted to be deleterious. The variant showed strongly reduced histone methyltransferase activity in vitro. In silico analysis showed that the variant destabilizes the hydrophobic core and allosterically affects the enzyme activity. The Suv39h2-KO mice displayed hyperactivity and reduced behavioral flexibility in learning the tasks that required complex behavioral adaptation, which is relevant for ASD. The Suv39h2 deficit evoked an elevated expression of a subset of protocadherin β (Pcdhb) cluster genes in the embryonic brain, which is attributable to the loss of H3K9 trimethylation (me3) at the gene promoters. Reduced H3K9me3 persisted in the cerebellum of Suv39h2-deficient mice to an adult stage. Congruently, reduced expression of SUV39H1 and SUV39H2 in the postmortem brain samples of ASD individuals was observed, underscoring the role of H3K9me3 deficiency in ASD etiology. The present study provides direct evidence for the role of SUV39H2 in ASD and suggests a molecular cascade of SUV39H2 dysfunction leading to H3K9me3 deficiency followed by an untimely, elevated expression of Pcdhb cluster genes during early neurodevelopment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ASD-specific rare variants in the genes involved in H3K9 methylation and its functional assessment.
Fig. 2: Evaluating the LoF imparted by the ASD-specific SUV39H2 A211S variant by in vitro and in silico methods.
Fig. 3: Behavioral evaluation of Suv39h2-KO mice.
Fig. 4: Suv39h2 deficiency in the developing brain results in loss of H3K9me3 and changes in the regulation of gene expression.

Similar content being viewed by others

References

  1. Volkmar FR, Pauls D. Autism. Lancet. 2003;362:1133–41.

    Article  PubMed  Google Scholar 

  2. Lord C, Bishop SL. Recent advances in autism research as reflected in DSM-5 criteria for autism spectrum disorder. Annu Rev Clin Psychol. 2015;11:53–70.

    Article  PubMed  Google Scholar 

  3. Iakoucheva LM, Muotri AR, Sebat J. Getting to the cores of autism. Cell. 2019;178:1287–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aicha M, Warrier V, Paul A, Adhya D, Srivastava DP, Kotter M, et al. The epigenetics of autism. In: Binda O (ed). Chromatin Signaling and neurological disorders, 12. Academic Press; 2019. p. 285–302.

  5. Sztainberg Y, Zoghbi HY. Lessons learned from studying syndromic autism spectrum disorders. Nat Neurosci. 2016;19:1408–17.

    Article  CAS  PubMed  Google Scholar 

  6. Kleefstra T, Smidt M, Banning MJ, Oudakker AR, Van Esch H, de Brouwer AP, et al. Disruption of the gene euchromatin histone methyl transferase1 (Eu-HMTase1) is associated with the 9q34 subtelomeric deletion syndrome. J Med Genet. 2005;42:299–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Talkowski Michael E, Rosenfeld Jill A, Blumenthal I, Pillalamarri V, Chiang C, Heilbut A, et al. Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell. 2012;149:525–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Balan S, Iwayama Y, Maekawa M, Toyota T, Ohnishi T, Toyoshima M, et al. Exon resequencing of H3K9 methyltransferase complex genes, EHMT1, EHTM2 and WIZ, in Japanese autism subjects. Mol Autism. 2014;5:49.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Betancur C. Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting. Brain Res. 2011;1380:42–77.

    Article  CAS  PubMed  Google Scholar 

  10. Vermeulen K, Staal W, Janzing J, Buitelaar J, van Bokhoven H, Egger J. From a single gene defect towards a cross species neurocognitive phenotype: the EHMT1 disruption example (Kleefstra syndrome). Austin J Autism Relat Disabil. 2015;1:1009.

    Google Scholar 

  11. Schmidt S, Nag HE, Hunn BS, Houge G, Hoxmark LB. A structured assessment of motor function and behavior in patients with Kleefstra syndrome. Eur J Med Genet. 2016;59:240–8.

    Article  PubMed  Google Scholar 

  12. Kleefstra T, van Zelst-Stams WA, Nillesen WM, Cormier-Daire V, Houge G, Foulds N, et al. Further clinical and molecular delineation of the 9q subtelomeric deletion syndrome supports a major contribution of EHMT1 haploinsufficiency to the core phenotype. J Med Genet. 2009;46:598.

