Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

Aberrant maturation and connectivity of prefrontal cortex in schizophrenia—contribution of NMDA receptor development and hypofunction

Abstract

The neurobiology of schizophrenia involves multiple facets of pathophysiology, ranging from its genetic basis over changes in neurochemistry and neurophysiology, to the systemic level of neural circuits. Although the precise mechanisms associated with the neuropathophysiology remain elusive, one essential aspect is the aberrant maturation and connectivity of the prefrontal cortex that leads to complex symptoms in various stages of the disease. Here, we focus on how early developmental dysfunction, especially N-methyl-D-aspartate receptor (NMDAR) development and hypofunction, may lead to the dysfunction of both local circuitry within the prefrontal cortex and its long-range connectivity. More specifically, we will focus on an “all roads lead to Rome” hypothesis, i.e., how NMDAR hypofunction during development acts as a convergence point and leads to local gamma-aminobutyric acid (GABA) deficits and input-output dysconnectivity in the prefrontal cortex, which eventually induce cognitive and social deficits. Many outstanding questions and hypothetical mechanisms are listed for future investigations of this intriguing hypothesis that may lead to a better understanding of the aberrant maturation and connectivity associated with the prefrontal cortex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration showing the simplified local prefrontal circuitry and long-range input/output connectivity.
Fig. 2: Prefrontal local circuit.
Fig. 3: Schematic model showing the development of NMDAR subunits in different types of PFC neurons.
Fig. 4: Developmental trajectory of cortical GABAergic interneurons and maturation of MD and PFC.
Fig. 5: A summary illustration of the perspective mechanisms associated with dysconnectivity and behavioral deficits—from abnormal synaptic function and plasticity to failures of self-monitoring.

Similar content being viewed by others

References

  1. Lewis DA, Hashimoto T, Volk DW. Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci. 2005;6:312–24.

    Article  CAS  PubMed  Google Scholar 

  2. Tamminga CA, Thaker GK, Buchanan R, Kirkpatrick B, Alphs LD, Chase TN, et al. Limbic system abnormalities identified in schizophrenia using positron emission tomography with fluorodeoxyglucose and neocortical alterations with deficit syndrome. Arch Gen Psychiatry. 1992;49:522–30.

    Article  CAS  PubMed  Google Scholar 

  3. Anticevic A, Cole MW, Murray JD, Corlett PR, Wang X-J, Krystal JH. The role of default network deactivation in cognition and disease. Trends Cogn Sci. 2012;16:584–92.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Anticevic A, Corlett PR, Cole MW, Savic A, Gancsos M, Tang Y, et al. N-methyl-D-aspartate receptor antagonist effects on prefrontal cortical connectivity better model early than chronic schizophrenia. Biol Psychiatry. 2014;77:569–80.

    Article  PubMed  Google Scholar 

  5. Anticevic A, Haut K, Murray JD, Repovs G, Yang GJ, Diehl C, et al. Association of thalamic dysconnectivity and conversion to psychosis in youth and young adults at elevated clinical risk. JAMA Psychiatry. 2015;72:882–91.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Anticevic A, Lisman J. How can global alteration of excitation/inhibition balance lead to the local dysfunctions that underlie schizophrenia? Biol Psychiatry. 2017;81:818–20.

    Article  PubMed  Google Scholar 

  7. Wang X-J. Macroscopic gradients of synaptic excitation and inhibition in the neocortex. Nat Rev Neurosci. 2020;21:169–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hunt MJ, Kopell NJ, Traub RD, Whittington MA. Aberrant network activity in schizophrenia. Trends Neurosci. 2017;40:371–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Friston K, Brown HR, Siemerkus J, Stephan KE. The dysconnection hypothesis (2016). Schizophr Res. 2016;176:83–94.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Limongi R, Jeon P, Mackinley M, Das T, Dempster K, Théberge J, et al. Glutamate and dysconnection in the salience network: neurochemical, effective connectivity, and computational evidence in schizophrenia. Biol psychiatry. 2020;88:273–81.

    Article  CAS  PubMed  Google Scholar 

  11. Weinberger DR. A connectionist approach to the prefrontal cortex. J Neuropsychiatry Clin Neurosci. 1993;5:241–53.

    Article  CAS  PubMed  Google Scholar 

  12. Friston KJ, Frith CD. Schizophrenia: a disconnection syndrome? Clin Neurosci. 1995;3:89–97.

    CAS  PubMed  Google Scholar 

  13. Krajcovic B, Fajnerova I, Horacek J, Kelemen E, Kubik S, Svoboda J, et al. Neural and neuronal discoordination in schizophrenia: From ensembles through networks to symptoms. Acta Physiologica. 2019;226:e13282.

    Article  PubMed  Google Scholar 

  14. Stephan KE, Friston KJ, Frith CD. Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull. 2009;35:509–27.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Selemon LD. A role for synaptic plasticity in the adolescent development of executive function. Transl Psychiatry. 2013;3:e238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Selemon LD, Zecevic N. Schizophrenia: a tale of two critical periods for prefrontal cortical development. Transl Psychiatry. 2015;5:e623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Friston KJ. Schizophrenia and the disconnection hypothesis. Acta Psychiatr Scandinavica Supplementum. 1999;395:68–79.

    Article  CAS  Google Scholar 

  18. Meltzer HY, Rajagopal L, Huang M, Oyamada Y, Kwon S, Horiguchi M. Translating the N-methyl-D-aspartate receptor antagonist model of schizophrenia to treatments for cognitive impairment in schizophrenia. Int J Neuropsychopharmacol. 2013;16:2181–94.

    Article  CAS  PubMed  Google Scholar 

  19. Snyder MA, Gao W-J. NMDA hypofunction as a convergence point for progression and symptoms of schizophrenia. Front Cell Neurosci. 2013;7:31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nakazawa K, Jeevakumar V, Nakao K. Spatial and temporal boundaries of NMDA receptor hypofunction leading to schizophrenia. NPJ Schizophrenia. 2017;3:7.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Avery MC, Krichmar JL. Neuromodulatory systems and their interactions: a review of models, theories, and experiments. Front Neural Circuits. 2017;11:108–108.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III-the final common pathway. Schizophr Bull. 2009;35:549–62.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chini M, Hanganu-Opatz IL. Prefrontal cortex development in health and disease: lessons from rodents and humans. Trends Neurosci. 2021;44:227–40.

    Article  CAS  PubMed  Google Scholar 

  24. Tagliabue E, Pouvreau T, Eybrard S, Meyer F, Louilot A. Dopaminergic responses in the core part of the nucleus accumbens to subcutaneous MK801 administration are increased following postnatal transient blockade of the prefrontal cortex. Behavioural Brain Res. 2017;335:191–8.

    Article  CAS  Google Scholar 

  25. Jia J-M, Zhao J, Hu Z, Lindberg D, Li Z. Age-dependent regulation of synaptic connections by dopamine D2 receptors. Nat Neurosci. 2013;16:1627–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kellendonk C, Simpson EH, Kandel ER. Modeling cognitive endophenotypes of schizophrenia in mice. Trends Neurosci. 2009;32:347–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kellendonk C, Simpson EH, Polan HJ, Malleret G, Vronskaya S, Winiger V, et al. Transient and selective overexpression of dopamine D2 receptors in the striatum causes persistent abnormalities in prefrontal cortex functioning. Neuron. 2006;49:603–15.

