Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

An alternative splicing hypothesis for neuropathology of schizophrenia: evidence from studies on historical candidate genes and multi-omics data

Abstract

Alternative splicing of schizophrenia risk genes, such as DRD2, GRM3, and DISC1, has been extensively described. Nevertheless, the alternative splicing characteristics of the growing number of schizophrenia risk genes identified through genetic analyses remain relatively opaque. Recently, transcriptomic analyses in human brains based on short-read RNA-sequencing have discovered many “local splicing” events (e.g., exon skipping junctions) associated with genetic risk of schizophrenia, and further molecular characterizations have identified novel spliced isoforms, such as AS3MTd2d3 and ZNF804AE3E4. In addition, long-read sequencing analyses of schizophrenia risk genes (e.g., CACNA1C and NRXN1) have revealed multiple previously unannotated brain-abundant isoforms with therapeutic potentials, and functional analyses of KCNH2-3.1 and Ube3a1 have provided examples for investigating such spliced isoforms in vitro and in vivo. These findings suggest that alternative splicing may be an essential molecular mechanism underlying genetic risk of schizophrenia, however, the incomplete annotations of human brain transcriptomes might have limited our understanding of schizophrenia pathogenesis, and further efforts to elucidate these transcriptional characteristics are urgently needed to gain insights into the illness-correlated brain physiology and pathology as well as to translate genetic discoveries into novel therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Alternative splicing patterns.
Fig. 2: The association between schizophrenia genetic risk and alternative splicing of DRD2.

Similar content being viewed by others

References

  1. Marder SR, Cannon TD. Schizophrenia. N Engl J Med. 2019;381:1753–61.

    Article  CAS  PubMed  Google Scholar 

  2. Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry. 2003;60:1187–92.

    Article  PubMed  Google Scholar 

  3. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.

    Article  PubMed Central  CAS  Google Scholar 

  4. Pardinas AF, Holmans P, Pocklington AJ, Escott-Price V, Ripke S, Carrera N, et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat Genet. 2018;50:381–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lam M, Chen CY, Li Z, Martin AR, Bryois J, Ma X, et al. Comparative genetic architectures of schizophrenia in East Asian and European populations. Nat Genet. 2019;51:1670–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Edwards SL, Beesley J, French JD, Dunning AM. Beyond GWASs: illuminating the dark road from association to function. Am J Hum Genet. 2013;93:779–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. French JD, Edwards SL. The role of noncoding variants in heritable disease. Trends Genet. 2020;36:880–91.

    Article  CAS  PubMed  Google Scholar 

  8. Yang Z, Zhou D, Li H, Cai X, Liu W, Wang L, et al. The genome-wide risk alleles for psychiatric disorders at 3p21.1 show convergent effects on mRNA expression, cognitive function and mushroom dendritic spine. Mol Psychiatry. 2020;25:48–66.

    Article  CAS  PubMed  Google Scholar 

  9. Chang H, Cai X, Li HJ, Liu WP, Zhao LJ, Zhang CY, et al. Functional genomics identify a regulatory risk variation rs4420550 in the 16p11.2 schizophrenia-associated locus. Biol Psychiatry. 2021;89:246–55.

    Article  CAS  PubMed  Google Scholar 

  10. Yang Z, Cai X, Qu N, Zhao L, Zhong BL, Zhang SF, et al. Identification of a functional 339-bp Alu polymorphism in the schizophrenia-associated locus at 10q24.32. Zool Res. 2020;41:84–9.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Reble E, Dineen A, Barr CL. The contribution of alternative splicing to genetic risk for psychiatric disorders. Genes Brain Behav. 2018;17:e12430.

