Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Loss of liver X receptor β in astrocytes leads to anxiety-like behaviors via regulating synaptic transmission in the medial prefrontal cortex in mice

Abstract

Astrocytes are integral components of synaptic transmission, and their dysfunction leads to neuropsychiatric disorders such as anxiety and depression. Liver X receptor β (LXRβ) is expressed in astrocytes, and LXRβ global knockout mice shows impaired synaptic formation. In order to define the role of LXRβ in astrocytes, we used a conditional Cre-loxP system to specifically remove LXRβ from astrocytes. We found that this deletion caused anxiety-like but not depressive-like behaviors in adult male mice. This behavioral phenotype could be completely reproduced by selective deletion of LXRβ in astrocytes in the medial prefrontal cortex (mPFC). Pyramidal neurons in layer V of mPFC are involved in mood behaviors. We found that there was an increased spontaneous excitatory synaptic transmission in layer V pyramidal neurons of the mPFC of these mice. This was concurrent with increased dendritic complexity, despite normal appearance and number of dendritic spines. In addition, gene ontology analysis of RNA sequencing revealed that deletion of astrocytic LXRβ led to the enrichment of the process of synaptic transmission in mPFC. Finally, we also confirmed that renormalized excitatory synaptic transmission in layer V pyramidal neurons alleviated the anxiety in mice with astrocytic LXRβ deletion in mPFC. Together, our findings reveal that astrocytic LXRβ in mPFC is critical in the regulation of synaptic transmission, and this provides a potential new target for treatment of anxiety-like behavior.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Deletion of LXRβ in astrocytes induced anxiety-like behaviors in 8–12 weeks old male mice.
Fig. 2: Deletion of LXRβ in astrocytes increased vGlut1 expression in layer V of mPFC.
Fig. 3: Loss of astrocytic LXRβ enhanced excitatory synaptic transmission and increased basal dendritic complexity of layer V pyramidal neurons in mPFC.
Fig. 4: Differential expression profiling in the mPFC of LXRβ cKOGFAP and LXRβfl/fl mice.
Fig. 5: Knockdown of LXRβ in astrocytes of the adult mPFC recapitulated the anxiety-like behavior seen in the LXRβ cKOGFAP mice.

Similar content being viewed by others

References

  1. Ravindran LN, Stein MB. The pharmacologic treatment of anxiety disorders: a review of progress. J Clin Psychiatry. 2010;71:839–54.

    Article  CAS  PubMed  Google Scholar 

  2. Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005;62:593–602.

    Article  PubMed  Google Scholar 

  3. Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2163–96.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Comer JS, Blanco C, Hasin DS, Liu SM, Grant BF, Turner JB, et al. Health-related quality of life across the anxiety disorders: results from the national epidemiologic survey on alcohol and related conditions (NESARC). J Clin Psychiatry. 2011;72:43–50.

    Article  PubMed  Google Scholar 

  5. Griebel G, Holmes A. 50 years of hurdles and hope in anxiolytic drug discovery. Nat Rev Drug Discov. 2013;12:667–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Farb DH, Ratner MH. Targeting the modulation of neural circuitry for the treatment of anxiety disorders. Pharmacol Rev. 2014;66:1002–32.

    Article  CAS  PubMed  Google Scholar 

  7. Patterson B, Van, Ameringen M. Augmentation strategies for treatment-resistant anxiety disorders: a systematic review and meta-analysis. Depress Anxiety. 2016;33:728–36.

    Article  PubMed  Google Scholar 

  8. Dallerac G, Zapata J, Rouach N. Versatile control of synaptic circuits by astrocytes: where, when and how? Nat Rev Neurosci. 2018;19:729–43.

    Article  CAS  PubMed  Google Scholar 

  9. Allen NJ, Lyons DA. Glia as architects of central nervous system formation and function. Science. 2018;362:181–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sugimoto J, Tanaka M, Sugiyama K, Ito Y, Aizawa H, Soma M, et al. Region-specific deletions of the glutamate transporter GLT1 differentially affect seizure activity and neurodegeneration in mice. Glia. 2018;66:777–88.