    Article  CAS  PubMed  Google Scholar 

  28. Niwa M, Kamiya A, Murai R, Kubo K, Gruber AJ, Tomita K, et al. Knockdown of DISC1 by in utero gene transfer disturbs postnatal dopaminergic maturation in the frontal cortex and leads to adult behavioral deficits. Neuron. 2010;65:480–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nakajima M, Halassa MM. Thalamic control of functional cortical connectivity. Curr Opin Neurobiol. 2017;44:127–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim YK, Choi J, Park SC. A novel bio-psychosocial-behavioral treatment model in schizophrenia. Int J Mol Sci. 2017;18:734.

    Article  PubMed Central  Google Scholar 

  31. Li ML, Gulchina Y, Monaco SA, Xing B, Ferguson BR, Li YC, et al. Juvenile treatment with a novel mGluR2 agonist/mGluR3 antagonist compound, LY395756, reverses learning deficits and cognitive flexibility impairments in adults in a neurodevelopmental model of schizophrenia. Neurobiol Learn Mem. 2017;140:52–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xing B, Han G, Wang M-J, Snyder MA, Gao W-J. Juvenile treatment with mGluR2/3 agonist prevents schizophrenia-like phenotypes in adult by acting through GSK3β. Neuropharmacology. 2018;137:359–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Snyder MA, Gao WJ. NMDA receptor hypofunction for schizophrenia revisited: Perspectives from epigenetic mechanisms. Schizophr Res. 2020;217:60–70.

    Article  PubMed  Google Scholar 

  34. Coyle JT. Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell Mol Neurobiol. 2006;26:365–84.

    Article  CAS  PubMed  Google Scholar 

  35. Moghaddam B. Bringing order to the glutamate chaos in schizophrenia. Neuron. 2003;40:881–4.

    Article  CAS  PubMed  Google Scholar 

  36. Lisman JE, Coyle JT, Green RW, Javitt DC, Benes FM, Heckers S, et al. Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci. 2008;31:234–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Marek GJ, Behl B, Bespalov AY, Gross G, Lee Y, Schoemaker H. Glutamatergic (N-methyl-D-aspartate receptor) hypofrontality in schizophrenia: too little juice or a miswired brain? Mol Pharmacol. 2010;77:317–26.

    Article  CAS  PubMed  Google Scholar 

  38. Vinson PN, Conn PJ. Metabotropic glutamate receptors as therapeutic targets for schizophrenia. Neuropharmacology. 2012;62:1461–72.

    Article  CAS  PubMed  Google Scholar 

  39. Weickert CS, Fung SJ, Catts VS, Schofield PR, Allen KM, Moore LT, et al. Molecular evidence of N-methyl-D-aspartate receptor hypofunction in schizophrenia. Mol psychiatry. 2013;18:1185–92.

    Article  CAS  PubMed  Google Scholar 

  40. Yamamoto H, Hagino Y, Kasai S, Ikeda K. Specific roles of NMDA receptor subunits in mental disorders. Curr Mol Med. 2015;15:193–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cohen SM, Tsien RW, Goff DC, Halassa MM. The impact of NMDA receptor hypofunction on GABAergic interneurons in the pathophysiology of schizophrenia. Schizophrenia Res. 2015;167:98–107.

    Article  Google Scholar 

  42. Bygrave AM, Kilonzo K, Kullmann DM, Bannerman DM, Kätzel D. Can N-methyl-D-aspartate receptor hypofunction in schizophrenia be localized to an individual cell type? Front Psychiatry. 2019;10:835.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Balu DT. The NMDA receptor and schizophrenia: from pathophysiology to treatment. In: Robert S, editor. Advances in pharmacology. Vol. 76. Academic Press; 2016. p. 351–82.

  44. Uno Y, Coyle JT. Glutamate hypothesis in schizophrenia. Psychiatry Clin Neurosci. 2019;73:204–15.

    Article  PubMed  Google Scholar 

  45. Datta D, Arnsten AFT. Unique molecular regulation of higher-order prefrontal cortical circuits: insights into the neurobiology of schizophrenia. ACS Chem Neurosci. 2018;9:2127–45.

    Article  CAS  PubMed  Google Scholar 

  46. Grace AA. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci. 2016;17:524–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang GR, Murray JD, Wang XJ. A dendritic disinhibitory circuit mechanism for pathway-specific gating. Nat Commun. 2016;7:12815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ferguson BR, Gao W-J. PV Interneurons: critical regulators of E/i balance for prefrontal cortex-dependent behavior and psychiatric disorders. Front Neural Circuits. 2018;12:37.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kupferschmidt DA, Gordon JA. The dynamics of disordered dialogue: prefrontal, hippocampal and thalamic miscommunication underlying working memory deficits in schizophrenia. Brain Neurosci Adv. 2018;2:2398212818771821.

    Article  PubMed Central  Google Scholar 

  50. Kumar SS, Huguenard JR. Pathway-specific differences in subunit composition of synaptic NMDA receptors on pyramidal neurons in neocortex. J Neurosci. 2003;23:10074–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bogart LJ, O’Donnell P. Multiple long-range inputs evoke NMDA currents in prefrontal cortex fast-spiking interneurons. Neuropsychopharmacology. 2018;43:2101–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Friston KJ. The disconnection hypothesis. Schizophr Res. 1998;30:115–25.

    Article  CAS  PubMed  Google Scholar 

  53. Stephan KE, Baldeweg T, Friston KJ. Synaptic plasticity and dysconnection in schizophrenia. Biol Psychiatry. 2006;59:929–39.

    Article  CAS  PubMed  Google Scholar 

  54. Anticevic A, Gancsos M, Murray JD, Repovs G, Driesen NR, Ennis DJ, et al. NMDA receptor function in large-scale anticorrelated neural systems with implications for cognition and schizophrenia. Proc Natl Acad Sci USA. 2012;109:16720–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Anticevic A, Hu X, Xiao Y, Hu J, Li F, Bi F, et al. Early-course unmedicated schizophrenia patients exhibit elevated prefrontal connectivity associated with longitudinal change. J Neurosci. 2015;35:267–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yang GJ, Murray JD, Wang XJ, Glahn DC, Pearlson GD, Repovs G, et al. Functional hierarchy underlies preferential connectivity disturbances in schizophrenia. Proc Natl Acad Sci USA. 2016;113:E219–228.

    CAS  PubMed  Google Scholar 

  57. Khadka S, Meda SA, Stevens MC, Glahn DC, Calhoun VD, Sweeney JA, et al. Is aberrant functional connectivity a psychosis endophenotype? A resting state functional magnetic resonance imaging study. Biol psychiatry. 2013;74:458–66.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Mothersill O, Kelly S, Rose EJ, Donohoe G. The effects of psychosis risk variants on brain connectivity: a review. Front Psychiatry. 2012;3:18.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Schleifer C, Lin A, Kushan L, Ji JL, Yang G, Bearden CE, et al. Dissociable disruptions in thalamic and hippocampal resting-state functional connectivity in youth with 22q11.2 deletions. J Neurosci. 2019;39:1301–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schmitt A, Hasan A, Gruber O, Falkai P. Schizophrenia as a disorder of disconnectivity. Eur Arch Psychiatry Clin Neurosci. 2011;261:S150–S154.