    Article  CAS  PubMed  Google Scholar 

  12. Kleinman JE, Law AJ, Lipska BK, Hyde TM, Ellis JK, Harrison PJ, et al. Genetic neuropathology of schizophrenia: new approaches to an old question and new uses for postmortem human brains. Biol Psychiatry. 2011;69:140–5.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Glatt SJ, Cohen OS, Faraone SV, Tsuang MT. Dysfunctional gene splicing as a potential contributor to neuropsychiatric disorders. Am J Med Genet B Neuropsychiatr Genet. 2011;156B:382–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, et al. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;456:470–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Park E, Pan Z, Zhang Z, Lin L, Xing Y. The expanding landscape of alternative splicing variation in human populations. Am J Hum Genet. 2018;102:11–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nilsen TW, Graveley BR. Expansion of the eukaryotic proteome by alternative splicing. Nature. 2010;463:457–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yeo G, Holste D, Kreiman G, Burge CB. Variation in alternative splicing across human tissues. Genome Biol. 2004;5:R74.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Li YI, van de Geijn B, Raj A, Knowles DA, Petti AA, Golan D, et al. RNA splicing is a primary link between genetic variation and disease. Science. 2016;352:600–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Barry G, Briggs JA, Vanichkina DP, Poth EM, Beveridge NJ, Ratnu VS, et al. The long non-coding RNA Gomafu is acutely regulated in response to neuronal activation and involved in schizophrenia-associated alternative splicing. Mol Psychiatry. 2014;19:486–94.

    Article  CAS  PubMed  Google Scholar 

  20. Scheckel C, Darnell RB. Microexons—tiny but mighty. EMBO J. 2015;34:273–4.

    Article  CAS  PubMed  Google Scholar 

  21. Irimia M, Weatheritt RJ, Ellis JD, Parikshak NN, Gonatopoulos-Pournatzis T, Babor M, et al. A highly conserved program of neuronal microexons is misregulated in autistic brains. Cell. 2014;159:1511–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Laurent B, Ruitu L, Murn J, Hempel K, Ferrao R, Xiang Y, et al. A specific LSD1/KDM1A isoform regulates neuronal differentiation through H3K9 demethylation. Mol Cell. 2015;57:957–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gandal MJ, Zhang P, Hadjimichael E, Walker RL, Chen C, Liu S, et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science. 2018;362:eaat8127.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. McCutcheon RA, Krystal JH, Howes OD. Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry. 2020;19:15–33.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Carlsson A, Lindqvist M. Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharm Toxicol. 1963;20:140–4.

    Article  CAS  Google Scholar 

  26. van Rossum JM. The significance of dopamine-receptor blockade for the mechanism of action of neuroleptic drugs. Arch Int Pharmacodyn Ther. 1966;160:492–4.

    PubMed  Google Scholar 

  27. Seeman P, Lee T, Chau-Wong M, Wong K. Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature. 1976;261:717–9.

    Article  CAS  PubMed  Google Scholar 

  28. Creese I, Burt DR, Snyder SH. Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science. 1976;192:481–3.

    Article  CAS  PubMed  Google Scholar 

  29. Hietala J, Syvalahti E, Vuorio K, Rakkolainen V, Bergman J, Haaparanta M, et al. Presynaptic dopamine function in striatum of neuroleptic-naive schizophrenic patients. Lancet. 1995;346:1130–1.

    Article  CAS  PubMed  Google Scholar 

  30. Usiello A, Baik JH, Rouge-Pont F, Picetti R, Dierich A, LeMeur M, et al. Distinct functions of the two isoforms of dopamine D2 receptors. Nature. 2000;408:199–203.

    Article  CAS  PubMed  Google Scholar 

  31. Lindgren N, Usiello A, Goiny M, Haycock J, Erbs E, Greengard P, et al. Distinct roles of dopamine D2L and D2S receptor isoforms in the regulation of protein phosphorylation at presynaptic and postsynaptic sites. Proc Natl Acad Sci U S A. 2003;100:4305–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kaalund SS, Newburn EN, Ye T, Tao R, Li C, Deep-Soboslay A, et al. Contrasting changes in DRD1 and DRD2 splice variant expression in schizophrenia and affective disorders, and associations with SNPs in postmortem brain. Mol Psychiatry. 2014;19:1258–66.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Y, Bertolino A, Fazio L, Blasi G, Rampino A, Romano R, et al. Polymorphisms in human dopamine D2 receptor gene affect gene expression, splicing, and neuronal activity during working memory. Proc Natl Acad Sci U S A. 2007;104:20552–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cohen OS, Weickert TW, Hess JL, Paish LM, McCoy SY, Rothmond DA, et al. A splicing-regulatory polymorphism in DRD2 disrupts ZRANB2 binding, impairs cognitive functioning and increases risk for schizophrenia in six Han Chinese samples. Mol Psychiatry. 2016;21:975–82.

