Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuroadaptations and TGF-β signaling: emerging role in models of neuropsychiatric disorders

Abstract

Neuropsychiatric diseases are manifested by maladaptive behavioral plasticity. Despite the greater understanding of the neuroplasticity underlying behavioral adaptations, pinpointing precise cellular mediators has remained elusive. This has stymied the development of pharmacological interventions to combat these disorders both at the level of progression and relapse. With increased knowledge on the putative role of the transforming growth factor (TGF- β) family of proteins in mediating diverse neuroadaptations, the influence of TGF-β signaling in regulating maladaptive cellular and behavioral plasticity underlying neuropsychiatric disorders is being increasingly elucidated. The current review is focused on what is currently known about the TGF-β signaling in the central nervous system in mediating cellular and behavioral plasticity related to neuropsychiatric manifestations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The TGF-β family of proteins mediates brain region-specific divergent neuroadaptations involving dysregulated ubiquitin proteasomal system, abnormal chromatin remodeling, and altered transcriptional and synaptic mechanisms underlying cocaine-induced plasticity.
Fig. 2: Temporal functionality of TGF-β family of proteins across neural substrates underlying cocaine-induced plasticity.

Similar content being viewed by others

References

  1. Diehl MM, Lempert KM, Parr AC, Ballard I, Steele VR, Smith DV. Toward an integrative perspective on the neural mechanisms underlying persistent maladaptive behaviors. Eur J Neurosci. 2018;48:1870–83.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Volkow ND, Koob GF, McLellan AT. Neurobiologic Advances from the Brain Disease Model of Addiction. N Engl J Med. 2016;374:363–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stojek MMK, MacKillop J. Relative reinforcing value of food and delayed reward discounting in obesity and disordered eating: a systematic review. Clin Psychol Rev. 2017;55:1–11.

    Article  PubMed  Google Scholar 

  4. Hsu WL, Ma YL, Liu YC, Lee EHY. Smad4 SUMOylation is essential for memory formation through upregulation of the skeletal myopathy gene TPM2. BMC Biol. 2017;15:112.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shobe J, Philips GT, Carew TJ. Transforming growth factor β recruits persistent MAPK signaling to regulate long-term memory consolidation in Aplysia californica. Learn Mem. 2016;23:182–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Caraci F, Gulisano W, Guida CA, Impellizzeri AA, Drago F, Puzzo D, et al. A key role for TGF-β1 in hippocampal synaptic plasticity and memory. Sci Rep. 2015;5:11252.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Park AJ, Havekes R, Fu X, Hansen R, Tudor JC, Peixoto L, et al. Learning induces the translin/trax RNase complex to express activin receptors for persistent memory. eLife. 2017;6:e27872.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113:685–700.

    Article  CAS  PubMed  Google Scholar 

  9. Heldin C-H, Moustakas A. Signaling receptors for TGF-β family members. Cold Spring Harb Perspect Biol. 2016;8:a022053.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Okada K, Hashimoto K, Iwata Y, Nakamura K, Tsujii M, Tsuchiya KJ, et al. Decreased serum levels of transforming growth factor-beta1 in patients with autism. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31:187–90.

    Article  CAS  PubMed  Google Scholar 

  11. Kim YK, Myint AM, Lee BH, Han CS, Lee HJ, Kim DJ, et al. Th1, Th2 and Th3 cytokine alteration in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2004;28:1129–34.

    Article  CAS  PubMed  Google Scholar 

  12. Vawter MP, Dillon-Carter O, Tourtellotte WW, Carvey P, Freed WJTGFbeta1. and TGFbeta2 concentrations are elevated in Parkinson’s disease in ventricular cerebrospinal fluid. Exp Neurol. 1996;142:313–22.

    Article  CAS  PubMed  Google Scholar 

  13. Kupershmidt L, Amit T, Bar-Am O, Youdim MB, Blumenfeld Z. The neuroprotective effect of Activin A and B: implication for neurodegenerative diseases. J Neurochem. 2007;103:962–71.

    Article  CAS  PubMed  Google Scholar 

  14. Massagué J. TGFβ signalling in context. Nat Rev Mol Cell Biol. 2012;13:616–30.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Moustakas A, Heldin C-H. Non-Smad TGF-β signals. J Cell Sci. 2005;118:3573–84.

    Article  CAS  PubMed  Google Scholar 

  16. Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, et al. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). Jama. 2003;289:3095–105.

    Article  PubMed  Google Scholar 

  17. Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005;62:617–27.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Davis MT, Holmes SE, Pietrzak RH, Esterlis I Neurobiology of chronic stress-related psychiatric disorders: evidence from molecular imaging studies. Chronic Stress (Thousand Oaks) 2017;1:2470547017710916.

  19. Nemeroff CB, Owens MJ. Treatment of mood disorders. Nat Neurosci. 2002;5:1068–70.

    Article  CAS  PubMed  Google Scholar 

  20. Ganea K, Menke A, Schmidt MV, Lucae S, Rammes G, Liebl C, et al. Convergent animal and human evidence suggests the activin/inhibin pathway to be involved in antidepressant response. Transl Psychiatry. 2012;2:e177–e177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kutlu MG, Gould TJ. Effects of drugs of abuse on hippocampal plasticity and hippocampus-dependent learning and memory: contributions to development and maintenance of addiction. Learn Mem (Cold Spring Harb, NY). 2016;23:515–33.