    Article  CAS  PubMed  Google Scholar 

  13. Tachibana M, Sugimoto K, Nozaki M, Ueda J, Ohta T, Ohki M, et al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 2002;16:1779–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Peters AH, O’Carroll D, Scherthan H, Mechtler K, Sauer S, Schöfer C, et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell. 2001;107:323–37.

    Article  CAS  PubMed  Google Scholar 

  15. Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet. 2012;13:343–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Balemans MCM, Huibers MMH, Eikelenboom NWD, Kuipers AJ, van Summeren RCJ, Pijpers MMCA, et al. Reduced exploration, increased anxiety, and altered social behavior: autistic-like features of euchromatin histone methyltransferase 1 heterozygous knockout mice. Behavioural Brain Res. 2010;208:47–55.

    Article  CAS  Google Scholar 

  17. Balemans MCM, Nadif Kasri N, Kopanitsa MV, Afinowi NO, Ramakers G, Peters TA, et al. Hippocampal dysfunction in the Euchromatin histone methyltransferase 1 heterozygous knockout mouse model for Kleefstra syndrome. Hum Mol Genet. 2012;22:852–66.

    Article  PubMed  Google Scholar 

  18. Schaefer A, Sampath SC, Intrator A, Min A, Gertler TS, Surmeier DJ, et al. Control of cognition and adaptive behavior by the GLP/G9a epigenetic suppressor complex. Neuron. 2009;64:678–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Martens MB, Frega M, Classen J, Epping L, Bijvank E, Benevento M, et al. Euchromatin histone methyltransferase 1 regulates cortical neuronal network development. Sci Rep. 2016;6:35756.

    Article  CAS  PubMed  Google Scholar 

  20. Isbel L, Prokopuk L, Wu H, Daxinger L, Oey H, Spurling A, et al. Wiz binds active promoters and CTCF-binding sites and is required for normal behaviour in the mouse. eLife. 2016;5:e15082.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhu Y, Sun D, Jakovcevski M, Jiang Y. Epigenetic mechanism of SETDB1 in brain: implications for neuropsychiatric disorders. Transl Psychiatry. 2020;10:115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen X, Wang S, Zhou Y, Han Y, Li S, Xu Q, et al. Phf8 histone demethylase deficiency causes cognitive impairments through the mTOR pathway. Nat Commun. 2018;9:114.

    Article  PubMed  PubMed Central  Google Scholar 

  23. De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Ercument Cicek A, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515:209–15.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Grove J, Ripke S, Als TD, Mattheisen M, Walters RK, Won H, et al. Identification of common genetic risk variants for autism spectrum disorder. Nat Genet. 2019;51:431–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maekawa M, Ohnishi T, Toyoshima M, Shimamoto-Mitsuyama C, Hamazaki K, Balan S, et al. A potential role of fatty acid binding protein 4 in the pathophysiology of autism spectrum disorder. Brain Commun. 2020;2:fcaa145.

  26. Lord C, Rutter M, Le Couteur A. Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24:659–85.

    Article  CAS  PubMed  Google Scholar 

  27. Wada Y, Maekawa M, Ohnishi T, Balan S, Matsuoka S, Iwamoto K, et al. Peroxisome proliferator-activated receptor α as a novel therapeutic target for schizophrenia. EBioMedicine. 2020;62:103130.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Balan S, Ohnishi T, Watanabe A, Ohba H, Iwayama Y, Toyoshima M, et al. Role of an atypical cadherin gene, Cdh23 in prepulse inhibition and implication of CDH23 in schizophrenia. Schizophr Bull. 2021. https://doi.org/10.1093/schbul/sbab007.

  29. Tachibana M, Sugimoto K, Fukushima T, Shinkai Y. Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J Biol Chem. 2001;276:25309–17.

    Article  CAS  PubMed  Google Scholar 

  30. Dhayalan A, Kudithipudi S, Rathert P, Jeltsch A. Specificity analysis-based identification of new methylation targets of the SET7/9 protein lysine methyltransferase. Chem Biol. 2011;18:111–20.

