Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In vivo evidence of lower synaptic vesicle density in schizophrenia

Abstract

Decreased synaptic spine density has been the most consistently reported postmortem finding in schizophrenia (SCZ). A recently developed in vivo measure of synaptic vesicle density estimated using the novel positron emission tomography (PET) ligand [11C]UCB-J is a proxy measure of synaptic density. In this study we determined whether [11C]UCB-J binding, an in vivo measure of synaptic vesicle density, is altered in SCZ. SCZ patients (n = 13, 3 F) and age-, gender-matched healthy controls (HCs) (n = 15, 3 F) underwent PET imaging using [11C]UCB-J and high-resolution research tomography (HRRT). [11C]UCB-J distribution volume (VT) and binding potential (BPND) were estimated using a 1T model with centrum-semiovale as the reference region. Relative to HCs, SCZ patients, showed significantly lower [11C]UCB-J BPND with significant differences in the frontal cortex (−10%, Cohen’s d = 1.01), anterior cingulate (−11%, Cohen’s d = 1.24), hippocampus (−15%, Cohen’s d = 1.29), occipital cortex (−14%, Cohen’s d = 1.34), parietal cortex (−10%, p = 0.03, Cohen’s d = 0.85) and temporal cortex (−11%, Cohen’s d = 1.23). These differences remained significant after partial volume correction. [11C]UCB-J BPND did not correlate with cumulative antipsychotic exposure or gray-matter volume. Consistent with the postmortem and in vivo findings, synaptic vesicle density is lower across several brain regions in SCZ. Frontal synaptic vesicle density correlated with psychosis symptom severity and cognitive performance on social cognition and processing speed. These findings indicate that [11C]UCB-J PET is a sensitive tool to detect lower synaptic density in SCZ and holds promise for future studies of early detection and disease progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of synaptic density ([11C]UCB-J BPND) in schizophrenia (SCZ) and healthy controls (HC) across regions of interest (ROIs).
Fig. 2: Group-average distribution volume (VT) PET images in schizophrenia (SCZ) and healthy controls (HC).
Fig. 3: Comparison of synaptic density ([11C]UCB-J VT) in schizophrenia (SCZ) and healthy controls (HC) across regions of interest (ROIs).
Fig. 4: Relationship between synaptic density in the frontal cortex and symptom severity in schizophrenia.
Fig. 5: Relationship between synaptic density in the frontal cortex and social cognition in schizophrenia.
Fig. 6: Relationship between synaptic density in the frontal cortex and speed of detection in schizophrenia.

Similar content being viewed by others

References

  1. Owen MJ, Sawa A, Mortensen PB. Schizophrenia. Lancet. 2016;388:86–97.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Glantz LA, Lewis DA. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry. 2000;57:65–73.

    Article  CAS  PubMed  Google Scholar 

  3. Garey L. When cortical development goes wrong: schizophrenia as a neurodevelopmental disease of microcircuits. J Anat. 2010;217:324–33.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Roberts RC, Barksdale KA, Roche JK, Lahti AC. Decreased synaptic and mitochondrial density in the postmortem anterior cingulate cortex in schizophrenia. Schizophr Res. 2015;168:543–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bakhshi K, Chance SA. The neuropathology of schizophrenia: A selective review of past studies and emerging themes in brain structure and cytoarchitecture. Neuroscience. 2015;303:82–102.

    Article  CAS  PubMed  Google Scholar 

  6. Osimo EF, Beck K, Reis Marques T, Howes OD. Synaptic loss in schizophrenia: a meta-analysis and systematic review of synaptic protein and mRNA measures. Mol Psychiatry. 2019;24:549–61.

    Article  CAS  PubMed  Google Scholar 

  7. Faludi G, Mirnics K. Synaptic changes in the brain of subjects with schizophrenia. Int J Dev. Neurosci. 2011;29:305–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dyck BA, Beyaert MG, Ferro MA, Mishra RK. Medial prefrontal cortical synapsin II knock-down induces behavioral abnormalities in the rat: examining synapsin II in the pathophysiology of schizophrenia. Schizophr Res. 2011;130:250–9.