    Article  CAS  Google Scholar 

  22. Jun H, Mohammed Q, Hussaini S, Rigby MJ, Jang MH. Functional role of adult hippocampal neurogenesis as a therapeutic strategy for mental disorders. Neural Plast. 2012;2012:854285

    Article  PubMed  PubMed Central  Google Scholar 

  23. Eisch AJ, Petrik D. Depression and hippocampal neurogenesis: a road to remission? Science. 2012;338:72–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Boldrini M, Santiago AN, Hen R, Dwork AJ, Rosoklija GB, Tamir H, et al. Hippocampal granule neuron number and dentate gyrus volume in antidepressant-treated and untreated major depression. Neuropsychopharmacology. 2013;38:1068–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Treadway MT, Waskom ML, Dillon DG, Holmes AJ, Park MTM, Chakravarty MM, et al. Illness progression, recent stress, and morphometry of hippocampal subfields and medial prefrontal cortex in major depression. Biol Psychiatry. 2015;77:285–94.

    Article  PubMed  Google Scholar 

  26. Samuels BA, Anacker C, Hu A, Levinstein MR, Pickenhagen A, Tsetsenis T, et al. 5-HT1A receptors on mature dentate gyrus granule cells are critical for the antidepressant response. Nat Neurosci. 2015;18:1606–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci. 2000;20:9104–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang JW, David DJ, Monckton JE, Battaglia F, Hen R. Chronic fluoxetine stimulates maturation and synaptic plasticity of adult-born hippocampal granule cells. J Neurosci. 2008;28:1374–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bai J, Xi Q. Crosstalk between TGF-β signaling and epigenome. Acta Biochimica et Biophysica Sin. 2018;50:60–67.

    Article  CAS  Google Scholar 

  30. Dow AL, Russell DS, Duman RS. Regulation of activin mRNA and Smad2 phosphorylation by antidepressant treatment in the rat brain: effects in behavioral models. J Neurosci. 2005;25:4908–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gergues MM, Yohn CN, Bharadia A, Levinstein MR, Samuels BA. Dentate gyrus activin signaling mediates the antidepressant response. Transl Psychiatry. 2021;11:7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Link AS, Kurinna S, Havlicek S, Lehnert S, Reichel M, Kornhuber J, et al. Kdm6b and Pmepa1 as Targets of Bioelectrically and Behaviorally Induced Activin A Signaling. Mol Neurobiol. 2016;53:4210–25.

    Article  CAS  PubMed  Google Scholar 

  33. Baxter PS, Dando O, Emelianova K, He X, McKay S, Hardingham GE, et al. Microglial identity and inflammatory responses are controlled by the combined effects of neurons and astrocytes. Cell Rep. 2021;34:108882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tang Y, Li T, Li J, Yang J, Liu H, Zhang XJ, et al. Jmjd3 is essential for the epigenetic modulation of microglia phenotypes in the immune pathogenesis of Parkinson’s disease. Cell Death Differ. 2014;21:369–80.

    Article  CAS  PubMed  Google Scholar 

  35. Cheray M, Joseph B Epigenetics control microglia plasticity. Front Cell Neurosci. 2018;12:243.

  36. Zhang X, Liu L, Yuan X, Wei Y, Wei X. JMJD3 in the regulation of human diseases. Protein Cell. 2019;10:864–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Frick LR, Williams K, Pittenger C. Microglial dysregulation in psychiatric disease. Clin Dev Immunol. 2013;2013:608654.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jones BDM, Daskalakis ZJ, Carvalho AF, Strawbridge R, Young AH, Mulsant BH, et al. Inflammation as a treatment target in mood disorders: review. BJPsych Open. 2020;6:e60–e60.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Brooker SM, Gobeske KT, Chen J, Peng C-Y, Kessler JA. Hippocampal bone morphogenetic protein signaling mediates behavioral effects of antidepressant treatment. Mol psychiatry. 2017;22:910–9.

    Article  CAS  PubMed  Google Scholar 

  40. Ageta H, Murayama A, Migishima R, Kida S, Tsuchida K, Yokoyama M, et al. Activin in the brain modulates anxiety-related behavior and adult neurogenesis. PLOS ONE. 2008;3:e1869.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cryan JF, Holmes A. The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Disco. 2005;4:775–90.

    Article  CAS  Google Scholar 

  42. Kalueff AV, Wheaton M, Murphy DL. What’s wrong with my mouse model? Advances and strategies in animal modeling of anxiety and depression. Behav Brain Res. 2007;179:1–18.

    Article  CAS  PubMed  Google Scholar 

  43. Mori A, Ohashi S, Nakai M, Moriizumi T, Mitsumoto Y. Neural mechanisms underlying motor dysfunction as detected by the tail suspension test in MPTP-treated C57BL/6 mice. Neurosci Res. 2005;51:265–74.

    Article  CAS  PubMed  Google Scholar 

  44. McNaughton N. Cognitive dysfunction resulting from hippocampal hyperactivity-a possible cause of anxiety disorder? Pharm Biochem Behav. 1997;56:603–11.