    Article  PubMed  Google Scholar 

  11. Boddum K, Jensen TP, Magloire V, Kristiansen U, Rusakov DA, Pavlov I, et al. Astrocytic GABA transporter activity modulates excitatory neurotransmission. Nat Commun. 2016;7:13572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pajarillo E, Rizor A, Lee J, Aschner M, Lee E. The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: Potential targets for neurotherapeutics. Neuropharmacology. 2019;161:107559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. John CS, Sypek EI, Carlezon WA, Cohen BM, Ongur D, Bechtholt AJ. Blockade of the GLT-1 transporter in the central nucleus of the amygdala induces both anxiety and depressive-like symptoms. Neuropsychopharmacology. 2015;40:1700–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Aida T, Yoshida J, Nomura M, Tanimura A, Iino Y, Soma M, et al. Astroglial glutamate transporter deficiency increases synaptic excitability and leads to pathological repetitive behaviors in mice. Neuropsychopharmacology. 2015;40:1569–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jakobsson T, Treuter E, Gustafsson JA, Steffensen KR. Liver X receptor biology and pharmacology: new pathways, challenges and opportunities. Trends Pharm Sci. 2012;33:394–404.

    Article  CAS  PubMed  Google Scholar 

  16. Whitney KD, Watson MA, Collins JL, Benson WG, Stone TM, Numerick MJ, et al. Regulation of cholesterol homeostasis by the liver X receptors in the central nervous system. Mol Endocrinol. 2002;16:1378–85.

    Article  CAS  PubMed  Google Scholar 

  17. Fan X, Kim HJ, Bouton D, Warner M, Gustafsson JA. Expression of liver X receptor beta is essential for formation of superficial cortical layers and migration of later-born neurons. Proc Natl Acad Sci USA. 2008;105:13445–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xing Y, Fan X, Ying D. Liver X receptor agonist treatment promotes the migration of granule neurons during cerebellar development. J Neurochem. 2010;115:1486–94.

    Article  CAS  PubMed  Google Scholar 

  19. Cai Y, Tang X, Chen X, Li X, Wang Y, Bao X, et al. Liver X receptor beta regulates the development of the dentate gyrus and autistic-like behavior in the mouse. Proc Natl Acad Sci USA. 2018;115:E2725–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang Y, Tang Y, Xing Y, Zhao M, Bao X, Sun D, et al. Activation of liver X receptor is protective against ethanol-induced developmental impairment of Bergmann glia and Purkinje neurons in the mouse cerebellum. Mol Neurobiol. 2014;49:176–86.

    Article  CAS  PubMed  Google Scholar 

  21. Pinto L, Gotz M. Radial glial cell heterogeneity-the source of diverse progeny in the CNS. Prog Neurobiol. 2007;83:2–23.

    Article  CAS  PubMed  Google Scholar 

  22. Xu P, Xu H, Tang X, Xu L, Wang Y, Guo L, et al. Liver X receptor beta is essential for the differentiation of radial glial cells to oligodendrocytes in the dorsal cortex. Mol Psychiatry. 2014;19:947–57.

    Article  CAS  PubMed  Google Scholar 

  23. Guo L, Xu P, Tang X, Wu Q, Xing Y, Gustafsson JA, et al. Liver X receptor beta delays transformation of radial glial cells into astrocytes during mouse cerebral cortical development. Neurochem Int. 2014;71:8–16.

    Article  CAS  PubMed  Google Scholar 

  24. Baez-Becerra C, Filipello F, Sandoval-Hernandez A, Arboleda H, Arboleda G. Liver X receptor agonist GW3965 regulates synaptic function upon amyloid beta exposure in hippocampal neurons. Neurotox Res. 2018;33:569–79.

    Article  CAS  PubMed  Google Scholar 

  25. Yu W, Wang L, Yang L, Li YJ, Wang M, Qiu C, et al. Activation of LXRbeta signaling in the amygdala confers anxiolytic effects through rebalancing excitatory and inhibitory neurotransmission upon acute stress. Neurotherapeutics. 2020;17:1253–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu T, Ma Y, Zhang R, Zhong H, Wang L, Zhao J, et al. Resveratrol ameliorates estrogen deficiency-induced depression- and anxiety-like behaviors and hippocampal inflammation in mice. Psychopharmacology. 2019;236:1385–99.