    Article  PubMed  Google Scholar 

  9. Ayalew M, Le-Niculescu H, Levey DF, Jain N, Changala B, Patel SD, et al. Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction. Mol Psychiatry. 2012;17:887–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Deans PJ, Raval P, Sellers KJ, Gatford NJ, Halai S, Duarte RR, et al. Psychosis risk candidate ZNF804A localizes to synapses and regulates neurite formation and dendritic spine structure. Biol Psychiatry. 2017;82:49–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N, et al. Schizophrenia risk from complex variation of complement component 4. Nature. 2016;530:177–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. MacDonald ML, Alhassan J, Newman JT, Richard M, Gu H, Kelly RM, et al. Selective loss of smaller spines IN SCHIZOPHRenia. Am J Psychiatry. 2017;174:586–94.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Harrison PJ. Using our brains: the findings, flaws, and future of postmortem studies of psychiatric disorders. Biol Psychiatry. 2011;69:102–3.

    Article  PubMed  Google Scholar 

  14. Finnema SJ, Nabulsi NB, Eid T, Detyniecki K, Lin SF, Chen MK, et al. Imaging synaptic density in the living human brain. Sci Transl Med. 2016;8:348ra396.

    Article  CAS  Google Scholar 

  15. Finnema SJ, Nabulsi NB, Mercier J, Lin SF, Chen MK, Matuskey D, et al. Kinetic evaluation and test-retest reproducibility of [(11)C]UCB-J, a novel radioligand for positron emission tomography imaging of synaptic vesicle glycoprotein 2A in humans. J Cereb Blood Flow Metab. 2017;38:2041–52.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Finnema SJ, Li S, Cai Z, Naganawa M, Chen M-K, Matuskey D, et al. PET imaging of synaptic vesicle protein 2A. In: Dierckx RAJO, Otte A, de Vries EFJ, van Waarde A, Lammertsma AA editors. PET and SPECT of neurobiological systems. Cham: Springer International Publishing; 2021, pp 993–1019.

  17. Kaufman A, Salazar S, Haas L, Yang J, Kostylev M, Jeng A, et al. Fyn inhibition rescues established memory and synapse loss in Alzheimer mice. Ann Neurol. 2015;77:953–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li N, Lee B, Liu R, Banasr M, Dwyer J, Iwata M, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science. 2010;329:959–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. D’Souza DC, Radhakrishnan R, Naganawa M, Ganesh S, Nabulsi N, Najafzadeh S, et al. Preliminary in vivo evidence of lower hippocampal synaptic density in cannabis use disorder. Mol Psychiatry. 2020. https://doi.org/10.1038/s41380-020-00891-4. [Epub ahead of print].

  20. Onwordi EC, Halff EF, Whitehurst T, Mansur A, Cotel MC, Wells L, et al. Synaptic density marker SV2A is reduced in schizophrenia patients and unaffected by antipsychotics in rats. Nat Commun. 2020;11:246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Holmes SE, Scheinost D, Finnema SJ, Naganawa M, Davis MT, DellaGioia N, et al. Lower synaptic density is associated with depression severity and network alterations. Nat Commun. 2019;10:1529.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. O’Dell RS, Mecca AP, Chen MK, Naganawa M, Toyonaga T, Lu Y, et al. Association of Abeta deposition and regional synaptic density in early Alzheimer’s disease: a PET imaging study with [(11)C]UCB-J. Alzheimers Res Ther. 2021;13:11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Finnema SJ, Toyonaga T, Detyniecki K, Chen MK, Dias M, Wang Q, et al. Reduced synaptic vesicle protein 2A binding in temporal lobe epilepsy: a [(11) C]UCB-J positron emission tomography study. Epilepsia. 2020;61:2183–93.

