Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Omega-3 supplementation and stress reactivity of cellular aging biomarkers: an ancillary substudy of a randomized, controlled trial in midlife adults

Abstract

Higher levels of omega-3 track with longer telomeres, lower inflammation, and blunted sympathetic and cardiovascular stress reactivity. Whether omega-3 supplementation alters the stress responsivity of telomerase, cortisol, and inflammation is unknown. This randomized, controlled trial examined the impact of omega-3 supplementation on cellular aging-related biomarkers following a laboratory speech stressor. In total, 138 sedentary, overweight, middle-aged participants (n = 93 women, n = 45 men) received either 2.5 g/d of omega-3, 1.25 g/d of omega-3, or a placebo for 4 months. Before and after the trial, participants underwent the Trier Social Stress Test. Saliva and blood samples were collected once before and repeatedly after the stressor to measure salivary cortisol, telomerase in peripheral blood lymphocytes, and serum anti-inflammatory (interleukin-10; IL-10) and pro-inflammatory (interleukin-6; IL-6, interleukin-12, tumor necrosis factor-alpha) cytokines. Adjusting for pre-supplementation reactivity, age, sagittal abdominal diameter, and sex, omega-3 supplementation altered telomerase (p = 0.05) and IL-10 (p = 0.05) stress reactivity; both supplementation groups were protected from the placebo group’s 24% and 26% post-stress declines in the geometric means of telomerase and IL-10, respectively. Omega-3 also reduced overall cortisol (p = 0.03) and IL-6 (p = 0.03) throughout the stressor; the 2.5 g/d group had 19% and 33% lower overall cortisol levels and IL-6 geometric mean levels, respectively, compared to the placebo group. By lowering overall inflammation and cortisol levels during stress and boosting repair mechanisms during recovery, omega-3 may slow accelerated aging and reduce depression risk. ClinicalTrials.gov identifier: NCT00385723.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Omega-3 supplementation impacted telomerase reactivity to an acute stressor (p = 0.05).
Fig. 2: Omega-3 supplementation lowered total salivary cortisol output throughout an acute stressor (p = 0.04).
Fig. 3: Omega-3 supplementation influenced IL-10 stress reactivity (p = 0.05).
Fig. 4: Omega-3 supplementation lowered overall IL-6 release throughout an acute stressor (p = 0.03).

References

  1. 1.

    Zhang Y, Zhuang P, He W, Chen J, Wang W, Freedman N, et al. Association of fish and long‐chain omega‐3 fatty acids intakes with total and cause‐specific mortality: prospective analysis of 421 309 individuals. J Intern Med. 2018;284:399–417.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Kiecolt-Glaser JK, Epel ES, Belury MA, Andridge R, Lin J, Glaser R, et al. Omega-3 fatty acids, oxidative stress, and leukocyte telomere length: a randomized controlled trial. Brain Behav Immun. 2013;28:16–24.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Farzaneh-Far R, Lin J, Epel ES, Harris WS, Blackburn EH, Whooley MA. Association of marine omega-3 fatty acid levels with telomeric aging in patients with coronary heart disease. JAMA. 2010;303:250–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Blackburn EH, Epel ES, Lin J. Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science. 2015;350:1193–8.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Codd V, Nelson CP, Albrecht E, Mangino M, Deelen J, Buxton JL, et al. Identification of seven loci affecting mean telomere length and their association with disease. Nat Genet. 2013;45:422–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Haycock PC, Burgess S, Nounu A, Zheng J, Okoli GN, Bowden J, et al. Association between telomere length and risk of cancer and non-neoplastic diseases: a Mendelian randomization study. JAMA Oncol. 2017;3:636–51.

    PubMed  Article  Google Scholar 

  7. 7.

    Turner AI, Smyth N, Hall SJ, Torres SJ, Hussein M, Jayasinghe SU, et al. Psychological stress reactivity and future health and disease outcomes: a systematic review of prospective evidence. Psychoneuroendocrinology. 2020;114:104599.

  8. 8.

    Kiecolt-Glaser JK, Renna ME, Shrout MR, Madison AA. Stress reactivity: what pushes us higher, faster, and longer—and why it matters. Curr Dir Psychol Sci. 2020;29:492–8.

    PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Maes M, Christophe A, Bosmans E, Lin A, Neels H. In humans, serum polyunsaturated fatty acid levels predict the response of proinflammatory cytokines to psychologic stress. Biol Psychiatry. 2000;47:910–20.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Aschbacher K, Epel E, Wolkowitz O, Prather A, Puterman E, Dhabhar F. Maintenance of a positive outlook during acute stress protects against pro-inflammatory reactivity and future depressive symptoms. Brain Behav Immun. 2012;26:346–52.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Ginty AT, Conklin SM. Preliminary evidence that acute long-chain omega-3 supplementation reduces cardiovascular reactivity to mental stress: a randomized and placebo controlled trial. Biol Psychol. 2012;89:269–72.

    PubMed  Article  Google Scholar 

  12. 12.

    Monahan KD, Wilson TE, Ray CA. Omega-3 fatty acid supplementation augments sympathetic nerve activity responses to physiological stressors in humans. Hypertension. 2004;44:732–8.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Rousseau D, Moreau D, Raederstorff D, Sergiel JP, Rupp H, Müggli R, et al. Is a dietary n-3 fatty acid supplement able to influence the cardiac effect of the psychological stress? Mol Cell Biochem. 1998;178:353–66.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Kiecolt-Glaser JK, Belury MA, Andridge R, Malarkey WB, Hwang BS, Glaser R. Omega-3 supplementation lowers inflammation in healthy middle-aged and older adults: a randomized controlled trial. Brain Behav Immun. 2012;26:988–95.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Steptoe A, Hamer M, Lin J, Blackburn EH, Erusalimsky JD. The longitudinal relationship between cortisol responses to mental stress and leukocyte telomere attrition. J Clin Endocrinol Metab. 2017;102:962–9.

    PubMed  Google Scholar 

  16. 16.

    Tomiyama AJ, O’Donovan A, Lin J, Puterman E, Lazaro A, Chan J, et al. Does cellular aging relate to patterns of allostasis? An examination of basal and stress reactive HPA axis activity and telomere length. Physiol Behav. 2012;106:40–5.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    De Biase L, Pignatelli P, Lenti L, Tocci G, Piccioni F, Riondino S, et al. Enhanced TNFα and oxidative stress in patients with heart failure: effect of TNFα on platelet O2-production. Thromb Haemost. 2003;90:317–25.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Gidron Y, Russ K, Tissarchondou H, Warner J. The relation between psychological factors and DNA-damage: a critical review. Biol Psychol. 2006;72:291–304.

    PubMed  Article  Google Scholar 

  19. 19.

    Kurz DJ, Decary S, Hong Y, Trivier E, Akhmedov A, Erusalimsky JD. Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells. J Cell Sci. 2004;117:2417–26.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Epel ES, Lin J, Dhabhar FS, Wolkowitz OM, Puterman E, Karan L, et al. Dynamics of telomerase activity in response to acute psychological stress. Brain Behav Immun. 2010;24:531–9.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Horvath S, Erhart W, Brosch M, Ammerpohl O, von Schönfels W, Ahrens M, et al. Obesity accelerates epigenetic aging of human liver. Proc Natl Acad Sci. 2014;111:15538–43.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Kirschbaum C, Pirke K-M, Hellhammer DH. The ‘Trier Social Stress Test’—a tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology. 1993;28:76–81.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Allen AP, Kennedy PJ, Cryan JF, Dinan TG, Clarke G. Biological and psychological markers of stress in humans: focus on the Trier Social Stress Test. Neurosci Biobehav Rev. 2014;38:94–124.

    PubMed  Article  Google Scholar 

  24. 24.

    Spielberger C, Gorsuch R, Lushene R, Vagg P, Jacobs G. Manual for the state-trait anxiety inventory. Palo Alto, California: Consulting Psychologists Press; 1983.

  25. 25.

    Altemus M, Rao B, Dhabhar FS, Ding W, Granstein RD. Stress-induced changes in skin barrier function in healthy women. J Investig Dermatol. 2001;117:309–17.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Bekhbat M, Neigh GN. Sex differences in the neuro-immune consequences of stress: focus on depression and anxiety. Brain Behav Immun. 2018;67:1–12.

    PubMed  Article  Google Scholar 

  27. 27.

    Zalli A, Carvalho LA, Lin J, Hamer M, Erusalimsky JD, Blackburn EH, et al. Shorter telomeres with high telomerase activity are associated with raised allostatic load and impoverished psychosocial resources. Proc Natl Acad Sci. 2014;111:4519–24.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Chen SH, Epel ES, Mellon SH, Lin J, Reus VI, Rosser R, et al. Adverse childhood experiences and leukocyte telomere maintenance in depressed and healthy adults. J Affect Disord. 2014;169:86–90.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Du M, Prescott J, Kraft P, Han J, Giovannucci E, Hankinson SE, et al. Physical activity, sedentary behavior, and leukocyte telomere length in women. Am J Epidemiol. 2012;175:414–22.