    Article  CAS  PubMed  Google Scholar 

  31. Schuhmacher MK, Kudithipudi S, Kusevic D, Weirich S, Jeltsch A. Activity and specificity of the human SUV39H2 protein lysine methyltransferase. Biochim et Biophys acta. 2015;1849:55–63.

    Article  CAS  Google Scholar 

  32. Shirai A, Kawaguchi T, Shimojo H, Muramatsu D, Ishida-Yonetani M, Nishimura Y, et al. Impact of nucleic acid and methylated H3K9 binding activities of Suv39h1 on its heterochromatin assembly. Elife. 2017;6:e25317.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ohnishi T, Balan S, Toyoshima M, Maekawa M, Ohba H, Watanabe A, et al. Investigation of betaine as a novel psychotherapeutic for schizophrenia. EBioMedicine. 2019;45:432–46.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kiryk A, Janusz A, Zglinicki B, Turkes E, Knapska E, Konopka W, et al. IntelliCage as a tool for measuring mouse behavior – 20 years perspective. Behavioural Brain Res. 2020;388:112620.

    Article  CAS  Google Scholar 

  35. Masuda A, Kobayashi Y, Kogo N, Saito T, Saido TC, Itohara S. Cognitive deficits in single app knock-in mouse models. Neurobiol Learn Mem. 2016;135:73–82.

    Article  CAS  PubMed  Google Scholar 

  36. Endo T, Maekawa F, Võikar V, Haijima A, Uemura Y, Zhang Y, et al. Automated test of behavioral flexibility in mice using a behavioral sequencing task in intelliCage. Behavioural Brain Res. 2011;221:172–81.

    Article  Google Scholar 

  37. Kadota M, Hara Y, Tanaka K, Takagi W, Tanegashima C, Nishimura O, et al. CTCF binding landscape in jawless fish with reference to Hox cluster evolution. Sci Rep.2017;7:4957.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature. 2001;410:116–20.

    Article  CAS  PubMed  Google Scholar 

  39. Mauger O, Klinck R, Chabot B, Muchardt C, Allemand E, Batsché E. Alternative splicing regulates the expression of G9A and SUV39H2 methyltransferases, and dramatically changes SUV39H2 functions. Nucleic Acids Res. 2015;43:1869–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Couture J-F, Collazo E, Brunzelle JS, Trievel RC. Structural and functional analysis of SET8, a histone H4 Lys-20 methyltransferase. Genes Dev. 2005;19:1455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang J, Jain A, McDonald LR, Gambogi C, Lee AL, Dokholyan NV. Mapping allosteric communications within individual proteins. Nat Commun. 2020;11:3862.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhang X, Tamaru H, Khan SI, Horton JR, Keefe LJ, Selker EU, et al. Structure of the Neurospora SET domain protein DIM-5, a histone H3 lysine methyltransferase. Cell. 2002;111:117–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Min J, Zhang X, Cheng X, Grewal SI, Xu RM. Structure of the SET domain histone lysine methyltransferase Clr4. Nat Struct Biol. 2002;9:828–32.

    CAS  PubMed  Google Scholar 

  44. D’Cruz AM, Ragozzino ME, Mosconi MW, Shrestha S, Cook EH, Sweeney JA. Reduced behavioral flexibility in autism spectrum disorders. Neuropsychology. 2013;27:152–60.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cardoso-Moreira M, Halbert J, Valloton D, Velten B, Chen C, Shao Y, et al. Gene expression across mammalian organ development. Nature. 2019;571:505–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Toyoda S, Kawaguchi M, Kobayashi T, Tarusawa E, Toyama T, Okano M, et al. Developmental epigenetic modification regulates stochastic expression of clustered protocadherin genes, generating single. Neuron Diversity Neuron. 2014;82:94–108.

    CAS  PubMed  Google Scholar 

  47. Kumar S, Reynolds K, Ji Y, Gu R, Rai S, Zhou CJ. Impaired neurodevelopmental pathways in autism spectrum disorder: a review of signaling mechanisms and crosstalk. J Neurodevelopmental Disord. 2019;11:10.

    Article  CAS  Google Scholar 

  48. Lin Y-C, Frei JA, Kilander MBC, Shen W, Blatt GJ. A Subset of autism-associated genes regulate the structural stability of neurons. Front Cell Neurosci. 2016;10:263.