    Article  CAS  PubMed  Google Scholar 

  24. Bajjalieh SM, Frantz GD, Weimann JM, McConnell SK, Scheller RH. Differential expression of synaptic vesicle protein 2 (SV2) isoforms. J Neurosci. 1994;14:5223–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bajjalieh SM, Peterson K, Linial M, Scheller RH. Brain contains two forms of synaptic vesicle protein 2. Proc Natl Acad Sci USA. 1993;90:2150–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Janz R, Sudhof TC. SV2C is a synaptic vesicle protein with an unusually restricted localization: anatomy of a synaptic vesicle protein family. Neuroscience. 1999;94:1279–90.

    Article  CAS  PubMed  Google Scholar 

  27. Mutch SA, Kensel-Hammes P, Gadd JC, Fujimoto BS, Allen RW, Schiro PG, et al. Protein quantification at the single vesicle level reveals that a subset of synaptic vesicle proteins are trafficked with high precision. J Neurosci. 2011;31:1461–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nabulsi NB, Mercier J, Holden D, Carre S, Najafzadeh S, Vandergeten MC, et al. Synthesis and preclinical evaluation of 11C-UCB-J as a PET tracer for imaging the synaptic vesicle glycoprotein 2A in the brain. J Nucl Med. 2016;57:777–84.

    Article  CAS  PubMed  Google Scholar 

  29. Holmes S, Finnema S, Davis M, DellaGioia N, Naganawa M, Nabulsi N, et al. F149. Preliminary evidence for altered synaptic density and a possible role for accelerated ageing in individuals with MDD as measured with [11C] UCB-J PET. Biol Psychiatry. 2018;83:S296.

    Article  Google Scholar 

  30. Finnema S, Detyniecki K, Chen M-K, Dias M, Wang Q, Lin S-f, et al. Reduced SV2A binding in the seizure onset zone in temporal lobe epilepsy patients-A PET study with 11C-UCB-J. J Nucl Med. 2017;58:632–632. supplement 1

    CAS  Google Scholar 

  31. Matuskey D, Tinaz S, Wilcox KC, Naganawa M, Toyonaga T, Dias M, et al. Synaptic changes in Parkinson disease assessed with in vivo imaging. Ann Neurol. 2020;87:329–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen M-K, Mecca A, Gallezot J-D, Naganawa M, Finnema S, Toyonaga T, et al. Correlation of neuronal function and synaptic density in Alzheimer’s disease. J Nucl Med. 2018;59:412–412. supplement 1

    Google Scholar 

  33. Mecca AP, Chen MK, O’Dell RS, Naganawa M, Toyonaga T, Godek TA, et al. In vivo measurement of widespread synaptic loss in Alzheimer’s disease with SV2A PET. Alzheimers Dement. 2020;16:974–82.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Carson REB, Liow WC, Johnson J-S, Design CA. of a motion-compensation OSEM list-mode algorithm for resolution-recovery reconstruction for the HRRT. IEEE Nucl Sci Symp Conf Rec. 2003;5:3281–5.

    Google Scholar 

  35. Jin X, Chan C, Mulnix T, Panin V, Casey ME, Liu C, et al. List-mode reconstruction for the Biograph mCT with physics modeling and event-by-event motion correction. Phys Med Biol. 2013;58:5567–91.

    Article  PubMed  Google Scholar 

  36. Papademetris X, Jackowski MP, Rajeevan N, DiStasio M, Okuda H, Constable RT, et al. BioImage Suite: An integrated medical image analysis suite: an update. Insight J. 2006;2006:209.

    PubMed  PubMed Central  Google Scholar 

  37. Landén M, Davidsson P, Gottfries C-G, Månsson J-E, Blennow K. Reduction of the synaptophysin level but normal levels of glycerophospholipids in the gyrus cinguli in schizophrenia. Schizophrenia Res. 2002;55:83–8.

    Article  Google Scholar 

  38. Eastwood SL, Cairns NJ, Harrison PJ. Synaptophysin gene expression in schizophrenia. Investig Synaptic Pathol Cereb cortex Br J Psychiatry. 2000;176:236–42.

    CAS  Google Scholar 

  39. Eastwood SL, Harrison PJ. Decreased synaptophysin in the medial temporal lobe in schizophrenia demonstrated using immunoautoradiography. Neuroscience. 1995;69:339–43.