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Hamer M, Steptoe A. Cortisol responses to mental stress and incident hypertension in healthy men and women. J Clin Endocrinol Metab. 2012;97:E29–34.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Hamer M, Endrighi R, Venuraju SM, Lahiri A, Steptoe A. Cortisol responses to mental stress and the progression of coronary artery calcification in healthy men and women. PLoS ONE. 2012;7:e31356.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Burke HM, Davis MC, Otte C, Mohr DC. Depression and cortisol responses to psychological stress: a meta-analysis. Psychoneuroendocrinology. 2005;30:846–56.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Choi J, Fauce SR, Effros RB. Reduced telomerase activity in human T lymphocytes exposed to cortisol. Brain Behav Immun. 2008;22:600–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Marsland AL, Walsh C, Lockwood K, John-Henderson NA. The effects of acute psychological stress on circulating and stimulated inflammatory markers: a systematic review and meta-analysis. Brain Behav Immun. 2017;64:208–19.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, et al. Inflamm‐aging: an evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244–54.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Haddad JJ, Fahlman CS. Redox-and oxidant-mediated regulation of interleukin-10: an anti-inflammatory, antioxidant cytokine? Biochem Biophys Res Commun. 2002;297:163–76.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Liao Y, Xie B, Zhang H, He Q, Guo L, Subramaniapillai M, et al. Efficacy of omega-3 PUFAs in depression: a meta-analysis. Transl Psychiatry. 2019;9:1–9.

    Article  CAS  Google Scholar 

  38. 38.

    Mocking R, Harmsen I, Assies J, Koeter M, Ruhé H, Schene A. Meta-analysis and meta-regression of omega-3 polyunsaturated fatty acid supplementation for major depressive disorder. Transl Psychiatry. 2016;6:e756.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Miller GE, Rohleder N, Stetler C, Kirschbaum C. Clinical depression and regulation of the inflammatory response during acute stress. Psychosom Med. 2005;67:679–87.

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Fagundes CP, Glaser R, Hwang BS, Malarkey WB, Kiecolt-Glaser JK. Depressive symptoms enhance stress-induced inflammatory responses. Brain Behav Immun. 2013;31:172–6.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Pace TW, Mletzko TC, Alagbe O, Musselman DL, Nemeroff CB, Miller AH, et al. Increased stress-induced inflammatory responses in male patients with major depression and increased early life stress. Am J Psychiatry. 2006;163:1630–3.

    PubMed  Article  Google Scholar 

  42. 42.

    Vannice G, Rasmussen H. Position of the academy of nutrition and dietetics: dietary fatty acids for healthy adults. J Acad Nutr Diet. 2014;114:136–53.

    PubMed  Article  Google Scholar 

  43. 43.

    Papanikolaou Y, Brooks J, Reider C, Fulgoni VL. US adults are not meeting recommended levels for fish and omega-3 fatty acid intake: results of an analysis using observational data from NHANES 2003–2008. Nutr J. 2014;13:31.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. 44.

    Freeman MP, Hibbeln JR, Wisner KL, Davis JM, Mischoulon D, Peet M, et al. Omega-3 fatty acids: evidence basis for treatment and future research in psychiatry. J Clin Psychiatry. 2006;67:1954.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Kris-Etherton PM, Harris WS, Appel LJ. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation. 2002;106:2747–57.

    PubMed  Article  Google Scholar 

  46. 46.

    Dansinger ML, Gleason JA, Griffith JL, Selker HP, Schaefer EJ. Comparison of the atkins, ornish, weight watchers, and Zone diets for weight loss and heart disease risk reduction: a randomized trial. JAMA. 2005;293:43–53.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was supported in part by NIH grants AG029562, AG038621, UL1RR025755, TL1TR002735, and CA16058. OmegaBrite (Waltham, MA) supplied the omega-3 PUFA supplement and placebo without charge and without restrictions; OmegaBrite did not influence the design, funding, implementation, interpretation, or publication of the data.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Janice K. Kiecolt-Glaser.

Ethics declarations

Conflict of interest

ESE and JL are co-founders of Telome Health, Inc., a telomere measurement company. All other authors report no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Madison, A.A., Belury, M.A., Andridge, R. et al. Omega-3 supplementation and stress reactivity of cellular aging biomarkers: an ancillary substudy of a randomized, controlled trial in midlife adults. Mol Psychiatry (2021). https://doi.org/10.1038/s41380-021-01077-2

Download citation

Search

Quick links