    Article  CAS  PubMed  Google Scholar 

  35. Bertolino A, Fazio L, Caforio G, Blasi G, Rampino A, Romano R, et al. Functional variants of the dopamine receptor D2 gene modulate prefronto-striatal phenotypes in schizophrenia. Brain. 2009;132:417–25.

    Article  PubMed  Google Scholar 

  36. Blasi G, Lo Bianco L, Taurisano P, Gelao B, Romano R, Fazio L, et al. Functional variation of the dopamine D2 receptor gene is associated with emotional control as well as brain activity and connectivity during emotion processing in humans. J Neurosci. 2009;29:14812–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry. 1994;51:199–214.

    Article  CAS  PubMed  Google Scholar 

  38. Javitt DC. Negative schizophrenic symptomatology and the PCP (phencyclidine) model of schizophrenia. Hillside J Clin Psychiatry. 1987;9:12–35.

    CAS  PubMed  Google Scholar 

  39. Moghaddam B, Javitt D. From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology. 2012;37:4–15.

    Article  CAS  PubMed  Google Scholar 

  40. Coyle JT, Ruzicka WB, Balu DT. Fifty years of research on schizophrenia: the ascendance of the glutamatergic synapse. Am J Psychiatry. 2020;177:1119–28.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sweet RA, Henteleff RA, Zhang W, Sampson AR, Lewis DA. Reduced dendritic spine density in auditory cortex of subjects with schizophrenia. Neuropsychopharmacology. 2009;34:374–89.

    Article  PubMed  Google Scholar 

  42. Harrison PJ, Lyon L, Sartorius LJ, Burnet PW, Lane TA. The group II metabotropic glutamate receptor 3 (mGluR3, mGlu3, GRM3): expression, function and involvement in schizophrenia. J Psychopharmacol. 2008;22:308–22.

    Article  CAS  PubMed  Google Scholar 

  43. Egan MF, Straub RE, Goldberg TE, Yakub I, Callicott JH, Hariri AR, et al. Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia. Proc Natl Acad Sci U S A. 2004;101:12604–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Engel M, Snikeris P, Matosin N, Newell KA, Huang XF, Frank E. mGluR2/3 agonist LY379268 rescues NMDA and GABAA receptor level deficits induced in a two-hit mouse model of schizophrenia. Psychopharmacology. 2016;233:1349–59.

    Article  CAS  PubMed  Google Scholar 

  45. Profaci CP, Krolikowski KA, Olszewski RT, Neale JH. Group II mGluR agonist LY354740 and NAAG peptidase inhibitor effects on prepulse inhibition in PCP and D-amphetamine models of schizophrenia. Psychopharmacology. 2011;216:235–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cartmell J, Monn JA, Schoepp DD. Attenuation of specific PCP-evoked behaviors by the potent mGlu2/3 receptor agonist, LY379268 and comparison with the atypical antipsychotic, clozapine. Psychopharmacology. 2000;148:423–9.

    Article  CAS  PubMed  Google Scholar 

  47. Cartmell J, Monn JA, Schoepp DD. The metabotropic glutamate 2/3 receptor agonists LY354740 and LY379268 selectively attenuate phencyclidine versus d-amphetamine motor behaviors in rats. J Pharm Exp Ther. 1999;291:161–70.

    CAS  Google Scholar 

  48. Corti C, Crepaldi L, Mion S, Roth AL, Xuereb JH, Ferraguti F. Altered dimerization of metabotropic glutamate receptor 3 in schizophrenia. Biol Psychiatry. 2007;62:747–55.

    Article  CAS  PubMed  Google Scholar 

  49. Sartorius LJ, Nagappan G, Lipska BK, Lu B, Sei Y, Ren-Patterson R, et al. Alternative splicing of human metabotropic glutamate receptor 3. J Neurochem. 2006;96:1139–48.

    Article  CAS  PubMed  Google Scholar 

  50. Sartorius LJ, Weinberger DR, Hyde TM, Harrison PJ, Kleinman JE, Lipska BK. Expression of a GRM3 splice variant is increased in the dorsolateral prefrontal cortex of individuals carrying a schizophrenia risk SNP. Neuropsychopharmacology. 2008;33:2626–34.