    Article  CAS  PubMed  Google Scholar 

  40. Perrone-Bizzozero NI, Sower AC, Bird ED, Benowitz LI, Ivins KJ, Neve RL. Levels of the growth-associated protein GAP-43 are selectively increased in association cortices in schizophrenia. Proc Natl Acad Sci USA. 1996;93:14182–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Davidsson P, Gottfries J, Bogdanovic N, Ekman R, Karlsson I, Gottfries C-G, et al. The synaptic-vesicle-specific proteins rab3a and synaptophysin are reduced in thalamus and related cortical brain regions in schizophrenic brains. Schizophrenia Res. 1999;40:23–9.

    Article  CAS  Google Scholar 

  42. Giovacchini G, Lerner A, Toczek MT, Fraser C, Ma K, DeMar JC, et al. Brain incorporation of 11C-arachidonic acid, blood volume, and blood flow in healthy aging: a study with partial-volume correction. J Nucl Med. 2004;45:1471–9.

    CAS  PubMed  Google Scholar 

  43. Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27:1533–9.

    Article  CAS  PubMed  Google Scholar 

  44. Rossano S, Toyonaga T, Finnema SJ, Naganawa M, Lu Y, Nabulsi N, et al. Assessment of a white matter reference region for (11)C-UCB-J PET quantification. J Cereb Blood Flow Metab. 2020;40:1890–901.

    Article  CAS  PubMed  Google Scholar 

  45. Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull. 1987;13:261–76.

    Article  CAS  PubMed  Google Scholar 

  46. Maruff P, Thomas E, Cysique L, Brew B, Collie A, Snyder P, et al. Validity of the CogState brief battery: relationship to standardized tests and sensitivity to cognitive impairment in mild traumatic brain injury, schizophrenia, and AIDS dementia complex. Arch Clin Neuropsychol. 2009;24:165–78.

    Article  PubMed  Google Scholar 

  47. Pietrzak RH, Olver J, Norman T, Piskulic D, Maruff P, Snyder PJ. A comparison of the CogState schizophrenia battery and the measurement and treatment research to improve cognition in schizophrenia (MATRICS) battery in assessing cognitive impairment in chronic schizophrenia. J Clin Exp Neuropsychol. 2009;31:848–59.

    Article  PubMed  Google Scholar 

  48. Woods SW. Chlorpromazine equivalent doses for the newer atypical antipsychotics. J Clin Psychiatry. 2003;64:663–7.

    Article  CAS  PubMed  Google Scholar 

  49. Heatherton TF, Kozlowski LT, Frecker RC, Fagerstrom KO. The fagerstrom test for nicotine dependence: a revision of the fagerstrom tolerance questionnaire. Br J Addict. 1991;86:1119–27.

    Article  CAS  PubMed  Google Scholar 

  50. Robinson SM, Sobell LC, Sobell MB, Leo GI. Reliability of the timeline followback for cocaine, cannabis, and cigarette use. Psychol Addict Behav. 2014;28:154–62.

    Article  PubMed  Google Scholar 

  51. Pae CU, Paik IH, Lee C, Lee SJ, Kim JJ, Lee CU. Decreased plasma antioxidants in schizophrenia. Neuropsychobiology. 2004;50:54–6.

    Article  CAS  PubMed  Google Scholar 

  52. Chen S, Xia HS, Zhu F, Yin GZ, Qian ZK, Jiang CX, et al. Association between decreased serum albumin levels and depressive symptoms in patients with schizophrenia in a Chinese Han population: a pilot study. Psychiatry Res. 2018;270:438–42.

    Article  CAS  PubMed  Google Scholar 

  53. Chen MK, Mecca AP, Naganawa M, Finnema SJ, Toyonaga T, Lin SF, et al. Assessing synaptic density in Alzheimer disease with synaptic vesicle glycoprotein 2A positron emission tomographic imaging. JAMA Neurol. 2018;75:1215–24.

    Article  PubMed  PubMed Central  Google Scholar 

  54. McCollum LA, Walker CK, Roche JK, Roberts RC. Elevated excitatory input to the nucleus accumbens in schizophrenia: a postmortem ultrastructural study. Schizophr Bull. 2015;41:1123–32.

