Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reduced adult neurogenesis is associated with increased macrophages in the subependymal zone in schizophrenia

Abstract

Neural stem cells in the human subependymal zone (SEZ) generate neuronal progenitor cells that can differentiate and integrate as inhibitory interneurons into cortical and subcortical brain regions; yet the extent of adult neurogenesis remains unexplored in schizophrenia and bipolar disorder. We verified the existence of neurogenesis across the lifespan by chartering transcriptional alterations (2 days–103 years, n = 70) and identifying cells indicative of different stages of neurogenesis in the human SEZ. Expression of most neural stem and neuronal progenitor cell markers decreased during the first postnatal years and remained stable from childhood into ageing. We next discovered reduced neural stem and neuronal progenitor cell marker expression in the adult SEZ in schizophrenia and bipolar disorder compared to controls (n = 29–32 per group). RNA sequencing identified increased expression of the macrophage marker CD163 as the most significant molecular change in schizophrenia. CD163+ macrophages, which were localised along blood vessels and in the parenchyma within 10 µm of neural stem and progenitor cells, had increased density in schizophrenia but not in bipolar disorder. Macrophage marker expression negatively correlated with neuronal progenitor marker expression in schizophrenia but not in controls or bipolar disorder. Reduced neurogenesis and increased macrophage marker expression were also associated with polygenic risk for schizophrenia. Our results support that the human SEZ retains the capacity to generate neuronal progenitor cells throughout life, although this capacity is limited in schizophrenia and bipolar disorder. The increase in macrophages in schizophrenia but not in bipolar disorder indicates that immune cells may impair neurogenesis in the adult SEZ in a disease-specific manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Expression of neurogenesis markers sharply declined in the human SEZ during the first postnatal years and remained stable from childhood into ageing.
Fig. 2: Neural stem and progenitor cells were present in the adult SEZ.
Fig. 3: Decreased expression of neurogenesis markers coincided with reduced trophic support and increased inflammation in the adult SEZ in psychiatric disorders.
Fig. 4: Increased presence of perivascular macrophages was intrinsic to the adult SEZ in schizophrenia.
Fig. 5: Polygenic risk scores for schizophrenia showed diagnostic group differences and relationships to neurogenesis and macrophage marker expression in the adult SEZ.

Similar content being viewed by others

References

  1. Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE, et al. Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet. 2013;382:1575–86.

    Article  PubMed  Google Scholar 

  2. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 5th ed. Diagnostic and Statistical Manual of Mental Disorders. Arlington, VA: American Psychiatric Association; 2013.

  3. Stahl EA, Breen G, Forstner AJ, McQuillin A, Ripke S, Trubetskoy V, et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat Genet. 2019;51:793–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schizophrenia Working Group of the Psychiatric Genomics C. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.

    Article  Google Scholar 

  5. Vieta E, Berk M, Schulze TG, Carvalho AF, Suppes T, Calabrese JR, et al. Bipolar disorders. Nat Rev Dis Prim. 2018;4:18008.

    Article  PubMed  Google Scholar 

  6. Fung SJ, Fillman SG, Webster MJ, Shannon, Weickert C. Schizophrenia and bipolar disorder show both common and distinct changes in cortical interneuron markers. Schizophr Res. 2014;155:26–30.

    Article  PubMed  Google Scholar 

  7. Thompson Ray M, Weickert CS, Wyatt E, Webster MJ. Decreased BDNF, trkB-TK+ and GAD67 mRNA expression in the hippocampus of individuals with schizophrenia and mood disorders. J Psychiatry Neurosci. 2011;36:195–203.

    Article  PubMed  Google Scholar 

  8. Fillman SG, Sinclair D, Fung SJ, Webster MJ, Shannon Weickert C. Markers of inflammation and stress distinguish subsets of individuals with schizophrenia and bipolar disorder. Transl Psychiatry. 2014;4:e365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang ZJ, Reynolds GP. A selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia. Schizophr Res. 2002;55:1–10.