    Article  CAS  Google Scholar 

  45. Tsetsenis T, Ma X-H, Lo Iacono L, Beck SG, Gross C. Suppression of conditioning to ambiguous cues by pharmacogenetic inhibition of the dentate gyrus. Nat Neurosci. 2007;10:896–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Revest JM, Dupret D, Koehl M, Funk-Reiter C, Grosjean N, Piazza PV, et al. Adult hippocampal neurogenesis is involved in anxiety-related behaviors. Mol Psychiatry. 2009;14:959–67.

    Article  PubMed  Google Scholar 

  47. Qiu A, Zhang H, Wang C, Chong Y-S, Shek LP, Gluckman PD, et al. Canonical TGF-β signaling regulates the relationship between prenatal maternal depression and amygdala development in early life. Transl Psychiatry. 2021;11:170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Luo Z-Y, Huang L, Lin S, Yin Y-N, Jie W, Hu N-Y, et al. Erbin in amygdala parvalbumin-positive neurons modulates anxiety-like behaviors. Biol Psychiatry. 2020;87:926–36.

    Article  CAS  PubMed  Google Scholar 

  49. Tao Y, Dai P, Liu Y, Marchetto S, Xiong WC, Borg JP, et al. Erbin regulates NRG1 signaling and myelination. Proc Natl Acad Sci USA. 2009;106:9477–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Degenhardt L, Chiu W-T, Sampson N, Kessler RC, Anthony JC, Angermeyer M, et al. Toward a global view of alcohol, tobacco, cannabis, and cocaine use: findings from the WHO World Mental Health Surveys. PLOS Med. 2008;5:e141.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Koob GF, Le Moal M. Drug abuse: hedonic homeostatic dysregulation. Science. 1997;278:52–58.

    Article  CAS  PubMed  Google Scholar 

  52. Association AP The diagnostic and statistical manual of mental disorders. American Psychiatric Press, Washington DC 2013; 5th edition.

  53. Adinoff B. Neurobiologic processes in drug reward and addiction. Harv Rev Psychiatry. 2004;12:305–20.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Belin-Rauscent A, Fouyssac M, Bonci A, Belin D. How preclinical models evolved to resemble the diagnostic criteria of drug addiction. Biol Psychiatry. 2016;79:39–46.

    Article  PubMed  Google Scholar 

  55. Robison AJ, Nestler EJ. Transcriptional and epigenetic mechanisms of addiction. Nat Rev Neurosci. 2011;12:623–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nestler EJ. Epigenetic mechanisms of drug addiction. Neuropharmacology. 2014;76 Pt B:259–68.

    Article  PubMed  Google Scholar 

  57. Dong Y, Taylor JR, Wolf ME, Shaham Y. Circuit and synaptic plasticity mechanisms of drug relapse. J Neurosci. 2017;37:10867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Werner CT, Mitra S, Martin JA, Stewart AF, Lepack AE, Ramakrishnan A, et al. Ubiquitin-proteasomal regulation of chromatin remodeler INO80 in the nucleus accumbens mediates persistent cocaine craving. Sci Adv. 2019;5:eaay0351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Werner CT, Viswanathan R, Martin JA, Gobira PH, Mitra S, Thomas SA, et al. E3 ubiquitin-protein ligase SMURF1 in the nucleus accumbens mediates cocaine seeking. Biol Psychiatry. 2018;84:881–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Spiga S, Mulas G, Piras F, Diana M. The “addicted” spine. Front Neuroanat. 2014;8:110–110.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Scofield MD, Heinsbroek JA, Gipson CD, Kupchik YM, Spencer S, Smith ACW, et al. The nucleus accumbens: mechanisms of addiction across drug classes reflect the importance of glutamate homeostasis. Pharm Rev. 2016;68:816–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kawaguchi Y, Wilson CJ, Augood SJ, Emson PC. Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci. 1995;18:527–35.

    Article  CAS  PubMed  Google Scholar 

  63. Tepper JM, Koós T, Ibanez-Sandoval O, Tecuapetla F, Faust TW, Assous M. Heterogeneity and diversity of striatal GABAergic interneurons: update 2018. Front Neuroanat. 2018;12:91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gerfen CR, Surmeier DJ. Modulation of striatal projection systems by dopamine. Annu Rev Neurosci. 2011;34:441–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Haber SN. The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat. 2003;26:317–30.

    Article  PubMed  Google Scholar 

  66. Groenewegen HJ, Wright CI, Beijer AVJ, Voorn P. Convergence and segregation of ventral striatal inputs and outputs. Ann NY Acad Sci. 1999;877:49–63.

    Article  CAS  PubMed  Google Scholar 

  67. Heimer L, Alheid GF, de Olmos JS, Groenewegen HJ, Haber SN, Harlan RE, et al. The accumbens: beyond the core-shell dichotomy. J Neuropsychiatry Clin Neurosci. 1997;9:354–81.

    Article  CAS  PubMed  Google Scholar 

  68. Baker DA, McFarland K, Lake RW, Shen H, Tang X-C, Toda S, et al. Neuroadaptations in cystine-glutamate exchange underlie cocaine relapse. Nat Neurosci. 2003;6:743–9.