    Article  CAS  PubMed  Google Scholar 

  51. Milligan G. G protein-coupled receptor dimerization: function and ligand pharmacology. Mol Pharm. 2004;66:1–7.

    Article  CAS  Google Scholar 

  52. Chow KB, Sun J, Chu KM, Tai Cheung W, Cheng CH, Wise H. The truncated ghrelin receptor polypeptide (GHS-R1b) is localized in the endoplasmic reticulum where it forms heterodimers with ghrelin receptors (GHS-R1a) to attenuate their cell surface expression. Mol Cell Endocrinol. 2012;348:247–54.

    Article  PubMed  CAS  Google Scholar 

  53. Wise H. The roles played by highly truncated splice variants of G protein-coupled receptors. J Mol Signal. 2012;7:13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Garcia-Bea A, Bermudez I, Harrison PJ, Lane TA. A group II metabotropic glutamate receptor 3 (mGlu3, GRM3) isoform implicated in schizophrenia interacts with canonical mGlu3 and reduces ligand binding. J Psychopharmacol. 2017;31:1519–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yoon JH, Maddock RJ, Rokem A, Silver MA, Minzenberg MJ, Ragland JD, et al. GABA concentration is reduced in visual cortex in schizophrenia and correlates with orientation-specific surround suppression. J Neurosci. 2010;30:3777–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schmidt MJ, Mirnics K. Neurodevelopment, GABA system dysfunction, and schizophrenia. Neuropsychopharmacology. 2015;40:190–206.

    Article  PubMed  Google Scholar 

  57. de Jonge JC, Vinkers CH, Hulshoff Pol HE, Marsman A. GABAergic mechanisms in schizophrenia: linking postmortem and in vivo studies. Front Psychiatry. 2017;8:118.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kilonzo VW, Sweet RA, Glausier JR, Pitts MW. Deficits in glutamic acid decarboxylase 67 immunoreactivity, parvalbumin interneurons, and perineuronal nets in the inferior colliculus of subjects with schizophrenia. Schizophr Bull. 2020;46:1053–9.

    Article  PubMed Central  Google Scholar 

  59. Szabo G, Katarova Z, Greenspan R. Distinct protein forms are produced from alternatively spliced bicistronic glutamic acid decarboxylase mRNAs during development. Mol Cell Biol. 1994;14:7535–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Erlander MG, Tillakaratne NJ, Feldblum S, Patel N, Tobin AJ. Two genes encode distinct glutamate decarboxylases. Neuron. 1991;7:91–100.

    Article  CAS  PubMed  Google Scholar 

  61. Curley AA, Arion D, Volk DW, Asafu-Adjei JK, Sampson AR, Fish KN, et al. Cortical deficits of glutamic acid decarboxylase 67 expression in schizophrenia: clinical, protein, and cell type-specific features. Am J Psychiatry. 2011;168:921–9.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Akbarian S, Kim JJ, Potkin SG, Hagman JO, Tafazzoli A, Bunney WE Jr., et al. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry. 1995;52:258–66.

    Article  CAS  PubMed  Google Scholar 

  63. Tao R, Davis KN, Li C, Shin JH, Gao Y, Jaffe AE, et al. GAD1 alternative transcripts and DNA methylation in human prefrontal cortex and hippocampus in brain development, schizophrenia. Mol Psychiatry. 2018;23:1496–505.

    Article  CAS  PubMed  Google Scholar 

  64. Hyde TM, Lipska BK, Ali T, Mathew SV, Law AJ, Metitiri OE, et al. Expression of GABA signaling molecules KCC2, NKCC1, and GAD1 in cortical development and schizophrenia. J Neurosci. 2011;31:11088–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Birnbaum R, Weinberger DR. Genetic insights into the neurodevelopmental origins of schizophrenia. Nat Rev Neurosci. 2017;18:727–40.

    Article  CAS  PubMed  Google Scholar 

  66. Weinberger DR. The neurodevelopmental origins of schizophrenia in the penumbra of genomic medicine. World Psychiatry. 2017;16:225–6.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry. 1987;44:660–9.

    Article  CAS  PubMed  Google Scholar 

  68. Represa A, Ben-Ari Y. Trophic actions of GABA on neuronal development. Trends Neurosci. 2005;28:278–83.

    Article  CAS  PubMed  Google Scholar 

  69. Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CAM, et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet. 2000;9:1415–23.

    Article  CAS  PubMed  Google Scholar 

  70. Chubb JE, Bradshaw NJ, Soares DC, Porteous DJ, Millar JK. The DISC locus in psychiatric illness. Mol Psychiatry. 2008;13:36–64.