    Article  PubMed  Google Scholar 

  10. Dienel SJ, Lewis DA. Alterations in cortical interneurons and cognitive function in schizophrenia. Neurobiol Dis. 2019;131:104208.

    Article  PubMed  Google Scholar 

  11. Adorjan I, Sun B, Feher V, Tyler T, Veres D, Chance SA, et al. Evidence for decreased density of calretinin-immunopositive neurons in the caudate nucleus in patients with schizophrenia. Front Neuroanat. 2020;14:581685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hashimoto T, Volk DW, Eggan SM, Mirnics K, Pierri JN, Sun Z, et al. Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci. 2003;23:6315–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fung SJ, Webster MJ, Sivagnanasundaram S, Duncan C, Elashoff M, Weickert CS. Expression of interneuron markers in the dorsolateral prefrontal cortex of the developing human and in schizophrenia. Am J Psychiatry. 2010;167:1479–88.

    Article  PubMed  Google Scholar 

  14. Weissleder C, Kondo MA, Yang C, Fung SJ, Rothmond DA, Wong MW, et al. Early-life decline in neurogenesis markers and age-related changes of TrkB splice variant expression in the human subependymal zone. Eur J Neurosci. 2017;46:1768–78.

    Article  PubMed  Google Scholar 

  15. Weissleder C, Fung SJ, Wong MW, Barry G, Double KL, Halliday GM, et al. Decline in Proliferation and Immature Neuron Markers in the Human Subependymal Zone during Aging: Relationship to EGF- and FGF-Related Transcripts. Front Aging Neurosci. 2016;8:274.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ernst A, Alkass K, Bernard S, Salehpour M, Perl S, Tisdale J, et al. Neurogenesis in the striatum of the adult human brain. Cell. 2014;156:1072–83.

    Article  CAS  PubMed  Google Scholar 

  17. Moreno-Jimenez EP, Flor-Garcia M, Terreros-Roncal J, Rabano A, Cafini F, Pallas-Bazarra N, et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Med. 2019;25:554–60.

    Article  CAS  PubMed  Google Scholar 

  18. Boldrini M, Fulmore CA, Tartt AN, Simeon LR, Pavlova I, Poposka V, et al. Human Hippocampal Neurogenesis Persists throughout Aging. Cell Stem Cell. 2018;22:589–99 e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kronenberg G, Klempin F. Laying out the evidence for the persistence of neurogenesis in the adult human hippocampus. Eur Arch Psychiatry Clin Neurosci. 2020;270:497–8.

    Article  PubMed  Google Scholar 

  20. Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, et al. Dynamics of hippocampal neurogenesis in adult humans. Cell. 2013;153:1219–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dennis CV, Suh LS, Rodriguez ML, Kril JJ, Sutherland GT. Human adult neurogenesis across the ages: an immunohistochemical study. Neuropathol Appl Neurobiol. 2016;42:621–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sorrells SF, Paredes MF, Cebrian-Silla A, Sandoval K, Qi D, Kelley KW, et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature. 2018;555:377–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Allen KM, Fung SJ, Shannon Weickert C. Cell proliferation is reduced in the hippocampus in schizophrenia. Aust N. Z J Psychiatry. 2015;50:473–80.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Reif A, Fritzen S, Finger M, Strobel A, Lauer M, Schmitt A, et al. Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Mol Psychiatry. 2006;11:514–22.

    Article  CAS  PubMed  Google Scholar 

  25. Barbeau D, Liang JJ, Robitalille Y, Quirion R, Srivastava LK. Decreased expression of the embryonic form of the neural cell adhesion molecule in schizophrenic brains. Proc Natl Acad Sci USA. 1995;92:2785–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Walton NM, Zhou Y, Kogan JH, Shin R, Webster M, Gross AK, et al. Detection of an immature dentate gyrus feature in human schizophrenia/bipolar patients. Transl Psychiatry. 2012;2:e135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Falkai P, Malchow B, Wetzestein K, Nowastowski V, Bernstein HG, Steiner J, et al. Decreased oligodendrocyte and neuron number in anterior hippocampal areas and the entire hippocampus in schizophrenia: a stereological postmortem study. Schizophr Bull. 2016;42:S4–s12.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Inta D, Lima-Ojeda JM, Gass P, Fusar-Poli P. Postnatal neurogenesis and dopamine alterations in early psychosis. Recent Pat CNS Drug Disco. 2012;7:236–42.