    Article  CAS  PubMed  Google Scholar 

  69. Russo SJ, Dietz DM, Dumitriu D, Morrison JH, Malenka RC, Nestler EJ. The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci. 2010;33:267–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shen H, Moussawi K, Zhou W, Toda S, Kalivas PW. Heroin relapse requires long-term potentiation-like plasticity mediated by NMDA2b-containing receptors. Proc Natl Acad Sci. 2011;108:19407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wu X, Shi M, Wei C, Yang M, Liu Y, Liu Z, et al. Potentiation of synaptic strength and intrinsic excitability in the nucleus accumbens after 10 days of morphine withdrawal. J Neurosci Res. 2012;90:1270–83.

    Article  CAS  PubMed  Google Scholar 

  72. Martin JA, Werner CT, Mitra S, Zhong P, Wang ZJ, Gobira PH, et al. A novel role for the actin-binding protein drebrin in regulating opiate addiction. Nat Commun. 2019;10:4140.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Jacobs EH, Smit AB, de Vries TJ, Schoffelmeer ANM. Neuroadaptive effects of active versus passive drug administration in addiction research. Trends Pharmacol Sci. 2003;24:566–73.

    Article  CAS  PubMed  Google Scholar 

  74. Gancarz-Kausch AM, Schroeder GL, Panganiban C, Adank D, Humby MS, Kausch MA, et al. Transforming growth factor beta receptor 1 is increased following abstinence from cocaine self-administration, but not cocaine sensitization. PLOS ONE. 2014;8:e83834.

    Article  Google Scholar 

  75. Steketee JD, Kalivas PW. Drug wanting: behavioral sensitization and relapse to drug-seeking behavior. Pharm Rev. 2011;63:348–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen BT, Bowers MS, Martin M, Hopf FW, Guillory AM, Carelli RM, et al. Cocaine but not natural reward self-administration nor passive cocaine infusion produces persistent LTP in the VTA. Neuron. 2008;59:288–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mark GP, Hajnal A, Kinney AE, Keys AS. Self-administration of cocaine increases the release of acetylcholine to a greater extent than response-independent cocaine in the nucleus accumbens of rats. Psychopharmacology. 1999;143:47–53.

    Article  CAS  PubMed  Google Scholar 

  78. McCutcheon JE, Wang X, Tseng KY, Wolf ME, Marinelli M. Calcium-permeable AMPA receptors are present in nucleus accumbens synapses after prolonged withdrawal from cocaine self-administration but not experimenter-administered cocaine. J Neurosci. 2011;31:5737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gancarz AM, Wang Z-J, Schroeder GL, Damez-Werno D, Braunscheidel KM, Mueller LE, et al. Activin receptor signaling regulates cocaine-primed behavioral and morphological plasticity. Nat Neurosci. 2015;18:959–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ahmed SH, Koob GF. Transition from moderate to excessive drug intake: change in hedonic set point. Science. 1998;282:298–300.

    Article  CAS  PubMed  Google Scholar 

  81. Mantsch JR, Yuferov V, Mathieu-Kia A-M, Ho A, Kreek MJ. Effects of extended access to high versus low cocaine doses on self-administration, cocaine-induced reinstatement and brain mRNA levels in rats. Psychopharmacology. 2004;175:26–36.

    Article  CAS  PubMed  Google Scholar 

  82. Picetti R, Ho A, Butelman ER, Kreek MJ. Dose preference and dose escalation in extended-access cocaine self-administration in Fischer and Lewis rats. Psychopharmacology. 2010;211:313–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang Z-J, Martin JA, Gancarz AM, Adank DN, Sim FJ, Dietz DM. Activin A is increased in the nucleus accumbens following a cocaine binge. Sci Rep. 2017;7:43658–43658.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Miron VE, Boyd A, Zhao J-W, Yuen TJ, Ruckh JM, Shadrach JL, et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci. 2013;16:1211–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Schwarz JM, Hutchinson MR, Bilbo SD. Early-life experience decreases drug-induced reinstatement of morphine CPP in adulthood via microglial-specific epigenetic programming of anti-inflammatory IL-10 expression. J Neurosci. 2011;31:17835–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang X-Q, Cui Y, Cui Y, Chen Y, Na X-D, Chen F-Y, et al. Activation of p38 signaling in the microglia in the nucleus accumbens contributes to the acquisition and maintenance of morphine-induced conditioned place preference. Brain Behav Immun. 2012;26:318–25.

    Article  CAS  PubMed  Google Scholar 

  87. Hutchinson MR, Lewis SS, Coats BD, Skyba DA, Crysdale NY, Berkelhammer DL, et al. Reduction of opioid withdrawal and potentiation of acute opioid analgesia by systemic AV411 (ibudilast). Brain Behav Immun. 2009;23:240–50.

    Article  CAS  PubMed  Google Scholar 

  88. Schwarz JM, Bilbo SD. Adolescent morphine exposure affects long-term microglial function and later-life relapse liability in a model of addiction. J Neurosci. 2013;33:961–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hanisch U-K, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 2007;10:1387–94.

