Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enkephalin release from VIP interneurons in the hippocampal CA2/3a region mediates heterosynaptic plasticity and social memory

This article has been updated

Abstract

The hippocampus contains a diverse array of inhibitory interneurons that gate information flow through local cortico-hippocampal circuits to regulate memory storage. Although most studies of interneurons have focused on their role in fast synaptic inhibition mediated by GABA release, different classes of interneurons express unique sets of neuropeptides, many of which have been shown to exert powerful effects on neuronal function and memory when applied pharmacologically. However, relatively little is known about whether and how release of endogenous neuropeptides from inhibitory cells contributes to their behavioral role in regulating memory formation. Here we report that vasoactive intestinal peptide (VIP)-expressing interneurons participate in social memory storage by enhancing information transfer from hippocampal CA3 pyramidal neurons to CA2 pyramidal neurons. Notably, this action depends on release of the neuropeptide enkephalin from VIP neurons, causing long-term depression of feedforward inhibition onto CA2 pyramidal cells. Moreover, VIP neuron activity in the CA2 region is increased selectively during exploration of a novel conspecific. Our findings, thus, enhance our appreciation of how GABAergic neurons can regulate synaptic plasticity and mnemonic behavior by demonstrating that such actions can be mediated by release of a specific neuropeptide, rather than through classic fast inhibitory transmission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: VIP and enkephalin expression overlaps in the hippocampal CA2 region.
Fig. 2: VIP neurons are necessary and sufficient to induce CA2 ITDP through DOR activation.
Fig. 3: Enkephalin is necessary for ITDP induction.
Fig. 4: VIP neurons receive excitatory inputs from both CA3 and EC layer II stellate cells.
Fig. 5: Silencing VIP neurons impairs social memory formation.
Fig. 6: Enkephalin expression in CA2 region is necessary for social memory.
Fig. 7: Activity of VIP neurons in CA2 increases specifically during interaction with a novel mouse.

Similar content being viewed by others

Change history

  • 22 November 2021

    Incorrect ORCID ID was removed for co-author Tobias Bock.

References

  1. Basu J, Zaremba JD, Cheung SK, Hitti FL, Zemelman BV, Losonczy A, et al. Gating of hippocampal activity, plasticity, and memory by entorhinal cortex long-range inhibition. Science. 2016;351:aaa5694–aaa5694.

  2. Letzkus JJ, Wolff SBE, Meyer EMM, Tovote P, Courtin J, Herry C, et al. A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature. 2011;480:331–5.

    Article  CAS  PubMed  Google Scholar 

  3. Letzkus JJ, Wolff SBE, Lüthi A. Disinhibition, a circuit mechanism for associative learning and memory. Neuron. 2015;88:264–76.

    Article  CAS  PubMed  Google Scholar 

  4. Turi GF, Li W-K, Chavlis S, Pandi I, O’Hare J, Priestley JB, et al. Vasoactive intestinal polypeptide-expressing interneurons in the hippocampus support goal-oriented spatial learning. Neuron. 2019;101:1150–65.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Krabbe S, Paradiso E, D’Aquin S, Bitterman Y, Courtin J, Xu C, et al. Adaptive disinhibitory gating by VIP interneurons permits associative learning. Nat Neurosci. 2019;22:1834–43.

    Article  CAS  PubMed  Google Scholar 

  6. Lee AT, Cunniff MM, See JZ, Wilke SA, Luongo FJ, Ellwood IT, et al. VIP interneurons contribute to avoidance behavior by regulating information flow across hippocampal-prefrontal networks. Neuron. 2019;102:1223–34.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Williams LE, Holtmaat A. Higher-order thalamocortical inputs gate synaptic long-term potentiation via disinhibition. Neuron. 2019;101:91–02.e4.

    Article  CAS  PubMed  Google Scholar 

  8. DeFelipe J, López-Cruz PL, Benavides-Piccione R, Bielza C, Larrañaga P, Anderson S, et al. New insights into the classification and nomenclature of cortical GABAergic interneurons. Nat Rev Neurosci. 2013;14:202–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ögren SO, Kuteeva E, Elvander-Tottie E, Hökfelt T. Neuropeptides in learning and memory processes with focus on galanin. Eur J Pharmacol. 2010;626:9–17.

    Article  PubMed  CAS  Google Scholar 

  10. Marder E. Neuromodulation of neuronal circuits: back to the future. Neuron. 2012;76:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Borbély É, Scheich B, Helyes Z. Neuropeptides in learning and memory. Neuropeptides. 2013;47:439–50.

    Article  PubMed  CAS  Google Scholar 

  12. Gøtzsche CR, Woldbye DPD. The role of NPY in learning and memory. Neuropeptides. 2016;55:79–89.

    Article  PubMed  CAS  Google Scholar 

  13. Dávid C, Schleicher A, Zuschratter W, Staiger JF. The innervation of parvalbumin-containing interneurons by VIP-immunopositive interneurons in the primary somatosensory cortex of the adult rat. Eur J Neurosci. 2007;25:2329–40.