    Article  CAS  Google Scholar 

  29. Inta D, Lang UE, Borgwardt S, Meyer-Lindenberg A, Gass P. Adult neurogenesis in the human striatum: possible implications for psychiatric disorders. Mol Psychiatry. 2016;21:446–7.

    Article  CAS  PubMed  Google Scholar 

  30. Fung SJ, Joshi D, Fillman SG, Weickert CS. High white matter neuron density with elevated cortical cytokine expression in schizophrenia. Biol Psychiatry. 2014;75:e5–7.

    Article  PubMed  Google Scholar 

  31. Sanai N, Tramontin AD, Quinones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature. 2004;427:740–4.

    Article  CAS  PubMed  Google Scholar 

  32. Dulken BW, Leeman DS, Boutet SC, Hebestreit K, Brunet A. Single-cell transcriptomic analysis defines heterogeneity and transcriptional dynamics in the adult neural stem cell lineage. Cell Rep. 2017;18:777–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Paredes MF, James D, Gil-Perotin S, Kim H, Cotter JA, Ng C, et al. Extensive migration of young neurons into the infant human frontal lobe. Science. 2016;354:aaf7073.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Weickert CS, Webster MJ, Colvin SM, Herman MM, Hyde TM, Weinberger DR, et al. Localization of epidermal growth factor receptors and putative neuroblasts in human subependymal zone. J Comp Neurol. 2000;423:359–72.

    Article  CAS  PubMed  Google Scholar 

  35. Adorjan I, Sun B, Feher V, Tyler T, Damo-Csorba B, Pour B, et al. Calretinin interneuron density in the caudate nucleus is lower in schizophrenia. Schizophrenia Bull. 2018;44:S192–S3.

    Article  Google Scholar 

  36. Schoenfeld TJ, Cameron HA. Adult neurogenesis and mental illness. Neuropsychopharmacology. 2015;40:113–28.

    Article  PubMed  Google Scholar 

  37. Liu YH, Lai WS, Tsay HJ, Wang TW, Yu JY. Effects of maternal immune activation on adult neurogenesis in the subventricular zone-olfactory bulb pathway and olfactory discrimination. Schizophr Res. 2013;151:1–11.

    Article  PubMed  Google Scholar 

  38. Lemaire V, Koehl M, Le Moal M, Abrous DN. Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc Natl Acad Sci USA. 2000;97:11032–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wakade CG, Mahadik SP, Waller JL, Chiu FC. Atypical neuroleptics stimulate neurogenesis in adult rat brain. J Neurosci Res. 2002;69:72–9.

    Article  CAS  PubMed  Google Scholar 

  40. Halim ND, Weickert CS, McClintock BW, Weinberger DR, Lipska BK. Effects of chronic haloperidol and clozapine treatment on neurogenesis in the adult rat hippocampus. Neuropsychopharmacology. 2004;29:1063–9.

    Article  CAS  PubMed  Google Scholar 

  41. Cotel MC, Lenartowicz EM, Natesan S, Modo MM, Cooper JD, Williams SC, et al. Microglial activation in the rat brain following chronic antipsychotic treatment at clinically relevant doses. Eur Neuropsychopharmacol. 2015;25:2098–107.

    Article  CAS  PubMed  Google Scholar 

  42. Baumeister D, Ciufolini S, Mondelli V. Effects of psychotropic drugs on inflammation: consequence or mediator of therapeutic effects in psychiatric treatment? Psychopharmacology. 2016;233:1575–89.