    Article  CAS  PubMed  Google Scholar 

  90. Suzuki T, Hide I, Ido K, Kohsaka S, Inoue K, Nakata Y. Production and release of neuroprotective tumor necrosis factor by P2X7 receptor-activated microglia. J Neurosci. 2004;24:1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ashhad S, Narayanan R. Active dendrites regulate the impact of gliotransmission on rat hippocampal pyramidal neurons. Proc Natl Acad Sci. 2016;113:E3280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Petrakou E, Fotopoulos S, Anagnostakou M, Anatolitou F, Samitas K, Semitekolou M, et al. Activin-A exerts a crucial anti-inflammatory role in neonatal infections. Pediatr Res. 2013;74:675–81.

    Article  CAS  PubMed  Google Scholar 

  93. Abe Y, Minegishi T, Leung PCK. Mini reviewactivin receptor signaling. Growth Factors. 2004;22:105–10.

    Article  CAS  PubMed  Google Scholar 

  94. Lewitus Gil M, Konefal Sarah C, Greenhalgh Andrew D, Pribiag H, Augereau K, Stellwagen D. Microglial TNF-ɑ suppresses cocaine-induced plasticity and behavioral sensitization. Neuron. 2016;90:483–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lau D, Bengtson CP, Buchthal B, Bading H. BDNF reduces toxic extrasynaptic NMDA receptor signaling via synaptic NMDA receptors and nuclear-calcium-induced transcription of inhba/Activin A. Cell Rep. 2015;12:1353–66.

    Article  CAS  PubMed  Google Scholar 

  96. Hashimoto JG, Wiren KM. Neurotoxic consequences of chronic alcohol withdrawal: expression profiling reveals importance of gender over withdrawal severity. Neuropsychopharmacology. 2008;33:1084–96.

    Article  CAS  PubMed  Google Scholar 

  97. McCarthy GM, Warden AS, Bridges CR, Blednov YA, Harris RA. Chronic ethanol consumption: role of TLR3/TRIF-dependent signaling. Addiction Biol. 2018;23:889–903.

    Article  CAS  Google Scholar 

  98. Erickson EK, Blednov YA, Harris RA, Mayfield RD. Glial gene networks associated with alcohol dependence. Sci Rep. 2019;9:10949.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Gipson CD, Olive MF. Structural and functional plasticity of dendritic spines—root or result of behavior? Genes, Brain Behav. 2016;16:101–17.

    Article  Google Scholar 

  100. Lai K-O, Ip NY. Structural plasticity of dendritic spines: The underlying mechanisms and its dysregulation in brain disorders. Biochimica et Biophysica Acta (BBA) - Mol Basis Dis. 2013;1832:2257–63.

    Article  CAS  Google Scholar 

  101. Durand GM, Konnerth A. Long-term potentiation as a mechanism of functional synapse induction in the developing hippocampus. J Physiol-Paris. 1996;90:313–5.

    Article  CAS  PubMed  Google Scholar 

  102. Oe Y, Tominaga-Yoshino K, Hasegawa S, Ogura A. Dendritic spine dynamics in synaptogenesis after repeated LTP inductions: dependence on pre-existing spine density. Sci Rep. 2013;3:1957.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Brown RW, Kolb B. Nicotine sensitization increases dendritic length and spine density in the nucleus accumbens and cingulate cortex. Brain Res. 2001;899:94–100.

    Article  CAS  PubMed  Google Scholar 

  104. Robinson TE, Kolb B. Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. Eur J Neurosci. 1999;11:1598–604.

    Article  CAS  PubMed  Google Scholar 

  105. Spiga S, Lintas A, Migliore M, Diana M. PRECLINICAL STUDY: FULL ARTICLE: Altered architecture and functional consequences of the mesolimbic dopamine system in cannabis dependence. Addiction Biol. 2010;15:266–76.

    Article  CAS  Google Scholar 

  106. Gipson Cassandra D, Kupchik Yonatan M, Shen H, Reissner Kathryn J, Thomas Charles A, Kalivas Peter W. Relapse induced by cues predicting cocaine depends on rapid, transient synaptic potentiation. Neuron. 2013;77:867–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ageta H, Ikegami S, Miura M, Masuda M, Migishima R, Hino T, et al. Activin plays a key role in the maintenance of long-term memory and late-LTP. Learn Mem (Cold Spring Harb, NY). 2010;17:176–85.

    Article  CAS  Google Scholar 

  108. Shoji-Kasai Y, Ageta H, Hasegawa Y, Tsuchida K, Sugino H, Inokuchi K. Activin increases the number of synaptic contacts and the length of dendritic spine necks by modulating spinal actin dynamics. J Cell Sci. 2007;120:3830.

    Article  CAS  PubMed  Google Scholar 

  109. Hasegawa Y, Mukai H, Asashima M, Hojo Y, Ikeda M, Komatsuzaki Y, et al. Acute modulation of synaptic plasticity of pyramidal neurons by activin in adult hippocampus. Front Neural Circuits. 2014;8:56–56.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Smith RJ, Lobo MK, Spencer S, Kalivas PW. Cocaine-induced adaptations in D1 and D2 accumbens projection neurons (a dichotomy not necessarily synonymous with direct and indirect pathways). Curr Opin Neurobiol. 2013;23:546–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Walker DM, Nestler EJ Chapter 48 - Neuroepigenetics and addiction. In: Geschwind DH, Paulson HL, Klein C (eds). Handbook of Clinical Neurology, vol. 148. Elsevier 2018, 747-65.