    Article  CAS  PubMed  Google Scholar 

  71. Brandon NJ, Sawa A. Linking neurodevelopmental and synaptic theories of mental illness through DISC1. Nat Rev Neurosci. 2011;12:707–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Clapcote SJ, Lipina TV, Millar JK, Mackie S, Christie S, Ogawa F, et al. Behavioral phenotypes of Disc1 missense mutations in mice. Neuron. 2007;54:387–402.

    Article  CAS  PubMed  Google Scholar 

  73. Hikida T, Jaaro-Peled H, Seshadri S, Oishi K, Hookway C, Kong S, et al. Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans. Proc Natl Acad Sci U S A. 2007;104:14501–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mao Y, Ge X, Frank CL, Madison JM, Koehler AN, Doud MK, et al. Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3beta/beta-catenin signaling. Cell. 2009;136:1017–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kim JY, Liu CY, Zhang F, Duan X, Wen Z, Song J, et al. Interplay between DISC1 and GABA signaling regulates neurogenesis in mice and risk for schizophrenia. Cell. 2012;148:1051–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nakata K, Lipska BK, Hyde TM, Ye T, Newburn EN, Morita Y, et al. DISC1 splice variants are upregulated in schizophrenia and associated with risk polymorphisms. Proc Natl Acad Sci U S A. 2009;106:15873–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Newburn EN, Hyde TM, Ye T, Morita Y, Weinberger DR, Kleinman JE, et al. Interactions of human truncated DISC1 proteins: implications for schizophrenia. Transl Psychiatry. 2011;1:e30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fazzari P, Paternain AV, Valiente M, Pla R, Lujan R, Lloyd K, et al. Control of cortical GABA circuitry development by Nrg1 and ErbB4 signalling. Nature. 2010;464:1376–80.

    Article  CAS  PubMed  Google Scholar 

  79. Ting AK, Chen Y, Wen L, Yin DM, Shen C, Tao Y, et al. Neuregulin 1 promotes excitatory synapse development and function in GABAergic interneurons. J Neurosci. 2011;31:15–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Harrison PJ, Law AJ. Neuregulin 1 and schizophrenia: genetics, gene expression, and neurobiology. Biol Psychiatry. 2006;60:132–40.

    Article  CAS  PubMed  Google Scholar 

  81. Mei L, Nave KA. Neuregulin-ERBB signaling in the nervous system and neuropsychiatric diseases. Neuron. 2014;83:27–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mei L, Xiong WC. Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat Rev Neurosci. 2008;9:437–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Del Pino I, Garcia-Frigola C, Dehorter N, Brotons-Mas JR, Alvarez-Salvado E, Martinez de Lagran M, et al. Erbb4 deletion from fast-spiking interneurons causes schizophrenia-like phenotypes. Neuron. 2013;79:1152–68.

    Article  PubMed  CAS  Google Scholar 

  84. Tan W, Wang Y, Gold B, Chen J, Dean M, Harrison PJ, et al. Molecular cloning of a brain-specific, developmentally regulated neuregulin 1 (NRG1) isoform and identification of a functional promoter variant associated with schizophrenia. J Biol Chem. 2007;282:24343–51.

    Article  CAS  PubMed  Google Scholar 

  85. Hall J, Whalley HC, Job DE, Baig BJ, McIntosh AM, Evans KL, et al. A neuregulin 1 variant associated with abnormal cortical function and psychotic symptoms. Nat Neurosci. 2006;9:1477–8.

    Article  CAS  PubMed  Google Scholar 

  86. Yang JZ, Si TM, Ruan Y, Ling YS, Han YH, Wang XL, et al. Association study of neuregulin 1 gene with schizophrenia. Mol Psychiatry. 2003;8:706–9.

    Article  CAS  PubMed  Google Scholar 

  87. Alaerts M, Ceulemans S, Forero D, Moens LN, De Zutter S, Heyrman L, et al. Support for NRG1 as a susceptibility factor for schizophrenia in a northern Swedish isolated population. Arch Gen Psychiatry. 2009;66:828–37.

    Article  CAS  PubMed  Google Scholar 

  88. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S, et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet. 2002;71:877–92.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Hashimoto R, Straub RE, Weickert CS, Hyde TM, Kleinman JE, Weinberger DR. Expression analysis of neuregulin-1 in the dorsolateral prefrontal cortex in schizophrenia. Mol Psychiatry. 2004;9:299–307.