    Article  CAS  PubMed  Google Scholar 

  43. Lipska BK, Khaing ZZ, Weickert CS, Weinberger DR. BDNF mRNA expression in rat hippocampus and prefrontal cortex: effects of neonatal ventral hippocampal damage and antipsychotic drugs. Eur J Neurosci. 2001;14:135–44.

    Article  CAS  PubMed  Google Scholar 

  44. Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci. 2000;20:9104–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nazimek K, Strobel S, Bryniarski P, Kozlowski M, Filipczak-Bryniarska I, Bryniarski K. The role of macrophages in anti-inflammatory activity of antidepressant drugs. Immunobiology. 2017;222:823–30.

    Article  CAS  PubMed  Google Scholar 

  46. Bachis A, Mallei A, Cruz MI, Wellstein A, Mocchetti I. Chronic antidepressant treatments increase basic fibroblast growth factor and fibroblast growth factor-binding protein in neurons. Neuropharmacology. 2008;55:1114–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Karl T, Duffy L, Scimone A, Harvey RP, Schofield PR. Altered motor activity, exploration and anxiety in heterozygous neuregulin 1 mutant mice: implications for understanding schizophrenia. Genes Brain Behav. 2007;6:677–87.

    Article  CAS  PubMed  Google Scholar 

  48. Anton ES, Ghashghaei HT, Weber JL, McCann C, Fischer TM, Cheung ID, et al. Receptor tyrosine kinase ErbB4 modulates neuroblast migration and placement in the adult forebrain. Nat Neurosci. 2004;7:1319–28.

    Article  CAS  PubMed  Google Scholar 

  49. Bjornsson CS, Apostolopoulou M, Tian Y, Temple S. It takes a village: constructing the neurogenic niche. Dev Cell. 2015;32:435–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Qu Q, Sun G, Li W, Yang S, Ye P, Zhao C, et al. Orphan nuclear receptor TLX activates Wnt/beta-catenin signalling to stimulate neural stem cell proliferation and self-renewal. Nat Cell Biol. 2010;12:31–40. sup1-9.

    Article  CAS  PubMed  Google Scholar 

  51. Imayoshi I, Sakamoto M, Yamaguchi M, Mori K, Kageyama R. Essential Roles of Notch Signaling in Maintenance of Neural Stem Cells in Developing and Adult Brains. J Neurosci. 2010;30:3489–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kawai H, Kawaguchi D, Kuebrich BD, Kitamoto T, Yamaguchi M, Gotoh Y, et al. Area-Specific Regulation of Quiescent Neural Stem Cells by Notch3 in the Adult Mouse Subependymal Zone. J Neurosci. 2017;37:11867–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Borsini A, Zunszain PA, Thuret S, Pariante CM. The role of inflammatory cytokines as key modulators of neurogenesis. Trends Neurosci. 2015;38:145–57.

    Article  CAS  PubMed  Google Scholar 

  54. Zunszain PA, Anacker C, Cattaneo A, Choudhury S, Musaelyan K, Myint AM, et al. Interleukin-1beta: a new regulator of the kynurenine pathway affecting human hippocampal neurogenesis. Neuropsychopharmacology. 2012;37:939–49.

    Article  CAS  PubMed  Google Scholar 

  55. Ribeiro Xavier AL, Kress BT, Goldman SA, Lacerda de Menezes JR, Nedergaard M. A Distinct Population of Microglia Supports Adult Neurogenesis in the Subventricular Zone. J Neurosci. 2015;35:11848–61.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ekdahl CT, Kokaia Z, Lindvall O. Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience. 2009;158:1021–9.

    Article  CAS  PubMed  Google Scholar 

  57. Butovsky O, Ziv Y, Schwartz A, Landa G, Talpalar AE, Pluchino S, et al. Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol Cell Neurosci. 2006;31:149–60.

    Article  CAS  PubMed  Google Scholar 

  58. Hu X, Leak RK, Shi Y, Suenaga J, Gao Y, Zheng P, et al. Microglial and macrophage polarization-new prospects for brain repair. Nat Rev Neurol. 2015;11:56–64.