    Article  PubMed  Google Scholar 

  14. Kepecs A, Fishell G. Interneuron cell types are fit to function. Nature. 2014;505:318–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Acsády L, Görcs TJ, Freund TF. Different populations of vasoactive intestinal polypeptide-immunoreactive interneurons are specialized to control pyramidal cells or interneurons in the hippocampus. Neuroscience. 1996;73:317–34.

    Article  PubMed  Google Scholar 

  16. Tyan L, Chamberland S, Magnin E, Camire O, Francavilla R, David LS, et al. Dendritic inhibition provided by interneuron-specific cells controls the firing rate and timing of the hippocampal feedback inhibitory circuitry. J Neurosci. 2014;34:4534–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Chamberland S, Topolnik L. Inhibitory control of hippocampal inhibitory neurons. Front Neurosci. 2012;6:165.

  18. Pi H-J, Hangya B, Kvitsiani D, Sanders JI, Huang ZJ, Kepecs A. Cortical interneurons that specialize in disinhibitory control. Nature. 2013;503:521–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kennett JE, Poletini MO, Freeman ME. Vasoactive intestinal polypeptide modulates the estradiol-induced prolactin surge by entraining oxytocin neuronal activity. Brain Res. 2008;1196:65–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Blasco-Ibáñez JM, Martínez-Guijarro FJ, Freund TF. Enkephalin-containing interneurons are specialized to innervate other interneurons in the hippocampal CA1 region of the rat and guinea-pig. Eur J Neurosci. 1998;10:1784–95.

    Article  PubMed  Google Scholar 

  21. Botcher NA, Falck JE, Thomson AM, Mercer A. Distribution of interneurons in the CA2 region of the rat hippocampus. Front Neuroanat. 2014;8:104.

  22. Piskorowski RA, Chevaleyre V. Delta-opioid receptors mediate unique plasticity onto parvalbumin-expressing interneurons in area CA2 of the hippocampus. J Neurosci. 2013;33:14567–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Leroy F, Brann DH, Meira T, Siegelbaum SA. Input-timing-dependent Plasticity in the Hippocampal CA2 region and its potential role in social memory. Neuron. 2017;95:1089–102.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nasrallah K, Piskorowski RA, Chevaleyre V. Inhibitory plasticity permits the recruitment of CA2 pyramidal neurons by CA3. Eneuro. 2015. https://doi.org/10.1523/ENEURO.0049-15.2015.

  25. Benes FM, Kwok EW, Vincent SL, Todtenkopf MS. A reduction of nonpyramidal cells in sector CA2 of schizophrenics and manic depressives. Biol Psychiatry. 1998;44:88–97.

    Article  CAS  PubMed  Google Scholar 

  26. Knable MB, Barci BM, Webster MJ, Meador-Woodruff J, Torrey EF. Molecular abnormalities of the hippocampus in severe psychiatric illness: postmortem findings from the Stanley Neuropathology Consortium. Mol Psychiatry. 2004;9:609–20.

    Article  CAS  PubMed  Google Scholar 

  27. Piskorowski RA, Nasrallah K, Diamantopoulou A, Mukai J, Hassan SI, Siegelbaum SA, et al. Age-dependent specific changes in area CA2 of the hippocampus and social memory deficit in a mouse model of the 22q11.2 deletion syndrome. Neuron. 2016;89:163–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Donegan ML, Stefanini F, Meira T, Gordon JA, Fusi S, Siegelbaum SA. Coding of social novelty in the hippocampal CA2 region and its disruption and rescue in a 22q11.2 microdeletion mouse model. Nat Neurosci. 2020;23:1365–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cheng AH, Fung SW, Cheng, YM H-. Limitations of the Avp-IRES2-Cre (JAX #023530) and Vip-IRES-Cre (JAX #010908) models for chronobiological investigations. J Biol Rhythms. 2019;34:634–44.

    Article  CAS  PubMed  Google Scholar 

  30. Mattis J, Tye KM, Ferenczi EA, Ramakrishnan C, O’Shea DJ, Prakash R, et al. Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat Methods. 2012;9:159–72.

    Article  CAS  Google Scholar 

  31. Dudman JT, Tsay D, Siegelbaum SA. A role for synaptic inputs at distal dendrites: instructive signals for hippocampal long-term plasticity. Neuron. 2007;56:866–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chevaleyre V, Siegelbaum SA. Strong CA2 pyramidal neuron synapses define a powerful disynaptic cortico-hippocampal loop. Neuron. 2010;66:560–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Basu J, Srinivas KV, Cheung SK, Taniguchi H, Huang ZJ, Siegelbaum SA. A cortico-hippocampal learning rule shapes inhibitory microcircuit activity to enhance hippocampal information flow. Neuron. 2013;79:1208–21.