    Article  CAS  PubMed  Google Scholar 

  90. Law AJ, Lipska BK, Weickert CS, Hyde TM, Straub RE, Hashimoto R, et al. Neuregulin 1 transcripts are differentially expressed in schizophrenia and regulated by 5’ SNPs associated with the disease. Proc Natl Acad Sci U S A. 2006;103:6747–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Moon E, Rollins B, Mesen A, Sequeira A, Myers RM, Akil H, et al. Lack of association to a NRG1 missense polymorphism in schizophrenia or bipolar disorder in a Costa Rican population. Schizophr Res. 2011;131:52–7.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Nicodemus KK, Law AJ, Luna A, Vakkalanka R, Straub RE, Kleinman JE, et al. A 5’ promoter region SNP in NRG1 is associated with schizophrenia risk and type III isoform expression. Mol Psychiatry. 2009;14:741–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Weickert CS, Tiwari Y, Schofield PR, Mowry BJ, Fullerton JM. Schizophrenia-associated HapICE haplotype is associated with increased NRG1 type III expression and high nucleotide diversity. Transl Psychiatry. 2012;2:e104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Papaleo F, Yang F, Paterson C, Palumbo S, Carr GV, Wang Y, et al. Behavioral, neurophysiological, and synaptic impairment in a transgenic neuregulin1 (NRG1-IV) murine schizophrenia model. J Neurosci. 2016;36:4859–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Olaya JC, Heusner CL, Matsumoto M, Sinclair D, Kondo MA, Karl T, et al. Overexpression of neuregulin 1 type III confers hippocampal mRNA alterations and schizophrenia-like behaviors in mice. Schizophr Bull. 2018;44:865–75.

    Article  PubMed  Google Scholar 

  96. Chen YJ, Johnson MA, Lieberman MD, Goodchild RE, Schobel S, Lewandowski N, et al. Type III neuregulin-1 is required for normal sensorimotor gating, memory-related behaviors, and corticostriatal circuit components. J Neurosci. 2008;28:6872–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yin DM, Chen YJ, Lu YS, Bean JC, Sathyamurthy A, Shen C, et al. Reversal of behavioral deficits and synaptic dysfunction in mice overexpressing neuregulin 1. Neuron. 2013;78:644–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Veikkolainen V, Vaparanta K, Halkilahti K, Iljin K, Sundvall M, Elenius K. Function of ERBB4 is determined by alternative splicing. Cell Cycle. 2011;10:2647–57.

    Article  CAS  PubMed  Google Scholar 

  99. Chung DW, Volk DW, Arion D, Zhang Y, Sampson AR, Lewis DA. Dysregulated ErbB4 splicing in schizophrenia: selective effects on parvalbumin expression. Am J Psychiatry. 2016;173:60–8.

    Article  PubMed  Google Scholar 

  100. Law AJ, Kleinman JE, Weinberger DR, Weickert CS. Disease-associated intronic variants in the ErbB4 gene are related to altered ErbB4 splice-variant expression in the brain in schizophrenia. Hum Mol Genet. 2007;16:129–41.

    Article  CAS  PubMed  Google Scholar 

  101. Chung DW, Wills ZP, Fish KN, Lewis DA. Developmental pruning of excitatory synaptic inputs to parvalbumin interneurons in monkey prefrontal cortex. Proc Natl Acad Sci U S A. 2017;114:E629–E37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chung DW, Chung Y, Bazmi HH, Lewis DA. Altered ErbB4 splicing and cortical parvalbumin interneuron dysfunction in schizophrenia and mood disorders. Neuropsychopharmacology. 2018;43:2478–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Frazee AC, Sabunciyan S, Hansen KD, Irizarry RA, Leek JT. Differential expression analysis of RNA-seq data at single-base resolution. Biostatistics. 2014;15:413–26.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Araki Y, Hong I, Gamache TR, Ju S, Collado-Torres L, Shin JH, et al. SynGAP isoforms differentially regulate synaptic plasticity and dendritic development. Elife. 2020;9:e56273.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Yang X, Coulombe-Huntington J, Kang S, Sheynkman GM, Hao T, Richardson A, et al. Widespread expansion of protein interaction capabilities by alternative splicing. Cell. 2016;164:805–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jaffe AE, Straub RE, Shin JH, Tao R, Gao Y, Collado-Torres L, et al. Developmental and genetic regulation of the human cortex transcriptome illuminate schizophrenia pathogenesis. Nat Neurosci. 2018;21:1117–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Walker RL, Ramaswami G, Hartl C, Mancuso N, Gandal MJ, de la Torre-Ubieta L, et al. Genetic control of expression and splicing in developing human brain informs disease mechanisms. Cell. 2019;179:750–71.e22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang D, Guelfi S, Garcia-Ruiz S, Costa B, Reynolds RH, D’Sa K, et al. Incomplete annotation has a disproportionate impact on our understanding of Mendelian and complex neurogenetic disorders. Sci Adv. 2020;6:eaay8299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jaffe AE, Shin J, Collado-Torres L, Leek JT, Tao R, Li C, et al. Developmental regulation of human cortex transcription and its clinical relevance at single base resolution. Nat Neurosci. 2015;18:154–61.