    Article  PubMed  Google Scholar 

  59. Fillman SG, Cloonan N, Catts VS, Miller LC, Wong J, McCrossin T, et al. Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry. 2013;18:206–14.

    Article  CAS  PubMed  Google Scholar 

  60. Joshi D, Fullerton JM, Weickert CS. Elevated ErbB4 mRNA is related to interneuron deficit in prefrontal cortex in schizophrenia. J Psychiatr Res. 2014;53:125–32.

    Article  PubMed  Google Scholar 

  61. Weickert CS, Hyde TM, Lipska BK, Herman MM, Weinberger DR, Kleinman JE. Reduced brain-derived neurotrophic factor in prefrontal cortex of patients with schizophrenia. Mol Psychiatry. 2003;8:592–610.

    Article  CAS  PubMed  Google Scholar 

  62. Mai JK, Paxinos G, Voss T. Atlas of the Human Brain. Amsterdam: Elsevier; 2008.

  63. Cai HQ, Catts VS, Webster MJ, Galletly C, Liu D, O’Donnell M, et al. Increased macrophages and changed brain endothelial cell gene expression in the frontal cortex of people with schizophrenia displaying inflammation. Mol Psychiatry. 2020;25:761–75.

    Article  CAS  PubMed  Google Scholar 

  64. Liu C, Cheng L, Badner JA, Zhang D, Craig DW, Redman M, et al. Whole-genome association mapping of gene expression in the human prefrontal cortex. Mol Psychiatry. 2010;15:779–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. van den Berge SA, Middeldorp J, Zhang CE, Curtis MA, Leonard BW, Mastroeni D, et al. Longterm quiescent cells in the aged human subventricular neurogenic system specifically express GFAP-delta. Aging Cell. 2010;9:313–26.

    Article  PubMed  Google Scholar 

  66. Tepavcevic V, Lazarini F, Alfaro-Cervello C, Kerninon C, Yoshikawa K, Garcia-Verdugo JM, et al. Inflammation-induced subventricular zone dysfunction leads to olfactory deficits in a targeted mouse model of multiple sclerosis. J Clin Investig. 2011;121:4722–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sanai N, Nguyen T, Ihrie RA, Mirzadeh Z, Tsai HH, Wong M, et al. Corridors of migrating neurons in the human brain and their decline during infancy. Nature. 2011;478:382–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Urban N, Blomfield IM, Guillemot F. Quiescence of Adult Mammalian Neural Stem Cells: a Highly Regulated Rest. Neuron. 2019;104:834–48.

    Article  CAS  PubMed  Google Scholar 

  69. Lee H, Thuret S. Adult human hippocampal neurogenesis: controversy and evidence. Trends Mol Med. 2018;24:521–2.

    Article  PubMed  Google Scholar 

  70. Bernier PJ, Vinet J, Cossette M, Parent A. Characterization of the subventricular zone of the adult human brain: evidence for the involvement of Bcl-2. Neurosci Res. 2000;37:67–78.

  71. Maheu ME, Devorak J, Freibauer A, Davoli MA, Turecki G, Mechawar N. Increased doublecortin (DCX) expression and incidence of DCX-immunoreactive multipolar cells in the subventricular zone-olfactory bulb system of suicides. Front Neuroanat. 2015;9:74.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wang C, Liu F, Liu YY, Zhao CH, You Y, Wang L, et al. Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain. Cell Res. 2011;21:1534–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Weissleder C, North HF, Shannon, Weickert C. Important unanswered questions about adult neurogenesis in schizophrenia. Curr Opin Psychiatry. 2019;32:170–8.