    Article  PubMed  PubMed Central  Google Scholar 

  55. van Erp TG, Hibar DP, Rasmussen JM, Glahn DC, Pearlson GD, Andreassen OA, et al. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol Psychiatry. 2016;21:547–53.

    Article  PubMed  Google Scholar 

  56. Yan J, Cui Y, Li Q, Tian L, Liu B, Jiang T, et al. Cortical thinning and flattening in schizophrenia and their unaffected parents. Neuropsychiatr Dis Treat. 2019;15:935–46.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Banaj N, Piras F, Piras F, Ciullo V, Iorio M, Battaglia C, et al. Cognitive and psychopathology correlates of brain white/grey matter structure in severely psychotic schizophrenic inpatients. Schizophrenia Res. 2018;12:29–36.

    Google Scholar 

  58. Padmanabhan JL, Tandon N, Haller CS, Mathew IT, Eack SM, Clementz BA, et al. Correlations between brain structure and symptom dimensions of psychosis in schizophrenia, schizoaffective, and psychotic bipolar I disorders. Schizophr Bull. 2015;41:154–62.

    Article  PubMed  Google Scholar 

  59. Walton E, Hibar DP, van Erp TGM, Potkin SG, Roiz-Santianez R, Crespo-Facorro B, et al. Prefrontal cortical thinning links to negative symptoms in schizophrenia via the ENIGMA consortium. Psychol Med. 2018;48:82–94.

    Article  CAS  PubMed  Google Scholar 

  60. Maat A, van Haren NEM, Bartholomeusz CF, Kahn RS, Cahn W. Emotion recognition and theory of mind are related to gray matter volume of the prefrontal cortex in schizophrenia. Eur Neuropsychopharmacol. 2016;26:255–64.

    Article  CAS  PubMed  Google Scholar 

  61. Carson REN, Matuskey M, Mecca D, Pittman A, Toyonaga B, Lu T, et al. Age and sex difference in synaptic density in healthy humans: a 11C-UCB-J PET study. Poster at Neuroreceptor Mapping. 2018); 2018.

  62. Lidow MS, Song ZM, Castner SA, Allen PB, Greengard P, Goldman-Rakic PS. Antipsychotic treatment induces alterations in dendrite- and spine-associated proteins in dopamine-rich areas of the primate cerebral cortex. Biol Psychiatry. 2001;49:1–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the staff of the Schizophrenia Neuropharmacology Research Group at Yale (SNRGY), Yale PET Center, Clinical Neuroscience Research Unit (CNRU) at the Connecticut Mental Health Center (CMHC) of the Connecticut Department of Mental Health and Addiction Services (DMHAS), the Hospital Research Unit (HRU) at Yale-New Haven Hospital (YNHH) and the Yale Magnetic Resonance Research Center (MRRC).

Funding

The study was funded by 2016 Dana Foundation David Mahoney program (PI: Radhakrishnan, Skosnik), Nancy Taylor Foundation (PI: Esterlis), 2015 Thomas P. Detre Fellowship Awards in Translational Neuroscience Research in Psychiatry (PI: Radhakrishnan), 5R21MH115316 (PI: Radhakrishnan), and 5R01NS094253-03 (PI: Carson), R21DA043832 (PI: D’Souza) and departmental funds (D’Souza).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajiv Radhakrishnan.

Ethics declarations

Conflict of interest

The authors have no financial conflicts of interest. RR is supported by the Dana Foundation David Mahoney program and CTSA Grant Number UL1 TR001863 from the National Center for Advancing Translational Science (NCATS), components of the National Institutes of Health (NIH), and NIH Roadmap for Medical Research. The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official view of NIH.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radhakrishnan, R., Skosnik, P.D., Ranganathan, M. et al. In vivo evidence of lower synaptic vesicle density in schizophrenia. Mol Psychiatry 26, 7690–7698 (2021). https://doi.org/10.1038/s41380-021-01184-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01184-0

This article is cited by

Search

Quick links