    Article  PubMed  Google Scholar 

  61. Foss-Feig JH, Adkinson BD, Ji JL, Yang G, Srihari VH, McPartland JC, et al. Searching for cross-diagnostic convergence: neural mechanisms governing excitation and inhibition balance in schizophrenia and autism spectrum disorders. Biol Psychiatry. 2017;81:848–61.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bicks LK, Koike H, Akbarian S, Morishita H. Prefrontal cortex and social cognition in mouse and man. Front Psychol. 2015;6:1805.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Alvarez RJ, Pafundo DE, Zold CL, Belforte JE. Interneuron NMDA receptor ablation induces hippocampus-prefrontal cortex functional hypoconnectivity after adolescence in a mouse model of schizophrenia. J Neurosci. 2020;40:3304–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tremblay R, Lee S, Rudy B. GABAergic interneurons in the neocortex: from cellular properties to circuits. Neuron. 2016;91:260–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Silberberg G, Markram H. Disynaptic inhibition between neocortical pyramidal cells mediated by Martinotti cells. Neuron. 2007;53:735–46.

    Article  CAS  PubMed  Google Scholar 

  66. Pfeffer CK, Xue M, He M, Huang ZJ, Scanziani M. Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat Neurosci. 2013;16:1068–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Batista-Brito R, Vinck M, Ferguson KA, Chang JT, Laubender D, Lur G, et al. Developmental dysfunction of VIP interneurons impairs cortical circuits. Neuron. 2017;95:884. e889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ferguson BR, Gao WJ. Thalamic control of cognition and social behavior via regulation of gamma-aminobutyric acidergic signaling and excitation/inhibition balance in the medial prefrontal cortex. Biol Psychiatry. 2018;83:657–69.

    Article  CAS  PubMed  Google Scholar 

  69. Konradi C, Heckers S. Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharm Ther. 2003;97:153–79.

    Article  CAS  Google Scholar 

  70. Lieberman JA, Perkins D, Belger A, Chakos M, Jarskog F, Boteva K, et al. The early stages of schizophrenia: speculations on pathogenesis, pathophysiology, and therapeutic approaches. Biol Psychiatry. 2001;50:884–97.

    Article  CAS  PubMed  Google Scholar 

  71. Lewis DA, Levitt P. Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci. 2002;25:409–32.

    Article  CAS  PubMed  Google Scholar 

  72. Vincent SL, Pabreza L, Benes FM. Postnatal maturation of GABA-immunoreactive neurons of rat medial prefrontal cortex. J Comp Neurol. 1995;355:81–92.

    Article  CAS  PubMed  Google Scholar 

  73. Erickson SL, Lewis DA. Postnatal development of parvalbumin- and GABA transporter-immunoreactive axon terminals in monkey prefrontal cortex. J Comp Neurol. 2002;448:186–202.

    Article  CAS  PubMed  Google Scholar 

  74. Hashimoto T, Nguyen QL, Rotaru D, Keenan T, Arion D, Beneyto M, et al. Protracted developmental trajectories of GABAA receptor alpha1 and alpha2 subunit expression in primate prefrontal cortex. Biol Psychiatry. 2009;65:1015–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hoftman GD, Lewis DA. Postnatal developmental trajectories of neural circuits in the primate prefrontal cortex: identifying sensitive periods for vulnerability to schizophrenia. Schizophr Bull. 2011;37:493–503.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Marin O. Developmental timing and critical windows for the treatment of psychiatric disorders. Nat Med. 2016;22:1229–38.

    Article  CAS  PubMed  Google Scholar 

  77. Caballero A, Tseng KY. GABAergic function as a limiting factor for prefrontal maturation during adolescence. Trends Neurosci. 2016;39:441–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Caballero A, Granberg R, Tseng KY. Mechanisms contributing to prefrontal cortex maturation during adolescence. Neurosci Biobehav Rev. 2016;70:4–12.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lewis DA. Development of the prefrontal cortex during adolescence: insights into vulnerable neural circuits in schizophrenia. Neuropsychopharmacology. 1997;16:385–98.

    Article  CAS  PubMed  Google Scholar 

  80. Dow-Edwards D, MacMaster FP, Peterson BS, Niesink R, Andersen S, Braams BR. Experience during adolescence shapes brain development: From synapses and networks to normal and pathological behavior. Neurotoxicology Teratol. 2019;76:106834.

    Article  CAS  Google Scholar 

  81. Jadhav KS, Boutrel B. Prefrontal cortex development and emergence of self-regulatory competence: the two cardinal features of adolescence disrupted in context of alcohol abuse. Eur J Neurosci. 2019;50:2274–81.

    Article  PubMed  Google Scholar 

  82. Larsen B, Luna B. Adolescence as a neurobiological critical period for the development of higher-order cognition. Neurosci Biobehav Rev. 2018;94:179–95.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Andersen SL. Commentary on the special issue on the adolescent brain: adolescence, trajectories, and the importance of prevention. Neurosci Biobehav Rev. 2016;70:329–33.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Fuhrmann D, Knoll LJ, Blakemore SJ. Adolescence as a sensitive period of brain development. Trends Cogn Sci. 2015;19:558–66.

    Article  PubMed  Google Scholar 

  85. Delevich K, Thomas AW, Wilbrecht L. Adolescence and “Late Blooming” synapses of the prefrontal cortex. Cold Spring Harb symposia Quant Biol. 2018;83:37–43.

    Article  PubMed  Google Scholar 

  86. Mardinly AR, Spiegel I, Patrizi A, Centofante E, Bazinet JE, Tzeng CP, et al. Sensory experience regulates cortical inhibition by inducing IGF1 in VIP neurons. Nature. 2016;531:371–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Spiegel I, Mardinly AR, Gabel HW, Bazinet JE, Couch CH, Tzeng CP, et al. Npas4 regulates excitatory-inhibitory balance within neural circuits through cell-type-specific gene programs. Cell. 2014;157:1216–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wamsley B, Fishell G. Genetic and activity-dependent mechanisms underlying interneuron diversity. Nat Rev Neurosci. 2017;18:299–309.

    Article  CAS  PubMed  Google Scholar 

  89. Dumas TC. Developmental regulation of cognitive abilities: modified composition of a molecular switch turns on associative learning. Prog Neurobiol. 2005;76:189–211.

    Article  CAS  PubMed  Google Scholar 

  90. Monaco SA, Gulchina Y, Gao W-J. NR2B subunit in the prefrontal cortex: a double-edged sword for working memory function and psychiatric disorders. Neurosci Biobehav Rev. 2015;56:127–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mierau SB, Patrizi A, Hensch TK, Fagiolini M. Cell-specific regulation of N-methyl-D-aspartate receptor maturation by Mecp2 in cortical circuits. Biol Psychiatry. 2016;79:746–54.

    Article  CAS  PubMed  Google Scholar 

  92. Koppensteiner P, Von Itter R, Melani R, Galvin C, Lee FS, Ninan I. Diminished fear extinction in adolescents is associated with an altered somatostatin interneuron-mediated inhibition in the infralimbic cortex. Biol Psychiatry. 2019;86:682–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nakazawa K, Zsiros V, Jiang Z, Nakao K, Kolata S, Zhang S, et al. GABAergic interneuron origin of schizophrenia pathophysiology. Neuropharmacology. 2012;62:1574–83.