  112. Shi Y, Wang Y-F, Jayaraman L, Yang H, Massagué J, Pavletich NP. Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-β signaling. Cell. 1998;94:585–94.

    Article  CAS  PubMed  Google Scholar 

  113. Chai N, Li W-X, Wang J, Wang Z-X, Yang S-M, Wu J-W. Structural basis for the Smad5 MH1 domain to recognize different DNA sequences. Nucleic Acids Res. 2015;43:9051–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Cuesta S, Batuecas J, Severin MJ, Funes A, Rosso SB, Pacchioni AM. Role of Wnt/β-catenin pathway in the nucleus accumbens in long-term cocaine-induced neuroplasticity: a possible novel target for addiction treatment. J Neurochemistry. 2017;140:114–25.

    Article  CAS  Google Scholar 

  115. Xu C-M, Wang J, Wu P, Zhu W-L, Li Q-Q, Xue Y-X, et al. Glycogen synthase kinase 3β in the nucleus accumbens core mediates cocaine-induced behavioral sensitization. J Neurochemistry. 2009;111:1357–68.

    Article  CAS  Google Scholar 

  116. Miller JS, Barr JL, Harper LJ, Poole RL, Gould TJ, Unterwald EM. The GSK3 signaling pathway is activated by cocaine and is critical for cocaine conditioned reward in mice. PLOS ONE. 2014;9:e88026.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Miller JS, Tallarida RJ, Unterwald EM. Cocaine-induced hyperactivity and sensitization are dependent on GSK3. Neuropharmacology. 2009;56:1116–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kim WY, Jang JK, Lee JW, Jang H, Kim J-H. Decrease of GSK3β phosphorylation in the rat nucleus accumbens core enhances cocaine-induced hyper-locomotor activity. J Neurochemistry. 2013;125:642–8.

    Article  CAS  Google Scholar 

  119. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17:9–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wang Y, Nathans J. Tissue/planar cell polarity in vertebrates: new insights and new questions. Development. 2007;134:647.

    Article  CAS  PubMed  Google Scholar 

  121. Hoppler S, Kavanagh CL. Wnt signalling: variety at the core. J Cell Sci. 2007;120:385.

    Article  CAS  PubMed  Google Scholar 

  122. Daniels DL, Weis WI. β-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nat Struct Mol Biol. 2005;12:364–71.

    Article  CAS  PubMed  Google Scholar 

  123. Kazanskaya O, Glinka A, del Barco Barrantes I, Stannek P, Niehrs C, Wu W. R-Spondin2 is a secreted activator of Wnt/beta-catenin signaling and is required for xenopus myogenesis. Dev Cell. 2004;7:525–34.

    Article  CAS  PubMed  Google Scholar 

  124. Chamorro MN, Schwartz DR, Vonica A, Brivanlou AH, Cho KR, Varmus HE. FGF-20 and DKK1 are transcriptional targets of beta-catenin and FGF-20 is implicated in cancer and development. EMBO J. 2005;24:73–84.

    Article  CAS  PubMed  Google Scholar 

  125. Khan Z, Vijayakumar S, de la Torre TV, Rotolo S, Bafico A. Analysis of endogenous LRP6 function reveals a novel feedback mechanism by which Wnt negatively regulates its receptor. Mol Cell Biol. 2007;27:7291–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Logan CY, Nusse RTHE. WNT signaling pathway in development and disease. Annu Rev Cell Developmental Biol. 2004;20:781–810.

    Article  CAS  Google Scholar 

  127. Wolf ME, Ferrario CR. AMPA receptor plasticity in the nucleus accumbens after repeated exposure to cocaine. Neurosci Biobehav Rev. 2010;35:185–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Pierce RC, Bell K, Duffy P, Kalivas PW. Repeated cocaine augments excitatory amino acid transmission in the nucleus accumbens only in rats having developed behavioral sensitization. J Neurosci. 1996;16:1550–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Cornish JL, Kalivas PW. Glutamate transmission in the nucleus accumbens mediates relapse in cocaine addiction. J Neurosci. 2000;20:RC89–RC89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Boudreau AC, Reimers JM, Milovanovic M, Wolf ME. Cell surface AMPA receptors in the rat nucleus accumbens increase during cocaine withdrawal but internalize after cocaine challenge in association with altered activation of mitogen-activated protein kinases. J Neurosci. 2007;27:10621–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kourrich S, Rothwell PE, Klug JR, Thomas MJ. Cocaine experience controls bidirectional synaptic plasticity in the nucleus accumbens. J Neurosci. 2007;27:7921–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Robinson TE, Kolb B. Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology. 2004;47:33–46.

    Article  CAS  PubMed  Google Scholar 

  133. Shen H-W, Toda S, Moussawi K, Bouknight A, Zahm DS, Kalivas PW. Altered dendritic spine plasticity in cocaine-withdrawn rats. J Neurosci. 2009;29:2876–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Robinson TE, Gorny G, Mitton E, Kolb B. Cocaine self-administration alters the morphology of dendrites and dendritic spines in the nucleus accumbens and neocortex. Synapse. 2001;39:257–66.

    Article  CAS  PubMed  Google Scholar 

  135. Spiga S, Puddu MC, Pisano M, Diana M. Morphine withdrawal-induced morphological changes in the nucleus accumbens. Eur J Neurosci. 2005;22:2332–40.