    Article  CAS  PubMed  Google Scholar 

  110. Takata A, Matsumoto N, Kato T. Genome-wide identification of splicing QTLs in the human brain and their enrichment among schizophrenia-associated loci. Nat Commun. 2017;8:14519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ma L, Shcherbina A, Chetty S. Variations and expression features of CYP2D6 contribute to schizophrenia risk. Mol Psychiatry. 2020. https://doi.org/10.1038/s41380-020-0675-y.

  112. Ma L, Semick SA, Chen Q, Li C, Tao R, Price AJ, et al. Schizophrenia risk variants influence multiple classes of transcripts of sorting nexin 19 (SNX19). Mol Psychiatry. 2020;25:831–43.

    Article  CAS  PubMed  Google Scholar 

  113. Li M, Jaffe AE, Straub RE, Tao R, Shin JH, Wang Y, et al. A human-specific AS3MT isoform and BORCS7 are molecular risk factors in the 10q24.32 schizophrenia-associated locus. Nat Med. 2016;22:649–56.

    Article  CAS  PubMed  Google Scholar 

  114. Cai X, Yang ZH, Li HJ, Xiao X, Li M, Chang H. A human-specific schizophrenia risk tandem repeat affects alternative splicing of a human-unique isoform AS3MTd2d3 and mushroom dendritic spine density. Schizophr Bull. 2021;47:219–27.

    Article  PubMed  Google Scholar 

  115. Aygün N, Elwell AL, Liang D, Lafferty MJ, Cheek KE, Courtney KP, et al. Genetic influences on cell type specific gene expression and splicing during neurogenesis elucidate regulatory mechanisms of brain traits. bioRxiv. 2020:349019.

  116. Glantz LA, Lewis DA. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry. 2000;57:65–73.

    Article  CAS  PubMed  Google Scholar 

  117. Osimo EF, Beck K, Reis Marques T, Howes OD. Synaptic loss in schizophrenia: a meta-analysis and systematic review of synaptic protein and mRNA measures. Mol Psychiatry. 2019;24:549–61.

    Article  CAS  PubMed  Google Scholar 

  118. Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM. Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci. 2011;14:285–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Forrest MP, Parnell E, Penzes P. Dendritic structural plasticity and neuropsychiatric disease. Nat Rev Neurosci. 2018;19:215–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tao R, Cousijn H, Jaffe AE, Burnet PW, Edwards F, Eastwood SL, et al. Expression of ZNF804A in human brain and alterations in schizophrenia, bipolar disorder, and major depressive disorder: a novel transcript fetally regulated by the psychosis risk variant rs1344706. JAMA Psychiatry. 2014;71:1112–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Chang H, Xiao X, Li M. The schizophrenia risk gene ZNF804A: clinical associations, biological mechanisms and neuronal functions. Mol Psychiatry. 2017;22:944–53.

    Article  CAS  PubMed  Google Scholar 

  122. Deans PJM, Raval P, Sellers KJ, Gatford NJF, Halai S, Duarte RRR, et al. Psychosis risk candidate ZNF804A localizes to synapses and regulates neurite formation and dendritic spine structure. Biol Psychiatry. 2017;82:49–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Huang Y, Huang J, Zhou QX, Yang CX, Yang CP, Mei WY, et al. ZFP804A mutant mice display sex-dependent schizophrenia-like behaviors. Mol Psychiatry. 2020. https://doi.org/10.1038/s41380-020-00972-4.