    Article  CAS  PubMed  Google Scholar 

  94. Akgul G, McBain CJ. Diverse roles for ionotropic glutamate receptors on inhibitory interneurons in developing and adult brain. J Physiol. 2016;594:5471–90.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Wang HX, Gao WJ. Cell type-specific development of NMDA receptors in the interneurons of rat prefrontal cortex. Neuropsychopharmacology. 2009;34:2028–40.

    Article  CAS  PubMed  Google Scholar 

  96. Rotaru DC, Yoshino H, Lewis DA, Ermentrout GB, Gonzalez-Burgos G. Glutamate receptor subtypes mediating synaptic activation of prefrontal cortex neurons: relevance for schizophrenia. J Neurosci. 2011;31:142–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Le Magueresse C, Monyer H. GABAergic interneurons shape the functional maturation of the cortex. Neuron. 2013;77:388–405.

    Article  PubMed  Google Scholar 

  98. Matta JA, Pelkey KA, Craig MT, Chittajallu R, Jeffries BW, McBain CJ. Developmental origin dictates interneuron AMPA and NMDA receptor subunit composition and plasticity. Nat Neurosci. 2013;16:1032–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kinney JW, Davis CN, Tabarean I, Conti B, Bartfai T, Behrens MM. A specific role for NR2A-containing NMDA receptors in the maintenance of parvalbumin and GAD67 immunoreactivity in cultured interneurons. J Neurosci. 2006;26:1604–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Behrens MM, Ali SS, Dao DN, Lucero J, Shekhtman G, Quick KL, et al. Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase. Science. 2007;318:1645–7.

    Article  CAS  PubMed  Google Scholar 

  101. Xi D, Keeler B, Zhang W, Houle JD, Gao WJ. NMDA receptor subunit expression in GABAergic interneurons in the prefrontal cortex: application of laser micro dissection technique. J Neurosci Meth. 2009;176:172–81.

    Article  CAS  Google Scholar 

  102. Moreau AW, Kullmann DM. NMDA receptor-dependent function and plasticity in inhibitory circuits. Neuropharmacology. 2013;74:23–31.

    Article  CAS  PubMed  Google Scholar 

  103. Krystal JH, Anticevic A, Yang GJ, Dragoi G, Driesen NR, Wang X-J, et al. Impaired tuning of neural ensembles and the pathophysiology of schizophrenia: a translational and computational neuroscience perspective. Biol Psychiatry. 2017;81:874–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Paul A, Crow M, Raudales R, He M, Gillis J, Huang ZJ. Transcriptional architecture of synaptic communication delineates GABAergic neuron identity. Cell. 2017;171:522. e520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gambrill AC, Barria A. NMDA receptor subunit composition controls synaptogenesis and synapse stabilization. Proc Natl Acad Sci. 2011;108:5855–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Alherz F, Alherz M, Almusawi H. NMDAR hypofunction and somatostatin-expressing GABAergic interneurons and receptors: a newly identified correlation and its effects in schizophrenia. Schizophrenia Res Cognition. 2017;8:1–6.

    Article  Google Scholar 

  107. Fung SJ, Fillman SG, Webster MJ, Shannon, Weickert C. Schizophrenia and bipolar disorder show both common and distinct changes in cortical interneuron markers. Schizophr Res. 2014;155:26–30.

    Article  PubMed  Google Scholar 

  108. Koukouli F, Rooy M, Tziotis D, Sailor KA, O’neill HC, Levenga J, et al. Nicotine reverses hypofrontality in animal models of addiction and schizophrenia. Nat Med. 2017;23:347–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cummings KA, Clem RL. Prefrontal somatostatin interneurons encode fear memory. Nat Neurosci. 2020;23:67–74.

    Article  Google Scholar 

  110. Scheidegger M, Walter M, Lehmann M, Metzger C, Grimm S, Boeker H, et al. KetaminE Decreases Resting State Functional Network Connectivity in Healthy Subjects: Implications for Antidepressant Drug Action. Plos One. 2012;7:e44799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kraguljac NV, Frölich MA, Tran S, White DM, Nichols N, Barton-McArdle A, et al. Ketamine modulates hippocampal neurochemistry and functional connectivity: a combined magnetic resonance spectroscopy and resting-state fMRI study in healthy volunteers. Mol Psychiatry. 2017;22:562–9.

    Article  CAS  PubMed  Google Scholar 

  112. Flores-Barrera E, Thomases DR, Heng L-J, Cass DK, Caballero A, Tseng KY. Late adolescent expression of gluN2B transmission in the prefrontal cortex is input-specific and requires postsynaptic protein kinase A and D1 dopamine receptor signaling. Biol Psychiatry. 2014;75:508–16.

    Article  CAS  PubMed  Google Scholar 

  113. Miller OH, Bruns A, Ben Ammar I, Mueggler T, Hall BJ. Synaptic regulation of a thalamocortical circuit controls depression-related behavior. Cell Rep. 2017;20:1867–80.

    Article  CAS  PubMed  Google Scholar 

  114. Hoover WB, Vertes RP. Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct. 2007;212:149–79.

    Article  PubMed  Google Scholar 

  115. Carmichael ST, Price JL. Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys. J Comp Neurol. 1996;371:179–207.

    Article  CAS  PubMed  Google Scholar 

  116. Collins DP, Anastasiades PG, Marlin JJ, Carter AG. Reciprocal circuits linking the prefrontal cortex with dorsal and ventral thalamic nuclei. Neuron. 2018;98:366. e364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ferguson BR, Gao W-J. Development of thalamocortical connections between the mediodorsal thalamus and the prefrontal cortex and its implication in cognition. Front Hum Neurosci. 2015;8:1027.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Chittajallu R, Wester JC, Craig MT, Barksdale E, Yuan XQ, Akgül G, et al. Afferent specific role of NMDA receptors for the circuit integration of hippocampal neurogliaform cells. Nat Commun. 2017;8:152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chiu CQ, Martenson JS, Yamazaki M, Natsume R, Sakimura K, Tomita S, et al. Input-specific NMDAR-dependent potentiation of dendritic GABAergic inhibition. Neuron. 2018;97:368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chiu C, Morse T, Nani F, Knoflach F, Hernandez M-C, Jadi M, et al. Tonic GABAergic activity facilitates dendritic calcium signaling and short-term plasticity. https://www.biorxiv.org/content/10.1101/2020.04.22.055137v1.full. 2020.

  121. Cornford JH, Mercier MS, Leite M, Magloire V, Häusser M, Kullmann DM. Dendritic NMDA receptors in parvalbumin neurons enable strong and stable neuronal assemblies. eLife. 2019;8:e49872.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Anastasiades PG, Collins DP, Carter AG. Mediodorsal and ventromedial thalamus engage distinct L1 circuits in the prefrontal cortex. Neuron. 2021;109:314–30.

    Article  CAS  PubMed  Google Scholar 

  123. Toth K, McBain CJ. Afferent-specific innervation of two distinct AMPA receptor subtypes on single hippocampal interneurons. Nat Neurosci. 1998;1:572–8.