    Article  PubMed  Google Scholar 

  136. Koganezawa N, Hanamura K, Sekino Y, Shirao T. The role of drebrin in dendritic spines. Mol Cell Neurosci. 2017;84:85–92.

    Article  CAS  PubMed  Google Scholar 

  137. Wang Z, Yan P, Hui T, Zhang J. Epigenetic upregulation of PSD-95 contributes to the rewarding behavior by morphine conditioning. Eur J Pharmacol. 2014;732:123–9.

    Article  CAS  PubMed  Google Scholar 

  138. Golden SA, Christoffel DJ, Heshmati M, Hodes GE, Magida J, Davis K, et al. Epigenetic regulation of RAC1 induces synaptic remodeling in stress disorders and depression. Nat Med. 2013;19:337–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Xi Q, He W, Zhang XHF, Le H-V, Massagué J. Genome-wide impact of the BRG1 SWI/SNF chromatin remodeler on the transforming growth factor beta transcriptional program. J Biol Chem. 2008;283:1146–55.

    Article  CAS  PubMed  Google Scholar 

  140. Loe-Mie Y, Lepagnol-Bestel A-M, Maussion G, Doron-Faigenboim A, Imbeaud S, Delacroix H, et al. SMARCA2 and other genome-wide supported schizophrenia-associated genes: regulation by REST/NRSF, network organization and primate-specific evolution. Hum Mol Genet. 2010;19:2841–57.

    Article  CAS  PubMed  Google Scholar 

  141. Neale BM, Kou Y, Liu L, Ma’ayan A, Samocha KE, Sabo A, et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature. 2012;485:242–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2012;485:246–50.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Sun H, Damez-Werno DM, Scobie KN, Shao N-Y, Dias C, Rabkin J, et al. ACF chromatin-remodeling complex mediates stress-induced depressive-like behavior. Nat Med. 2015;21:1146–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sartor GC, Powell SK, Brothers SP, Wahlestedt C. Epigenetic readers of lysine acetylation regulate cocaine-induced plasticity. J Neurosci. 2015;35:15062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ohnishi YH, Ohnishi YN, Nakamura T, Ohno M, Kennedy PJ, Yasuyuki O, et al. PSMC5, a 19S proteasomal ATPase, regulates cocaine action in the nucleus accumbens. PLOS ONE. 2015;10:e0126710.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Sun H, Martin JA, Werner CT, Wang Z-J, Damez-Werno DM, Scobie KN, et al. BAZ1B in nucleus accumbens regulates reward-related behaviors in response to distinct emotional stimuli. J Neurosci. 2016;36:3954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hegde AN. The ubiquitin-proteasome pathway and synaptic plasticity. Learn Mem (Cold Spring Harb, NY). 2010;17:314–27.

    Article  CAS  Google Scholar 

  148. Bach SV, Hegde AN. The proteasome and epigenetics: zooming in on histone modifications. Biomolecular Concepts. 2016;7:215–27.

    Article  CAS  PubMed  Google Scholar 

  149. Jarome TJ, Helmstetter FJ. The ubiquitin–proteasome system as a critical regulator of synaptic plasticity and long-term memory formation. Neurobiol Learn Mem. 2013;105:107–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hegde AN, van Leeuwen FW. Editorial: ubiquitin and the brain: roles of proteolysis in the normal and abnormal nervous system. Front Mol Neurosci. 2017;10:220–220.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Massaly N, Francès B, Moulédous L. Roles of the ubiquitin proteasome system in the effects of drugs of abuse. Front Mol Neurosci. 2015;7:99–99.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Mabb AM, Ehlers MD. Ubiquitination in postsynaptic function and plasticity. Annu Rev cell developmental Biol. 2010;26:179–210.

    Article  CAS  Google Scholar 

  153. Hannah J, Zhou P. Distinct and overlapping functions of the cullin E3 ligase scaffolding proteins CUL4A and CUL4B. Gene. 2015;573:33–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Neklesa TK, Winkler JD, Crews CM. Targeted protein degradation by PROTACs. Pharmacol Therapeutics. 2017;174:138–44.

    Article  CAS  Google Scholar 

  155. Ren Z-Y, Liu M-M, Xue Y-X, Ding Z-B, Xue L-F, Zhai S-D, et al. A critical role for protein degradation in the nucleus accumbens core in cocaine reward memory. Neuropsychopharmacology. 2013;38:778–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Werner CT, Milovanovic M, Christian DT, Loweth JA, Wolf ME. Response of the ubiquitin-proteasome system to memory retrieval after extended-access cocaine or saline self-administration. Neuropsychopharmacology. 2015;40:3006–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Izzi L, Attisano L. Regulation of the TGFβ signalling pathway by ubiquitin-mediated degradation. Oncogene. 2004;23:2071–8.

    Article  CAS  PubMed  Google Scholar 

  158. Engeln M, Mitra S, Chandra R, Gyawali U, Fox ME, Dietz DM et al. Sex-specific role for Egr3 in nucleus accumbens D2-Medium Spiny Neurons Following Long-term Abstinence From Cocaine Self-administration. Biol Psychiatry 2019;87:992–1000.