  49. Bagni C, Zukin RS. A synaptic perspective of fragile X syndrome and autism spectrum disorders. Neuron. 2019;101:1070–88.

    Article  CAS  PubMed  Google Scholar 

  50. Kelly E, Escamilla CO, Tsai PT. Cerebellar dysfunction in autism spectrum disorders: deriving mechanistic insights from an internal model framework. Neuroscience 2020;462:274–287.

  51. Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ, et al. Consensus paper: pathological role of the cerebellum in autism. Cerebellum. 2012;11:777–807.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Parikshak NN, Swarup V, Belgard TG, Irimia M, Ramaswami G, Gandal MJ, et al. Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism. Nature. 2016;540:423–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Huang KW, Ochandarena NE, Philson AC, Hyun M, Birnbaum JE, Cicconet M, et al. Molecular and anatomical organization of the dorsal raphe nucleus. Elife. 2019;8:e46464.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ruzzo EK, Pérez-Cano L, Jung J-Y, Wang L-k, Kashef-Haghighi D, Hartl C, et al. Inherited and De novo genetic risk for autism impacts shared networks. Cell. 2019;178:850–66.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu H, Min J, Lunin VV, Antoshenko T, Dombrovski L, Zeng H, et al. Structural biology of human H3K9 methyltransferases. PLOS ONE. 2010;5:e8570.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Min J, Zhang X, Cheng X, Grewal SI, Xu R-M. Structure of the SET domain histone lysine methyltransferase Clr4. Nat Struct Biol. 2002;9:828–32.

    CAS  PubMed  Google Scholar 

  57. Hou P, Huang C, Liu C-P, Yang N, Yu T, Yin Y, et al. Structural insights into stimulation of Ash1L’s H3K36 methyltransferase activity through Mrg15 binding. Structure. 2019;27:837–45.e3.

    Article  CAS  PubMed  Google Scholar 

  58. Graham SE, Tweedy SE, Carlson HA. Dynamic behavior of the post‐SET loop region of NSD1: implications for histone binding and drug development. Protein Sci. 2016;25:1021–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rogawski DS, Ndoj J, Cho HJ, Maillard I, Grembecka J, Cierpicki T. Two loops undergoing concerted dynamics regulate the activity of the ASH1L histone methyltransferase. Biochemistry. 2015;54:5401–13.

    Article  CAS  PubMed  Google Scholar 

  60. Qiao Q, Li Y, Chen Z, Wang M, Reinberg D, Xu R-M. The structure of NSD1 reveals an autoregulatory mechanism underlying histone H3K36 methylation. J Biol Chem. 2011;286:8361–8.

    Article  CAS  PubMed  Google Scholar 

  61. Kazdoba TM, Leach PT, Yang M, Silverman JL, Solomon M, Crawley JN. Translational mouse models of autism: advancing toward pharmacological therapeutics. Curr Top Behav Neurosci. 2016;28:1–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Wu Q, Maniatis T. A striking organization of a large family of human neural cadherin-like. Cell Adhes Genes Cell. 1999;97:779–90.

    CAS  Google Scholar 

  63. Thu Chan A, Chen Weisheng V, Rubinstein R, Chevee M, Wolcott Holly N, Felsovalyi, et al. Single-cell Identity generated by combinatorial homophilic interactions between α, β, and γ Protocadherins. Cell. 2014;158:1045–59.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lefebvre JL, Kostadinov D, Chen WV, Maniatis T, Sanes JR. Protocadherins mediate dendritic self-avoidance in the mammalian nervous system. Nature. 2012;488:517–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Flaherty E, Maniatis T. The role of clustered protocadherins in neurodevelopment and neuropsychiatric diseases. Curr Opin Genet Dev. 2020;65:144–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hasegawa S, Kumagai M, Hagihara M, Nishimaru H, Hirano K, Kaneko R, et al. Distinct and cooperative functions for the Protocadherin-α, -β and -γ clusters in neuronal survival and axon targeting. Front Mol Neurosci. 2016;9:155.