    Article  CAS  PubMed  Google Scholar 

  27. Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, et al. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature. 2005;433:73–7.

    Article  CAS  PubMed  Google Scholar 

  28. Tunc-Ozcan E, Peng CY, Zhu Y, Dunlop SR, Contractor A, Kessler JA. Activating newborn neurons suppresses depression and anxiety-like behaviors. Nat Commun. 2019;10:3768.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jacobson NC, Newman MG. Anxiety and depression as bidirectional risk factors for one another: a meta-analysis of longitudinal studies. Psychol Bull. 2017;143:1155–200.

    Article  PubMed  Google Scholar 

  30. Zhao Z, Yao S, Li K, Sindermann C, Zhou F, Zhao W, et al. Real-time functional connectivity-informed neurofeedback of amygdala-frontal pathways reduces anxiety. Psychother Psychosom. 2019;88:5–15.

    Article  PubMed  Google Scholar 

  31. Parfitt GM, Nguyen R, Bang JY, Aqrabawi AJ, Tran MM, Seo DK, et al. Bidirectional control of anxiety-related behaviors in mice: role of inputs arising from the ventral hippocampus to the lateral septum and medial prefrontal cortex. Neuropsychopharmacology. 2017;42:1715–28.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhang R, Asai M, Mahoney CE, Joachim M, Shen Y, Gunner G, et al. Loss of hypothalamic corticotropin-releasing hormone markedly reduces anxiety behaviors in mice. Mol Psychiatry. 2017;22:733–44.

    Article  CAS  PubMed  Google Scholar 

  33. Fuchs T, Jefferson SJ, Hooper A, Yee PH, Maguire J, Luscher B. Disinhibition of somatostatin-positive GABAergic interneurons results in an anxiolytic and antidepressant-like brain state. Mol Psychiatry. 2017;22:920–30.

    Article  CAS  PubMed  Google Scholar 

  34. Salimando GJ, Hyun M, Boyt KM, Winder DG. BNST GluN2D-containing NMDA receptors influence anxiety- and depressive-like behaviors and modulatecell-specific excitatory/inhibitory synaptic balance. J Neurosci. 2020;40:3949–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hughes BA, Crofton EJ, O’Buckley TK, Herman MA, Morrow AL. Chronic ethanol exposure alters prelimbic prefrontal cortical Fast-Spiking and Martinotti interneuron function with differential sex specificity in rat brain. Neuropharmacology. 2020;162:107805.

    Article  CAS  PubMed  Google Scholar 

  36. Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM. Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci. 2011;14:285–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Evans GJ, Cousin MA. Tyrosine phosphorylation of synaptophysin in synaptic vesicle recycling. Biochem Soc Trans. 2005;33:1350–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lei Y, Wang J, Wang D, Li C, Liu B, Fang X, et al. SIRT1 in forebrain excitatory neurons produces sexually dimorphic effects on depression-related behaviors and modulates neuronal excitability and synaptic transmission in the medial prefrontal cortex. Mol Psychiatry. 2020;25:1094–111.

    Article  CAS  PubMed  Google Scholar 

  39. Wang Z, Zeng YN, Yang P, Jin LQ, Xiong WC, Zhu MZ, et al. Axonal iron transport in the brain modulates anxiety-related behaviors. Nat Chem Biol. 2019;15:1214–22.

    Article  CAS  PubMed  Google Scholar 

  40. Berg L, Eckardt J, Masseck OA. Enhanced activity of pyramidal neurons in the infralimbic cortex drives anxiety behavior. PLoS ONE. 2019;14:e0210949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shi P, Nie J, Liu H, Li Y, Lu X, Shen X, et al. Adolescent cocaine exposure enhances the GABAergic transmission in the prelimbic cortex of adult mice. FASEB J. 2019;33:8614–22.