    Article  CAS  PubMed  Google Scholar 

  34. Bérubé P, Poulin J-F, Laforest S, Drolet G. Enkephalin knockdown in the basolateral amygdala reproduces vulnerable anxiety-like responses to chronic unpredictable stress. Neuropsychopharmacology. 2014;39:1159–68.

    Article  PubMed  CAS  Google Scholar 

  35. Li X, Marshall PR, Leighton LJ, Zajaczkowski EL, Wang Z, Madugalle SU, et al. The DNA repair-associated protein Gadd45γ regulates the temporal coding of immediate early gene expression within the prelimbic prefrontal cortex and is required for the consolidation of associative fear memory. J Neurosci. 2019;39:970–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kitamura T, Pignatelli M, Suh J, Kohara K, Yoshiki A, Abe K, et al. Island cells control temporal association memory. Science. 2014;343:896–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Oliva A, Fernández-Ruiz A, Leroy F, Siegelbaum SA. Hippocampal CA2 sharp-wave ripples reactivate and promote social memory. Nature. 2020;587:264–9.

    Article  CAS  PubMed  Google Scholar 

  38. Urban DJ, Roth BL. DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annu Rev Pharm Toxicol. 2015;55:399–417.

    Article  CAS  Google Scholar 

  39. Hitti FL, Siegelbaum SA. The hippocampal CA2 region is essential for social memory. Nature. 2014;508:88–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Meira T, Leroy F, Buss EW, Oliva A, Park J, Siegelbaum SA. A hippocampal circuit linking dorsal CA2 to ventral CA1 critical for social memory dynamics. Nat Commun. 2018;9:4163.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Stevenson EL, Caldwell HK. Lesions to the CA2 region of the hippocampus impair social memory in mice. Eur J Neurosci. 2014;40:3294–301.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Citri A, Malenka RC. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology. 2008;33:18–41.

    Article  PubMed  Google Scholar 

  43. Andersen P, Morris R, Amaral D, Bliss T, O’ Keefe J. The Hippocampus Book. Oxford University Press; 2006. Published to Oxford Scholarship Online: May 2009.

  44. Wilmes KA, Clopath C. Inhibitory microcircuits for top-down plasticity of sensory representations. Nat Commun. 2019;10:5055.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Díaz J-L, Asai M. Dominant mice show much lower concentrations of methionine-enkephalin in brain tissue than subordinates: cause or effect? Behav Brain Res. 1990;39:275–80.

    Article  PubMed  Google Scholar 

  46. König M, Zimmer AM, Steiner H, Holmes PV, Crawley JN, Brownstein MJ, et al. Pain responses, anxiety and aggression in mice deficient in pre-proenkephalin. Nature. 1996;383:535–8.

    Article  PubMed  Google Scholar 

  47. Roques BP. Novel approaches to targeting neuropeptide systems. Trends Pharm Sci. 2000;21:475–83.

    Article  CAS  PubMed  Google Scholar 

  48. Calenco-Choukroun G, Daugé V, Gacel G, Féger J, Roques BP. Opioid δ agonists and endogenous enkephalins induce different emotional reactivity than μ agonists after injection in the rat ventral tegmental area. Psychopharmacology. 1991;103:493–502.

    Article  CAS  PubMed  Google Scholar 

  49. François A, Low SA, Sypek EI, Christensen AJ, Sotoudeh C, Beier KT, et al. A brainstem-spinal cord inhibitory circuit for mechanical pain modulation by GABA and enkephalins. Neuron. 2017;93:822–39.e6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Nicoll RA, Alger BE, Jahr CE. Enkephalin blocks inhibitory pathways in the vertebrate CNS. Nature. 1980;287:22–5.

    Article  CAS  PubMed  Google Scholar 

  51. Madison DV, Nicoll RA. Enkephalin hyperpolarizes interneurones in the rat hippocampus. J Physiol. 1988;398:123–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nasrallah K, Therreau L, Robert V, Huang AJY, McHugh TJ, Piskorowski RA, et al. Routing hippocampal information flow through parvalbumin interneuron plasticity in area CA2. Cell Rep. 2019;27:86–98.e3.

    Article  CAS  PubMed  Google Scholar 

  53. Domínguez S, Rey CC, Therreau L, Fanton A, Massotte D, Verret L, et al. Maturation of PNN and ErbB4 signaling in area CA2 during adolescence underlies the emergence of PV interneuron plasticity and social memory. Cell Rep. 2019;29:1099–112.e4.