  67. Hirano K, Kaneko R, Izawa T, Kawaguchi M, Kitsukawa T, Yagi T. Single-neuron diversity generated by Protocadherin-β cluster in mouse central and peripheral nervous systems. Front Mol Neurosci. 2012;5:90.

  68. Miyake K, Hirasawa T, Soutome M, Itoh M, Goto Y-i, Endoh K, et al. The protocadherins, PCDHB1 and PCDH7, are regulated by MeCP2 in neuronal cells and brain tissues: implication for pathogenesis of Rett syndrome. BMC Neurosci. 2011;12:81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wu Q, Jia Z. Wiring the brain by clustered protocadherin neural codes. Neurosci Bull. 2020;37:117–131.

  70. Iacono G, Dubos A, Méziane H, Benevento M, Habibi E, Mandoli A, et al. Increased H3K9 methylation and impaired expression of Protocadherins are associated with the cognitive dysfunctions of the Kleefstra syndrome. Nucleic Acids Res. 2018;46:4950–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jiang Y, Loh Y-HE, Rajarajan P, Hirayama T, Liao W, Kassim BS, et al. The methyltransferase SETDB1 regulates a large neuron-specific topological chromatin domain. Nat Genet. 2017;49:1239–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yokota S, Hirayama T, Hirano K, Kaneko R, Toyoda S, Kawamura Y, et al. Identification of the cluster control region for the protocadherin-β genes located beyond the protocadherin-γ cluster. J Biol Chem. 2011;286:31885–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum — insights from the clinic. Cerebellum. 2007;6:254–67.

    Article  PubMed  Google Scholar 

  74. Sathyanesan A, Zhou J, Scafidi J, Heck DH, Sillitoe RV, Gallo V. Emerging connections between cerebellar development, behaviour and complex brain disorders. Nat Rev Neurosci. 2019;20:298–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dickson PE, Rogers TD, Del Mar N, Martin LA, Heck D, Blaha CD, et al. Behavioral flexibility in a mouse model of developmental cerebellar Purkinje cell loss. Neurobiol Learn Mem. 2010;94:220–8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge RIKEN Center for Computational Science for the supercomputing resources at the Hokusai BigWaterfall and Bioinformatics Analysis Environment Service (BAYES) on RIKEN Cloud. We are grateful to the Support Unit for Bio-Material Analysis and Animal Resources Development, Research Resources Division, RIKEN Center for Brain Science, for sequencing service and animal care. We also thank Drs. Yasuhide Iwata, Katsuaki Suzuki, Kenji J. Tsuchiya, Shu Takagai, and Norio Mori from Hamamatsu University School of Medicine, and the Asperger Society Japan for their kind help for recruiting and collecting human samples, Dr. Akihiro Ito for kindly providing 293 T cells, and Drs. Shigehiro Kuraku and Mitsutaka Kadota from Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, for their helpful suggestions for ChIP-PCR.

Funding

This work was supported by Grant-in-Aid for Scientific Research (C) (KAKENHI) by Japan Society for the Promotion of Science (JSPS) under Grant number (19K08084 to S.B.), Grant-in-Aid for Scientific Research on Innovative Areas from the MEXT under Grant Number (JP18H05435 to T.Y.), Core Research for Evolutionary Science and Technology (CREST) from the Japan Agency for Medical Research and Development (AMED) (12101571 to T.Y. and Y.S.), and RIKEN internal research funds (to T.Y. and Y.S.), and a grant of the Deutsche Forschungsgemeinschaft (JE 252/7-4 to A.J.). The funding agencies had no role in study design, data collection, and analysis, decision to publish, or preparation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shabeesh Balan, Yoichi Shinkai or Takeo Yoshikawa.

Ethics declarations

Competing interests

Dr. Toshihiro Endo is the founder and researcher at Phenovance Research & Technology LLC, Japan. Remaining all the authors have no conflicting interests to declare.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balan, S., Iwayama, Y., Ohnishi, T. et al. A loss-of-function variant in SUV39H2 identified in autism-spectrum disorder causes altered H3K9 trimethylation and dysregulation of protocadherin β-cluster genes in the developing brain. Mol Psychiatry 26, 7550–7559 (2021). https://doi.org/10.1038/s41380-021-01199-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01199-7

This article is cited by

Search

Quick links