  159. Chandra R, Engeln M, Francis TC, Konkalmatt P, Patel D, Lobo MK. A role for peroxisome proliferator-activated receptor gamma coactivator-1α in nucleus accumbens neuron subtypes in cocaine action. Biol psychiatry. 2017;81:564–72.

    Article  CAS  PubMed  Google Scholar 

  160. Chandra R, Francis TC, Konkalmatt P, Amgalan A, Gancarz AM, Dietz DM, et al. Opposing role for Egr3 in nucleus accumbens cell subtypes in cocaine action. J Neurosci. 2015;35:7927–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kim J, Lee I. Hippocampus is necessary for spatial discrimination using distal cue-configuration. Hippocampus. 2011;21:609–21.

    Article  PubMed  Google Scholar 

  162. Loureiro M, Lecourtier L, Engeln M, Lopez J, Cosquer B, Geiger K, et al. The ventral hippocampus is necessary for expressing a spatial memory. Brain Struct Funct. 2012;217:93–106.

    Article  PubMed  Google Scholar 

  163. Werner CT, Mitra S, Auerbach BD, Wang Z-J, Martin JA, Stewart AF, et al. Neuroadaptations in the dorsal hippocampus underlie cocaine seeking during prolonged abstinence. Proc Natl Acad Sci. 2020;117:26460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Link AS, Kurinna S, Havlicek S, Lehnert S, Reichel M, Kornhuber J, et al. Kdm6b and Pmepa1 as targets of bioelectrically and behaviorally induced activin A signaling. Mol Neurobiol. 2016;53:4210–25.

    Article  CAS  PubMed  Google Scholar 

  165. Lacagnina MJ, Rivera PD, Bilbo SD. Glial and neuroimmune mechanisms as critical modulators of drug use and abuse. Neuropsychopharmacol. 2017;42:156–77.

    Article  CAS  Google Scholar 

  166. Sharma V, Ounallah-Saad H, Chakraborty D, Hleihil M, Sood R, Barrera I, et al. Local inhibition of PERK enhances memory and reverses age-related deterioration of cognitive and neuronal properties. J Neurosci. 2018;38:648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Zheng F, Adelsberger H, Müller MR, Fritschy JM, Werner S, Alzheimer C. Activin tunes GABAergic neurotransmission and modulates anxiety-like behavior. Mol Psychiatry. 2009;14:332–46.

    Article  CAS  PubMed  Google Scholar 

  168. Ciardiello D, Elez E, Tabernero J, Seoane J. Clinical development of therapies targeting TGFβ: current knowledge and future perspectives. Ann Oncol. 2020;31:1336–49.

    Article  CAS  PubMed  Google Scholar 

  169. Maza-Quiroga R, García-Marchena N, Romero-Sanchiz P, Barrios V, Pedraz M, Serrano A, et al. Evaluation of plasma cytokines in patients with cocaine use disorders in abstinence identifies transforming growth factor alpha (TGFα) as a potential biomarker of consumption and dual diagnosis. PeerJ. 2017;5:e3926.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Frydecka D, Misiak B, Pawlak-Adamska E, Karabon L, Tomkiewicz A, Sedlaczek P, et al. Sex differences in TGFB-β signaling with respect to age of onset and cognitive functioning in schizophrenia. Neuropsychiatr Dis Treat. 2015;11:575–84.

    PubMed  PubMed Central  Google Scholar 

  171. Ma C, Wu X, Shen X, Yang Y, Chen Z, Sun X, et al. Sex differences in traumatic brain injury: a multi-dimensional exploration in genes, hormones, cells, individuals, and society. Chin Neurosurgical J. 2019;5:24.

    Article  Google Scholar 

  172. Zhou S, Turgeman G, Harris SE, Leitman DC, Komm BS, Bodine PVN, et al. Estrogens activate bone morphogenetic protein-2 gene transcription in mouse mesenchymal stem cells. Mol Endocrinol. 2003;17:56–66.

    Article  CAS  PubMed  Google Scholar 

  173. Ong DB, Colley SM, Norman MR, Kitazawa S, Tobias JH. Transcriptional regulation of a BMP-6 promoter by estrogen receptor alpha. J Bone Min Res. 2004;19:447–54.

    Article  CAS  Google Scholar 

  174. Ito I, Hanyu A, Wayama M, Goto N, Katsuno Y, Kawasaki S, et al. Estrogen inhibits transforming growth factor beta signaling by promoting Smad2/3 degradation. J Biol Chem. 2010;285:14747–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Shansky RM, Murphy AZ. Considering sex as a biological variable will require a global shift in science culture. Nat Neurosci. 2021;24:457–64.

    Article  CAS  PubMed  Google Scholar 

  176. Li M, Xu P, Xu Y, Teng H, Tian W, Du Q, et al. Dynamic expression changes in the transcriptome of the prefrontal cortex after repeated exposure to cocaine in mice. Front Pharmacol. 2017;8:142.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (NIDA R01DA037257 to DMD, NIDA U01DA051947 to DMD, NIDA R21DA044486 to DMD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M Dietz.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitra, S., Werner, C. & Dietz, D.M. Neuroadaptations and TGF-β signaling: emerging role in models of neuropsychiatric disorders. Mol Psychiatry 27, 296–306 (2022). https://doi.org/10.1038/s41380-021-01186-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01186-y

This article is cited by

Search

Quick links