    Article  PubMed  CAS  Google Scholar 

  54. Mankin EA, Diehl GW, Sparks FT, Leutgeb S, Leutgeb JK. Hippocampal CA2 activity patterns change over time to a larger extent than between spatial contexts. Neuron. 2015;85:190–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Alexander GM, Farris S, Pirone JR, Zheng C, Colgin LL, Dudek SM. Social and novel contexts modify hippocampal CA2 representations of space. Nat Commun. 2016;7:10300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kay K, Sosa M, Chung JE, Karlsson MP, Larkin MC, Frank LM. A hippocampal network for spatial coding during immobility and sleep. Nature. 2016;531:185–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wintzer ME, Boehringer R, Polygalov D, McHugh TJ. The hippocampal CA2 ensemble is sensitive to contextual change. J Neurosci. 2014;34:3056–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Buzsáki G. Hippocampal sharp wave‐ripple: a cognitive biomarker for episodic memory and planning. Hippocampus. 2015;25:1073–188.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Oliva A, Fernández-Ruiz A, Buzsáki G, Berényi A. Role of hippocampal CA2 region in triggering sharp-wave ripples. Neuron. 2016;91:1342–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Alexander GM, Brown LY, Farris S, Lustberg D, Pantazis C, Gloss B, et al. CA2 neuronal activity controls hippocampal low gamma and ripple oscillations. Elife. 2018;7:e38052.

  61. Josselyn SA, Tonegawa S. Memory engrams: recalling the past and imagining the future. Science. 2020;367:eaaw4325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Okuyama T, Kitamura T, Roy DS, Itohara S, Tonegawa S. Ventral CA1 neurons store social memory. Science. 2016;353:1536–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chiang M-C, Huang AJY, Wintzer ME, Ohshima T, McHugh TJ. A role for CA3 in social recognition memory. Behav Brain Res. 2018;354:22–30.

    Article  CAS  PubMed  Google Scholar 

  64. Patel J, Schomburg EW, Berényi A, Fujisawa S, Buzsáki G. Local generation and propagation of ripples along the septotemporal axis of the hippocampus. J Neurosci. 2013;33:17029–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Drew LJ, Crabtree GW, Markx S, Stark KL, Chaverneff F, Xu B, et al. The 22q11.2 microdeletion: fifteen years of insights into the genetic and neural complexity of psychiatric disorders. Int J Dev Neurosci. 2011;29:259–81.

    Article  CAS  PubMed  Google Scholar 

  66. Clark SD, Van Snellenberg JX, Lawson JM, Abi-Dargham A. Opioid antagonists are associated with a reduction in the symptoms of schizophrenia: a meta-analysis of controlled trials. Neuropsychopharmacology. 2020;45:1860–9.

  67. Giovannucci A, Friedrich J, Gunn P, Kalfon J, Brown BL, Koay SA, et al. CaImAn an open source tool for scalable calcium imaging data analysis. Elife. 2019;8:e38173.

  68. Mathis A, Mamidanna P, Cury KM, Abe T, Murthy VN, Mathis MW, et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat Neurosci. 2018;21:1281–9.

    Article  CAS  PubMed  Google Scholar 

  69. Favuzzi E, Deogracias R, Marques-Smith A, Maeso P, Jezequel J, Exposito-Alonso D, et al. Distinct molecular programs regulate synapse specificity in cortical inhibitory circuits. Science. 2019;363:413–7.

    Article  CAS  PubMed  Google Scholar 

  70. Chechik G, Sharma V, Shalit U, Bengio S. Large scale online learning of image similarity through ranking. J Mach Learn Res. 2010;11:1109–35.

    Google Scholar 

Download references

Acknowledgements

This work was supported by: a 2019 NARSAD young investigator grant to FL from the Brain and Behavior research foundation, funded by the Osterhaus Family; a F32 MH122147-01A1 to CdS; Howard Hughes Medical Institute support to ERK and R01-MH104602 and R01-MH106629 to SAS.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: FL and SAS; investigation, FL, TB, CAdS, AA, LB, OML, and EB; in vitro intra-cellular recordings: FL and TB; behavioral assays and viral injections: FL and OML; immunohistochemistry and in situ hybridization: FL, CdS, and AA; shRNA design CAdS and AA, Calcium imaging: LMB writing—original draft: FL; writing—review and editing: FL, AA, ERK, and SAS; visualization: FL; supervision: FL; funding acquisition: FL, CAdS, ERK, and SAS.

Corresponding authors

Correspondence to Felix Leroy or Steven A. Siegelbaum.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leroy, F., de Solis, C.A., Boyle, L.M. et al. Enkephalin release from VIP interneurons in the hippocampal CA2/3a region mediates heterosynaptic plasticity and social memory. Mol Psychiatry 27, 2879–2900 (2022). https://doi.org/10.1038/s41380-021-01124-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01124-y

This article is cited by

Search

Quick links