    Article  CAS  PubMed  Google Scholar 

  124. Toth K, McBain CJ. Target-specific expression of pre- and postsynaptic mechanisms. J Physiol. 2000;525:41–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gao WJ, Wang Y, Goldman-Rakic PS. Dopamine modulation of perisomatic and peridendritic inhibition in prefrontal cortex. J Neurosci. 2003;23:1622–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bacci A, Huguenard JR, Prince DA. Modulation of neocortical interneurons: extrinsic influences and exercises in self-control. Trends Neurosci. 2005;28:602–10.

    Article  CAS  PubMed  Google Scholar 

  127. Groenewegen HJ. Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal-prefrontal topography. Neuroscience. 1988;24:379–431.

    Article  CAS  PubMed  Google Scholar 

  128. Leonard CM. The prefrontal cortex of the rat. I. Cortical projection of the mediodorsal nucleus. II. Efferent Connect Brain Res. 1969;12:321–43.

    Article  CAS  Google Scholar 

  129. Parnaudeau S, Bolkan SS, Kellendonk C. The mediodorsal thalamus: an essential partner of the prefrontal cortex for cognition. Biol psychiatry. 2018;83:648–56.

    Article  PubMed  Google Scholar 

  130. Mitchell AS, Chakraborty S. What does the mediodorsal thalamus do? Front Syst Neurosci. 2013;7:37.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Bolkan SS, Stujenske JM, Parnaudeau S, Spellman TJ, Rauffenbart C, Abbas AI, et al. Thalamic projections sustain prefrontal activity during working memory maintenance. Nat Neurosci. 2017;20:987–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Funahashi S. Thalamic mediodorsal nucleus and its participation in spatial working memory processes: comparison with the prefrontal cortex. Front Syst Neurosci. 2013;7:36.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Watanabe Y, Funahashi S. Thalamic mediodorsal nucleus and working memory. Neurosci Biobehav Rev. 2012;36:134–42.

    Article  PubMed  Google Scholar 

  134. Baxter MG. Mediodorsal thalamus and cognition in non-human primates. Front Syst Neurosci. 2013;7:38.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Zhou T, Zhu H, Fan Z, Wang F, Chen Y, Liang H, et al. History of winning remodels thalamo-PFC circuit to reinforce social dominance. Science. 2017;357:162–8.

    Article  CAS  PubMed  Google Scholar 

  136. Parnaudeau S, O’neill P-K, Bolkan SS, Ward RD, Abbas AI, Roth BL, et al. Inhibition of mediodorsal thalamus disrupts thalamofrontal connectivity and cognition. Neuron. 2013;77:1151–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Parnaudeau S, Taylor K, Bolkan SS, Ward RD, Balsam PD, Kellendonk C. Mediodorsal thalamus hypofunction impairs flexible goal-directed behavior. Biol psychiatry. 2015;77:445–53.

    Article  PubMed  Google Scholar 

  138. Kim D, Jeong H, Lee J, Ghim J-W, Her ES, Lee S-H, et al. Distinct roles of parvalbumin- and somatostatin-expressing interneurons in working memory. Neuron. 2016;92:902–15.

    Article  CAS  PubMed  Google Scholar 

  139. Kawaguchi Y, Kondo S. Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex. J Neurocytol. 2002;31:277–87.

    Article  PubMed  Google Scholar 

  140. Gal E, London M, Globerson A, Ramaswamy S, Reimann MW, Muller E, et al. Rich cell-type-specific network topology in neocortical microcircuitry. Nat Neurosci. 2017;20:1004–13.

    Article  CAS  PubMed  Google Scholar 

  141. Kim Y, Yang GR, Pradhan K, Venkataraju KU, Bota M, Garcia Del Molino LC, et al. Brain-wide maps reveal stereotyped cell-type-based cortical architecture and subcortical sexual dimorphism. Cell. 2017;171:456 e422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Rotaru DC, Barrionuevo G, Sesack SR. Mediodorsal thalamic afferents to layer III of the rat prefrontal cortex: Synaptic relationships to subclasses of interneurons. J Comp Neurol. 2005;490:220–38.

    Article  PubMed  Google Scholar 

  143. Kuroda M, Murakami K, Kishi K, Price JL. Thalamocortical synapses between axons from the mediodorsal thalamic nucleus and pyramidal cells in the prelimbic cortex of the rat. J Comp Neurol. 1995;356:143–51.

    Article  CAS  PubMed  Google Scholar 

  144. Morris HM, Hashimoto T, Lewis DA. Alterations in somatostatin mRNA expression in the dorsolateral prefrontal cortex of subjects with schizophrenia or schizoaffective disorder. Cereb Cortex. 2008;18:1575–87.

    Article  PubMed  Google Scholar 

  145. Pi H-J, Hangya B, Kvitsiani D, Sanders JI, Huang ZJ, Kepecs A. Cortical interneurons that specialize in disinhibitory control. Nature. 2013;503:521–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Chevy Q, Kepecs A. When acetylcholine unlocks feedback inhibition in cortex. Neuron. 2018;97:481–4.

    Article  CAS  PubMed  Google Scholar 

  147. Urban-Ciecko J, Jouhanneau J-S, Myal SE, Poulet JFA, Barth AL. Precisely timed nicotinic activation drives SST inhibition in neocortical circuits. Neuron. 2018;97:611. e615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Chung DW, Wills ZP, Fish KN, Lewis DA. Developmental pruning of excitatory synaptic inputs to parvalbumin interneurons in monkey prefrontal cortex. Proc Natl Acad Sci USA. 2017;114:E629–e637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wen L, Lu Y-S, Zhu X-H, Li X-M, Woo R-S, Chen Y-J, et al. Neuregulin 1 regulates pyramidal neuron activity via ErbB4 in parvalbumin-positive interneurons. PNAS. 2010;107:1211–6. vol.pp.

    Article  CAS  PubMed  Google Scholar 

  150. Yin D-M, Sun X-D, Bean JC, Lin TW, Sathyamurthy A, Xiong W-C, et al. Regulation of spine formation by ErbB4 in PV-positive interneurons. J Neurosci. 2013;33:19295–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Bean JC, Lin TW, Sathyamurthy A, Liu F, Yin D-M, Xiong W-C, et al. Genetic labeling reveals novel cellular targets of schizophrenia susceptibility gene: distribution of GABA and Non-GABA ErbB4-positive cells in adult mouse brain. J Neurosci. 2014;34:13549–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Chung DW, Fish KN, Lewis DA. Pathological basis for deficient excitatory drive to cortical parvalbumin interneurons in schizophrenia. Am J Psychiatry. 2016;173:1131–9.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Li B, Woo R-S, Mei L, Malinow R. The neuregulin-1 receptor erbB4 controls glutamatergic synapse maturation and plasticity. Neuron. 2007;54:583–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wang M, Yang Y, Wang C-J, Gamo NJ, Jin LE, Mazer JA, et al. NMDA receptors subserve persistent neuronal firing during working memory in dorsolateral prefrontal cortex. Neuron. 2013;77:736–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Wang HX, GGr Stradtman, Wang XJ, Gao WJ. A specialized NMDA receptor function in layer 5 recurrent microcircuitry of the adult rat prefrontal cortex. Proc Nat Acad Sci USA. 2008;105:16791–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wang X-J. Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. J Neurosci. 1999;19:9587–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Rotaru DC, Lewis DA, Gonzalez-Burgos G. The role of glutamatergic inputs onto parvalbumin-positive interneurons: relevance for schizophrenia. Rev Neurosci. 2012;23:97–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Fernandes D, Carvalho AL. Mechanisms of homeostatic plasticity in the excitatory synapse. J Neurochemistry. 2016;139:973–96.