    Article  PubMed  Google Scholar 

  42. Anderson EM, Gomez D, Caccamise A, McPhail D, Hearing M. Chronic unpredictable stress promotes cell-specific plasticity in prefrontal cortex D1 and D2 pyramidal neurons. Neurobiol Stress. 2019;10:100152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bi LL, Wang J, Luo ZY, Chen SP, Geng F, Chen YH, et al. Enhanced excitability in the infralimbic cortex produces anxiety-like behaviors. Neuropharmacology. 2013;72:148–56.

    Article  CAS  PubMed  Google Scholar 

  44. Forrest MP, Parnell E, Penzes P. Dendritic structural plasticity and neuropsychiatric disease. Nat Rev Neurosci. 2018;19:215–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Klenowski PM, Fogarty MJ, Shariff M, Belmer A, Bellingham MC, Bartlett SE. Increased Synaptic excitation and abnormal dendritic structure of prefrontal cortex layer V pyramidal neurons following prolonged binge-like consumption of ethanol. eNeuro. 2016;3:ENEURO.0248-0216.2016.

  46. Liu RJ, Ota KT, Dutheil S, Duman RS, Aghajanian GK. Ketamine strengthens CRF-activated amygdala inputs to basal dendrites in mPFC layer V pyramidal cells in the prelimbic but not infralimbic subregion, a key suppressor of stress responses. Neuropsychopharmacology. 2015;40:2066–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gabbott P, Warner TA, Brown J, Salway P, Gabbott T, Busby S. Amygdala afferents monosynaptically innervate corticospinal neurons in rat medial prefrontal cortex. J Comp Neurol. 2012;520:2440–58.

    Article  PubMed  Google Scholar 

  48. Groh A, Meyer HS, Schmidt EF, Heintz N, Sakmann B, Krieger P. Cell-type specific properties of pyramidal neurons in neocortex underlying a layout that is modifiable depending on the cortical area. Cereb Cortex. 2010;20:826–36.

    Article  PubMed  Google Scholar 

  49. Chang MC, Park JM, Pelkey KA, Grabenstatter HL, Xu D, Linden DJ, et al. Narp regulates homeostatic scaling of excitatory synapses on parvalbumin-expressing interneurons. Nat Neurosci. 2010;13:1090–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chang S, Bok P, Tsai CY, Sun CP, Liu H, Deussing JM, et al. NPTX2 is a key component in the regulation of anxiety. Neuropsychopharmacology. 2018;43:1943–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li S, Zhang C, Takemori H, Zhou Y, Xiong ZQ. TORC1 regulates activity-dependent CREB-target gene transcription and dendritic growth of developing cortical neurons. J Neurosci. 2009;29:2334–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kuwako KI, Okano H. The LKB1-SIK pathway controls dendrite self-avoidance in purkinje cells. Cell Rep. 2018;24:2808–18.e4.

    Article  CAS  PubMed  Google Scholar 

  53. Barnes JR, Mukherjee B, Rogers BC, Nafar F, Gosse M, Parsons MP. The relationship between glutamate dynamics and activity-dependent synaptic plasticity. J Neurosci. 2020;40:2793–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mahmoud S, Gharagozloo M, Simard C, Gris D. Astrocytes maintain glutamate homeostasis in the CNS by controlling the balance between glutamate uptake and release. Cells. 2019;8:184.

  55. Kang S, Li J, Bekker A, Ye JH. Rescue of glutamate transport in the lateral habenula alleviates depression- and anxiety-like behaviors in ethanol-withdrawn rats. Neuropharmacology. 2018;129:47–56.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key R&D Program of China (2017YFE0103700), the National Nature Science Foundation of China (No. 31871043), and the Swedish Research Council and a grant from the Robert A. Welch Foundation (E-0004, J-ÅG).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jan-Ake Gustafsson or Xiaotang Fan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhong, H., Wang, Z. et al. Loss of liver X receptor β in astrocytes leads to anxiety-like behaviors via regulating synaptic transmission in the medial prefrontal cortex in mice. Mol Psychiatry 26, 6380–6393 (2021). https://doi.org/10.1038/s41380-021-01139-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01139-5

This article is cited by

Search

Quick links