    Article  PubMed  Google Scholar 

  74. Hwang Y, Kim J, Shin JY, Kim JI, Seo JS, Webster MJ, et al. Gene expression profiling by mRNA sequencing reveals increased expression of immune/inflammation-related genes in the hippocampus of individuals with schizophrenia. Transl Psychiatry. 2013;3:e321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Busse S, Busse M, Schiltz K, Bielau H, Gos T, Brisch R, et al. Different distribution patterns of lymphocytes and microglia in the hippocampus of patients with residual versus paranoid schizophrenia: further evidence for disease course-related immune alterations? Brain Behav Immun. 2012;26:1273–9.

    Article  CAS  PubMed  Google Scholar 

  76. Purves-Tyson TD, Robinson K, Brown AM, Boerrigter D, Cai HQ, Weissleder C, et al. Increased Macrophages and C1qA, C3, C4 Transcripts in the Midbrain of People With Schizophrenia. Front Immunol. 2020;11:2002.

  77. Kim S, Hwang Y, Lee D, Webster MJ. Transcriptome sequencing of the choroid plexus in schizophrenia. Transl Psychiatry. 2016;6:e964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B, et al. A specialized vascular niche for adult neural stem cells. Cell Stem Cell. 2008;3:279–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wolf SA, Steiner B, Akpinarli A, Kammertoens T, Nassenstein C, Braun A, et al. CD4-positive T lymphocytes provide a neuroimmunological link in the control of adult hippocampal neurogenesis. J Immunol. 2009;182:3979–84.

    Article  CAS  PubMed  Google Scholar 

  80. Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O. Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci USA. 2003;100:13632–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N, et al. Schizophrenia risk from complex variation of complement component 4. Nature. 2016;530:177–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Moriyama M, Fukuhara T, Britschgi M, He Y, Narasimhan R, Villeda S, et al. Complement receptor 2 is expressed in neural progenitor cells and regulates adult hippocampal neurogenesis. J Neurosci. 2011;31:3981–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ducruet AF, Zacharia BE, Sosunov SA, Gigante PR, Yeh ML, Gorski JW, et al. Complement inhibition promotes endogenous neurogenesis and sustained anti-inflammatory neuroprotection following reperfused stroke. PLoS ONE. 2012;7:e38664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wadhwa M, Prabhakar A, Anand JP, Ray K, Prasad D, Kumar B, et al. Complement activation sustains neuroinflammation and deteriorates adult neurogenesis and spatial memory impairment in rat hippocampus following sleep deprivation. Brain Behav Immun. 2019;82:129–44.

    Article  CAS  PubMed  Google Scholar 

  85. Shang Y, Smith S, Hu X. Role of Notch signaling in regulating innate immunity and inflammation in health and disease. Protein Cell. 2016;7:159–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ables JL, Breunig JJ, Eisch AJ, Rakic P. Not(ch) just development: Notch signalling in the adult brain. Nat Rev Neurosci. 2011;12:269–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kawaguchi D, Furutachi S, Kawai H, Hozumi K, Gotoh Y. Dll1 maintains quiescence of adult neural stem cells and segregates asymmetrically during mitosis. Nat Commun. 2013;4:1880.

    Article  PubMed  Google Scholar 

  88. Hoseth EZ, Krull F, Dieset I, Mørch RH, Hope S, Gardsjord ES, et al. Attenuated Notch signaling in schizophrenia and bipolar disorder. Sci Rep. 2018;8:5349.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Fullerton JM, Klauser P, Lenroot RK, Shaw AD, Overs B, Heath A, et al. Differential effect of disease-associated ST8SIA2 haplotype on cerebral white matter diffusion properties in schizophrenia and healthy controls. Transl Psychiatry. 2018;8:21.

    Article  PubMed  PubMed Central  Google Scholar 

  90. McAuley EZ, Scimone A, Tiwari Y, Agahi G, Mowry BJ, Holliday EG, et al. Identification of sialyltransferase 8B as a generalized susceptibility gene for psychotic and mood disorders on chromosome 15q25-26. PLoS ONE. 2012;7:e38172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. O’Tuathaigh CM, Babovic D, O’Sullivan GJ, Clifford JJ, Tighe O, Croke DT, et al. Phenotypic characterization of spatial cognition and social behavior in mice with ‘knockout’ of the schizophrenia risk gene neuregulin 1. Neuroscience. 2007;147:18–27.