    Article  CAS  Google Scholar 

  159. Barnes Samuel J, Sammons Rosanna P, Jacobsen RI, Mackie J, Keller Georg B, Keck T. Subnetwork-specific homeostatic plasticity in mouse visual cortex in vivo. Neuron. 2015;86:1290–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. van Versendaal D, Levelt CN. Inhibitory interneurons in visual cortical plasticity. Cell Mol Life Sci. 2016;73:3677–91.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Ultanir SK, Kim J-E, Hall BJ, Deerinck T, Ellisman M, Ghosh A. Regulation of spine morphology and spine density by NMDA receptor signaling in vivo. Proc Natl Acad Sci. 2007;104:19553–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Alvarez VA, Ridenour DA, Sabatini BL. Distinct structural and ionotropic roles of NMDA receptors in controlling spine and synapse stability. J Neurosci. 2007;27:7365–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Flores C, Wen X, Labelle-Dumais C, Kolb B. Chronic phencyclidine treatment increases dendritic spine density in prefrontal cortex and nucleus accumbens neurons. Synapse. 2007;61:978–84.

    Article  CAS  PubMed  Google Scholar 

  164. Hajszan T, Leranth C, Roth RH. Subchronic phencyclidine treatment decreases the number of dendritic spine synapses in the rat prefrontal cortex. Biol Psychiatry. 2006;60:639–44.

    Article  CAS  PubMed  Google Scholar 

  165. Li N, Lee B, Liu R-J, Banasr M, Dwyer JM, Iwata M, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science. 2010;329:959–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Moda-Sava RN, Murdock MH, Parekh PK, Fetcho RN, Huang BS, Huynh TN, et al. Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation. Science. 2019;364:eaat8078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ma L, Skoblenick K, Seamans JK, Everling S. Ketamine-induced changes in the signal and noise of rule representation in working memory by lateral prefrontal neurons. J Neurosci. 2015;35:11612–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Skoblenick K, Everling S. NMDA antagonist ketamine reduces task selectivity in macaque dorsolateral prefrontal neurons and impairs performance of randomly interleaved prosaccades and antisaccades. J Neurosci. 2012;32:12018–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Škovierová H, Vidomanová E, Mahmood S, Sopková J, Drgová A, Červeňová T, et al. The molecular and cellular effect of homocysteine metabolism imbalance on human health. Int J Mol Sci. 2016;17:1733.

    Article  PubMed Central  Google Scholar 

  170. Wang M, Arnsten AF. Contribution of NMDA receptors to dorsolateral prefrontal cortical networks in primates. Neurosci Bull. 2015;31:191–7.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Gilmour G, Dix S, Fellini L, Gastambide F, Plath N, Steckler T, et al. NMDA receptors, cognition and schizophrenia-testing the validity of the NMDA receptor hypofunction hypothesis. Neuropharmacology. 2012;62:1401–12.

    Article  CAS  PubMed  Google Scholar 

  172. Roberts BM, Holden DE, Shaffer CL, Seymour PA, Menniti FS, Schmidt CJ, et al. Prevention of ketamine-induced working memory impairments by AMPA potentiators in a nonhuman primate model of cognitive dysfunction. Behav Brain Res. 2010;212:41–8.

  173. Stoet G, Snyder LH. Effects of the NMDA antagonist ketamine on task-switching performance: evidence for specific impairments of executive control. Neuropsychopharmacol. 2006;31:1675–81.

    Article  CAS  Google Scholar 

  174. Condy C, Wattiez N, Rivaud-Péchoux S, Gaymard B. Ketamine-induced distractibility: an oculomotor study in monkeys. Biol Psychiatry. 2005;57:366–72.

    Article  CAS  PubMed  Google Scholar 

  175. Buccafusco JJ, Terry AV Jr. A reversible model of the cognitive impairment associated with schizophrenia in monkeys: potential therapeutic effects of two nicotinic acetylcholine receptor agonists. Biochemical Pharmacol. 2009;78:852–62.

    Article  CAS  Google Scholar 

  176. Taffe MA, Davis SA, Gutierrez T, Gold LH. Ketamine impairs multiple cognitive domains in rhesus monkeys. Drug Alcohol Depend. 2002;68:175–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Driesen NR, McCarthy G, Bhagwagar Z, Bloch M, Calhoun V, D’souza DC, et al. Relationship of resting brain hyperconnectivity and schizophrenia-like symptoms produced by the NMDA receptor antagonist ketamine in humans. Mol psychiatry. 2013;18:1199–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Driesen NR, McCarthy G, Bhagwagar Z, Bloch MH, Calhoun VD, D’souza DC, et al. The Impact of NMDA Receptor Blockade on Human Working Memory-Related Prefrontal Function and Connectivity. Neuropsychopharmacol. 2013;38:2613–22.

    Article  CAS  Google Scholar 

  179. Zick JL, Blackman RK, Crowe DA, Amirikian B, DeNicola AL, Netoff TI, et al. Blocking NMDAR disrupts spike timing and decouples monkey prefrontal circuits: implications for activity-dependent disconnection in schizophrenia. Neuron. 2018;98:1243–e1245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Cavanagh SE, Lam NH, Murray JD, Hunt LT, Kennerley SW. A circuit mechanism for decision-making biases and NMDA receptor hypofunction. Elife. 2020;9:e53664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Kummerfeld E, Ma S, Blackman RK, DeNicola AL, Redish AD, Vinogradov S, et al. Cognitive control errors in nonhuman primates resembling those in schizophrenia reflect opposing effects of NMDA receptor blockade on causal interactions between cells and circuits in prefrontal and parietal cortices. Biol Psychiatry. 2020;5:705–14.

    Google Scholar 

  182. Duncan NW, Wiebking C, Tiret B, Marjańska M, Hayes DJ, Lyttleton O, et al. Glutamate concentration in the medial prefrontal cortex predicts resting-state cortical-subcortical functional connectivity in humans. Plos One. 2013;8:e60312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Braun U, Schäfer A, Bassett DS, Rausch F, Schweiger JI, Bilek E, et al. Dynamic brain network reconfiguration as a potential schizophrenia genetic risk mechanism modulated by NMDA receptor function. Proc Natl Acad Sci. 2016;113:12568–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Gonzalez-Burgos G, Kroener S, Zaitsev AV, Povysheva NV, Krimer LS, Barrionuevo G, et al. Functional maturation of excitatory synapses in layer 3 pyramidal neurons during postnatal development of the primate prefrontal cortex. Cereb Cortex. 2008;18:626–37.

    Article  PubMed  Google Scholar 

  185. Wang HX, Gao WJ. Development of calcium-permeable AMPA receptors and their correlation with NMDA receptors in fast-spiking interneurons of rat prefrontal cortex. J Physiol. 2010;588:2823–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Lau CG, Zukin RS. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci. 2007;8:413–26.

    Article  CAS  PubMed  Google Scholar 

  187. Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci. 2013;14:383–400.

    Article  CAS  PubMed  Google Scholar 

  188. Hunt DL, Castillo PE. Synaptic plasticity of NMDA receptors: mechanisms and functional implications. Curr Opin Neurobiol. 2012;22:496–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Li W, Pozzo-Miller L. Differences in GluN2B-containing NMDA receptors result in distinct long-term plasticity at ipsilateral versus contralateral cortico-striatal synapses. eNeuro. 2019;6:0118–0119. ENEURO2019.

    Article  Google Scholar 

  190. Lewis DA, Curley AA, Glausier JR, Volk DW. Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci. 2012;35:57–67.

    Article  CAS  PubMed  Google Scholar 

  191. Krystal JH, D’Souza DC, Mathalon D, Perry E, Belger A, Hoffman R. NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacology. 2003;169:215–33.

    Article  CAS  PubMed  Google Scholar 

  192. Homayoun H, Moghaddam B. NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci. 2007;27:11496–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Burt JB, Demirtaş M, Eckner WJ, Navejar NM, Ji JL, Martin WJ, et al. Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography. Nat Neurosci. 2018;21:1251–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Chiu AM, Wang J, Fiske MP, Hubalkova P, Barse L, Gray JA, et al. NMDAR-activated PP1 dephosphorylates GluN2B to modulate NMDAR synaptic content. Cell Rep. 2019;e5:332–41.

    Article  Google Scholar 

  195. Kyrke-Smith M, Williams JM. Bridging synaptic and epigenetic maintenance mechanisms of the engram. Front Mol Neurosci. 2018;11:369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Galanis C, Vlachos A. Hebbian and homeostatic synaptic plasticity—do alterations of one reflect enhancement of the other? Front Cell Neurosci. 2020;14:50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Lee H-K, Kirkwood A. Mechanisms of homeostatic synaptic plasticity in vivo. Front Cell Neurosci. 2019;13:520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Keck T, Hübener M, Bonhoeffer T. Interactions between synaptic homeostatic mechanisms: an attempt to reconcile BCM theory, synaptic scaling, and changing excitation/inhibition balance. Curr Opin Neurobiol. 2017;43:87–93.

    Article  CAS  PubMed  Google Scholar 

  199. Keck T, Toyoizumi T, Chen L, Doiron B, Feldman DE, Fox K, et al. Integrating Hebbian and homeostatic plasticity: the current state of the field and future research directions. Philos Trans R Soc Lond B Biol Sci. 2017;372:20160158.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Turrigiano GG, Nelson SB. Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci. 2004;5:97–107.

    Article  CAS  PubMed  Google Scholar 

  201. Turrigiano G. Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annu Rev Neurosci. 2011;34:89–103.

    Article  CAS  PubMed  Google Scholar 

  202. Perez-Otano I, Ehlers MD. Homeostatic plasticity and NMDA receptor trafficking. Trends Neurosci. 2005;28:229–38.

    Article  CAS  PubMed  Google Scholar 

  203. Schaukowitch K, Reese AL, Kim S-K, Kilaru G, Joo J-Y, Kavalali ET, et al. An intrinsic transcriptional program underlying synaptic scaling during activity suppression. Cell Rep. 2017;18:1512–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Watt AJ, Sjostrom PJ, Hausser M, Nelson SB, Turrigiano GG. A proportional but slower NMDA potentiation follows AMPA potentiation in LTP. Nat Neurosci. 2004;7:518–24.

    Article  CAS  PubMed  Google Scholar 

  205. Watt AJ, van Rossum MC, MacLeod KM, Nelson SB, Turrigiano GG. Activity coregulates quantal AMPA and NMDA currents at neocortical synapses. Neuron. 2000;26:659–70.

    Article  CAS  PubMed  Google Scholar 

  206. Castillo PE, Chiu CQ, Carroll RC. Long-term plasticity at inhibitory synapses. Curr Opin Neurobiol. 2011;21:328–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Rebola N, Srikumar BN, Mulle C. Activity-dependent synaptic plasticity of NMDA receptors. J Physiol. 2010;588:93–9.

    Article  CAS  PubMed  Google Scholar 

  208. Rodriguez G, Mesik L, Gao M, Parkins S, Saha R, Lee HK. Disruption of NMDAR function prevents normal experience-dependent homeostatic synaptic plasticity in mouse primary visual cortex. J Neurosci. 2019;39:7664–73.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Puścian A, Benisty H, Higley MJ. NMDAR-dependent emergence of behavioral representation in primary visual cortex. Cell Rep. 2020;32:107970.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Forsyth JK, Bachman P, Mathalon DH, Roach BJ, Asarnow RF. Augmenting NMDA receptor signaling boosts experience-dependent neuroplasticity in the adult human brain. Proc Natl Acad Sci. 2015;112:15331–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Mathew SS, Hablitz JJ. Presynaptic NMDA receptors mediate IPSC potentiation at GABAergic synapses in developing rat neocortex. PLoS One. 2011;6:e17311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Bouvier G, Larsen RS, Rodríguez-Moreno A, Paulsen O, Sjöström PJ. Towards resolving the presynaptic NMDA receptor debate. Curr Opin Neurobiol. 2018;51:1–7.

    Article  CAS  PubMed  Google Scholar 

  213. Sjostrom PJ, Turrigiano GG, Nelson SB. Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors. Neuron. 2003;39:641–54.

    Article  PubMed  Google Scholar 

  214. Corlew R, Brasier DJ, Feldman DE, Philpot BD. Presynaptic NMDA receptors: newly appreciated roles in cortical synaptic function and plasticity. Neuroscientist. 2008;14:609–25.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Banerjee A, Larsen RS, Philpot BD, Paulsen O. Roles of presynaptic NMDA receptors in neurotransmission and plasticity. Trends Neurosci. 2016;39:26–39.

    Article  CAS  PubMed  Google Scholar 

  216. Rodriguez-Moreno A, Paulsen O. Spike timing-dependent long-term depression requires presynaptic NMDA receptors. Nat Neurosci. 2008;11:744–5.

    Article  CAS  PubMed  Google Scholar 

  217. McGuinness L, Taylor C, Taylor RD, Yau C, Langenhan T, Hart ML, et al. Presynaptic NMDARs in the hippocampus facilitate transmitter release at theta frequency. Neuron. 2010;68:1109–27.

    Article  CAS  PubMed  Google Scholar 

  218. Park H, Popescu A, Poo M-m. Essential role of presynaptic NMDA receptors in activity-dependent BDNF secretion and corticostriatal LTP. Neuron. 2014;84:1009–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Larsen RS, Corlew RJ, Henson MA, Roberts AC, Mishina M, Watanabe M, et al. NR3A-containing NMDARs promote neurotransmitter release and spike timing-dependent plasticity. Nat Neurosci. 2011;14:338–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Kesner P, Schohl A, Warren EC, Ma F, Ruthazer ES. Postsynaptic and presynaptic NMDARs have distinct roles in visual circuit development. Cell Rep. 2020;32:107955.

    Article  CAS  PubMed  Google Scholar 

  221. Wang HX, Gao WJ. Prolonged exposure to NMDAR antagonist induces cell-type specific changes of glutamatergic receptors in rat prefrontal cortex. Neuropharmacology. 2012;62:1808–22.