    Article  PubMed  Google Scholar 

  92. Pieper AA, Wu X, Han TW, Estill SJ, Dang Q, Wu LC, et al. The neuronal PAS domain protein 3 transcription factor controls FGF-mediated adult hippocampal neurogenesis in mice. Proc Natl Acad Sci USA. 2005;102:14052–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gandal MJ, Zhang P, Hadjimichael E, Walker RL, Chen C, Liu S, et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science. 2018;362:eaat8127.

  94. Skene NG, Bryois J, Bakken TE, Breen G, Crowley JJ, Gaspar HA, et al. Genetic identification of brain cell types underlying schizophrenia. Nat Genet. 2018;50:825–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang X, Park J, Susztak K, Zhang NR, Li M. Bulk tissue cell type deconvolution with multi-subject single-cell expression reference. Nat Commun. 2019;10:380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ramaker RC, Bowling KM, Lasseigne BN, Hagenauer MH, Hardigan AA, Davis NS, et al. Post-mortem molecular profiling of three psychiatric disorders. Genome Med. 2017;9:72.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Kodama M, Fujioka T, Duman RS. Chronic olanzapine or fluoxetine administration increases cell proliferation in hippocampus and prefrontal cortex of adult rat. Biol Psychiatry. 2004;56:570–80.

    Article  CAS  PubMed  Google Scholar 

  98. Green W, Patil P, Marsden CA, Bennett GW, Wigmore PM. Treatment with olanzapine increases cell proliferation in the subventricular zone and prefrontal cortex. Brain Res. 2006;1070:242–5.

    Article  CAS  PubMed  Google Scholar 

  99. Ho N, Hooker J, Sahay A, Holt D, Roffman J. In vivo imaging of adult human hippocampal neurogenesis: progress, pitfalls and promise. Mol Psychiatry. 2013;18:404–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the NSW Ministry of Health, Office of Health and Medical Research. CSW is a recipient of a National Health and Medical Research Council (Australia) Principal Research Fellowship (1117079). JMF is the recipient of the Janette Mary O’Neil Research Fellowship. GMH is a recipient of a National Health and Medical Research Council (Australia) Senior Leadership Fellowship (1117079). Tissues were received from the New South Wales Brain Tissue Resource Centre at the University of Sydney and the Sydney Brain Bank at Neuroscience Research Australia which are supported by The University of New South Wales, Neuroscience Research Australia and Schizophrenia Research Institute. Research reported in this publication was supported by the National Institute on Alcohol Abuse and Alcoholism of the National Institutes of Health under Award Number R28AA012725. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation, CW, GB, MJW and CSW; Methodology, CW, HFN, MB, JMF, RS, GB, MJW and CSW; Investigation, CW, HFN, MB, JMF, RS, GB and MJW; Validation, CW, HFN and RS; Formal analysis, CW, HFN, MB, JMF, RS and GB; Writing—Original draft, CW, HFN, JMF and CSW; Writing—Review & Editing, CW, HFN, MB, JMF, RS, GB, MP, GMH, MJW and CSW; Funding acquisition, CW, GB and CSW; Resources, MB, GB, GMH, MJW and CSW; Supervision, CW, MB, JMF, GB and CSW.

Corresponding author

Correspondence to Cynthia Shannon Weickert.

Ethics declarations

Conflict of interest

CSW is on an advisory board for Lundbeck, Australia Pty Ltd and in collaboration with Astellas Pharma Inc., Japan. All other authors have no competing interests to disclose.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weissleder, C., North, H.F., Bitar, M. et al. Reduced adult neurogenesis is associated with increased macrophages in the subependymal zone in schizophrenia. Mol Psychiatry 26, 6880–6895 (2021). https://doi.org/10.1038/s41380-021-01149-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01149-3

This article is cited by

Search

Quick links