    Article  CAS  PubMed  Google Scholar 

  222. Rebola N, Carta M, Lanore F, Blanchet C, Mulle C. NMDA receptor-dependent metaplasticity at hippocampal mossy fiber synapses. Nat Neurosci. 2011;14:691–3.

    Article  CAS  PubMed  Google Scholar 

  223. Lee M-C, Yasuda R, Ehlers MD. Metaplasticity at single glutamatergic synapses. Neuron. 2010;66:859–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Keck T, Keller Georg B, Jacobsen RI, Eysel Ulf T, Bonhoeffer T, Hübener M. Synaptic scaling and homeostatic plasticity in the mouse visual cortex in vivo. Neuron. 2013;80:327–34.

    Article  CAS  PubMed  Google Scholar 

  225. Soares C, Lee KFH, Béïque J-C. Metaplasticity at CA1 synapses by homeostatic control of presynaptic release dynamics. Cell Rep. 2017;21:1293–303.

    Article  CAS  PubMed  Google Scholar 

  226. Abraham WC. Metaplasticity: tuning synapses and networks for plasticity. Nat Rev Neurosci. 2008;9:387.

    Article  CAS  PubMed  Google Scholar 

  227. Wenner P. Mechanisms of GABAergic homeostatic plasticity. Neural Plasticity. 2011;2011:489470.

    Article  PubMed  PubMed Central  Google Scholar 

  228. Udakis M, Pedrosa V, Chamberlain SEL, Clopath C, Mellor JR. Interneuron-specific plasticity at parvalbumin and somatostatin inhibitory synapses onto CA1 pyramidal neurons shapes hippocampal output. Nat Commun. 2020;11:4395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Abraham WC, Bear MF. Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 1996;19:126–30.

    Article  CAS  PubMed  Google Scholar 

  230. Abraham WC, Richter-Levin G. From synaptic metaplasticity to behavioral metaplasticity. Neurobiol Learn Mem. 2018;154:1–4.

    Article  PubMed  Google Scholar 

  231. Matthews GA, Tye KM. Neural mechanisms of social homeostasis. Ann N. Y Acad Sci. 2019;1457:5–25.

    Article  PubMed  PubMed Central  Google Scholar 

  232. Wefelmeyer W, Puhl CJ, Burrone J. Homeostatic plasticity of subcellular neuronal structures: from inputs to outputs. Trends Neurosci. 2016;39:656–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Vormstein-Schneider D, Lin JD, Pelkey KA, Chittajallu R, Guo B, Arias-Garcia MA, et al. Viral manipulation of functionally distinct interneurons in mice, non-human primates and humans. Nat Neurosci. 2020;23:1629–36.

  234. Sun Q, Li X, Ren M, Zhao M, Zhong Q, Ren Y, et al. A whole-brain map of long-range inputs to GABAergic interneurons in the mouse medial prefrontal cortex. Nat Neurosci. 2019;22:1357–70.

    Article  CAS  PubMed  Google Scholar 

  235. Ährlund-Richter S, Xuan Y, van Lunteren JA, Kim H, Ortiz C, Pollak Dorocic I, et al. A whole-brain atlas of monosynaptic input targeting four different cell types in the medial prefrontal cortex of the mouse. Nat Neurosci. 2019;22:657–68.

    Article  PubMed  Google Scholar 

  236. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10:57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Schwarz LA, Miyamichi K, Gao XJ, Beier KT, Weissbourd B, DeLoach KE, et al. Viral-genetic tracing of the input-output organization of a central noradrenaline circuit. Nature. 2015;524:88–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Beier KT, Steinberg EE, Deloach KE, Xie S, Miyamichi K, Schwarz L, et al. Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping. Cell. 2015;162:622–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Lee D, Creed M, Jung K, Stefanelli T, Wendler DJ, Oh WC, et al. Temporally precise labeling and control of neuromodulatory circuits in the mammalian brain. Nat Methods. 2017;14:495–503.

    Article  CAS  PubMed  Google Scholar 

  240. Deisseroth K, Hegemann P. The form and function of channelrhodopsin. Science. 2017;357:eaan5544.

    Article  PubMed  PubMed Central  Google Scholar 

  241. Roth Bryan L. DREADDs for neuroscientists. Neuron. 2016;89:683–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Dana H, Sun Y, Mohar B, Hulse BK, Kerlin AM, Hasseman JP, et al. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat Methods. 2019;16:649–57.

    Article  CAS  PubMed  Google Scholar 

  243. Sun F, Zeng J, Jing M, Zhou J, Feng J, Owen SF, et al. A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell. 2018;174:481. e419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Dedoncker J, Baeken C, De Raedt R, Vanderhasselt MA. Combined transcranial direct current stimulation and psychological interventions: State of the art and promising perspectives for clinical psychology. Biol Psychol. 2020;158:107991.

    Article  PubMed  Google Scholar 

  245. ssUhlhaas PJ, Singer W. Oscillations and neuronal dynamics in schizophrenia: the search for basic symptoms and translational opportunities. Biol psychiatry. 2015;77:1001–9.

    Article  PubMed  Google Scholar 

  246. Hong LE, Summerfelt A, Buchanan RW, O’donnell P, Thaker GK, Weiler MA, et al. Gamma and delta neural oscillations and association with clinical symptoms under subanesthetic ketamine. Neuropsychopharmacol. 2010;35:632–40.

    Article  Google Scholar 

  247. Shaw AD, Knight L, Freeman TCA, Williams GM, Moran RJ, Friston KJ, et al. Oscillatory, computational, and behavioral evidence for impaired GABAergic inhibition in schizophrenia. Schizophr Bull. 2020;46:345–53.

    PubMed  Google Scholar 

  248. Kuroda MYJ, Oda S, Price JL. Synaptic relationships between axon terminals from the mediodorsal thalamic nucleus and gamma-aminobutyric acidergic cortical cells in the prelimbic cortex of the rat. J Comp Neurol. 2004;477:220–34.

    Article  CAS  PubMed  Google Scholar 

  249. Xi D, Zhang W, Wang HX, Stradtman GG, Gao WJ. Dizocilpine (MK-801) induces distinct changes of N-methyl-d-aspartic acid receptor subunits in parvalbumin-containing interneurons in young adult rat prefrontal cortex. Int J Neuropsychopharmacol. 2009;12:1395–408.

    Article  CAS  PubMed  Google Scholar 

  250. Insel TR. Rethinking schizophrenia. Nature. 2010;468:187–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by NIH R21MH110678, the NIH R01MH085666, NARSAD Independent Award 2015, and Pennsylvania Commonwealth 4100072545 (CURE 2016) to WJG.

Author information

Authors and Affiliations

Authors

Contributions

WJG, SSY, NRM, and LAC wrote and edited the manuscript.

Corresponding author

Correspondence to Wen-Jun Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, WJ., Yang, SS., Mack, N.R. et al. Aberrant maturation and connectivity of prefrontal cortex in schizophrenia—contribution of NMDA receptor development and hypofunction. Mol Psychiatry 27, 731–743 (2022). https://doi.org/10.1038/s41380-021-01196-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01196-w

This article is cited by

Search

Quick links