  124. Zhou D, Xiao X, Li M. The schizophrenia risk isoform ZNF804AE3E4 affects dendritic spine. Schizophr Res. 2020;218:324–5.

    Article  PubMed  Google Scholar 

  125. Clark MB, Wrzesinski T, Garcia AB, Hall NAL, Kleinman JE, Hyde T, et al. Long-read sequencing reveals the complex splicing profile of the psychiatric risk gene CACNA1C in human brain. Mol Psychiatry. 2020;25:37–47.

    Article  CAS  PubMed  Google Scholar 

  126. Missler M, Sudhof TC. Neurexins: three genes and 1001 products. Trends Genet. 1998;14:20–6.

    Article  CAS  PubMed  Google Scholar 

  127. Hu Z, Xiao X, Zhang Z, Li M. Genetic insights and neurobiological implications from NRXN1 in neuropsychiatric disorders. Mol Psychiatry. 2019;24:1400–14.

    Article  PubMed  Google Scholar 

  128. Ullrich B, Ushkaryov YA, Sudhof TC. Cartography of neurexins: more than 1000 isoforms generated by alternative splicing and expressed in distinct subsets of neurons. Neuron. 1995;14:497–507.

    Article  CAS  PubMed  Google Scholar 

  129. Jenkins AK, Paterson C, Wang Y, Hyde TM, Kleinman JE, Law AJ. Neurexin 1 (NRXN1) splice isoform expression during human neocortical development and aging. Mol Psychiatry. 2016;21:701–6.

    Article  CAS  PubMed  Google Scholar 

  130. Flaherty E, Zhu S, Barretto N, Cheng E, Deans PJM, Fernando MB, et al. Neuronal impact of patient-specific aberrant NRXN1alpha splicing. Nat Genet. 2019;51:1679–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Shepard PD, Canavier CC, Levitan ES. Ether-a-go-go-related gene potassium channels: what’s all the buzz about? Schizophr Bull. 2007;33:1263–9.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Morais Cabral JH, Lee A, Cohen SL, Chait BT, Li M, Mackinnon R. Crystal structure and functional analysis of the HERG potassium channel N terminus: a eukaryotic PAS domain. Cell. 1998;95:649–55.

    Article  CAS  PubMed  Google Scholar 

  133. Huffaker SJ, Chen J, Nicodemus KK, Sambataro F, Yang F, Mattay V, et al. A primate-specific, brain isoform of KCNH2 affects cortical physiology, cognition, neuronal repolarization and risk of schizophrenia. Nat Med. 2009;15:509–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Apud JA, Zhang F, Decot H, Bigos KL, Weinberger DR. Genetic variation in KCNH2 associated with expression in the brain of a unique hERG isoform modulates treatment response in patients with schizophrenia. Am J Psychiatry. 2012;169:725–34.

    Article  PubMed  Google Scholar 

  135. Heide J, Zhang F, Bigos KL, Mann SA, Carr VJ, Shannon Weickert C, et al. Differential response to Risperidone in schizophrenia patients by KCNH2 genotype and drug metabolizer status. Am J Psychiatry. 2016;173:53–9.

    Article  PubMed  Google Scholar 

  136. Carr GV, Chen J, Yang F, Ren M, Yuan P, Tian Q, et al. KCNH2-3.1 expression impairs cognition and alters neuronal function in a model of molecular pathology associated with schizophrenia. Mol Psychiatry. 2016;21:1517–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ren M, Hu Z, Chen Q, Jaffe A, Li Y, Sadashivaiah V, et al. KCNH2-3.1 mediates aberrant complement activation and impaired hippocampal-medial prefrontal circuitry associated with working memory deficits. Mol Psychiatry. 2020;25:206–29.

    Article  CAS  PubMed  Google Scholar 

  138. Liao HM, Chao YL, Huang AL, Cheng MC, Chen YJ, Lee KF, et al. Identification and characterization of three inherited genomic copy number variations associated with familial schizophrenia. Schizophr Res. 2012;139:229–36.

    Article  PubMed  Google Scholar 

  139. Boot E, Kant SG, Otter M, Cohen D, Nabanizadeh A, Baas RW. Overexpression of chromosome 15q11-q13 gene products: a risk factor for schizophrenia and associated psychoses? Am J Psychiatry. 2012;169:96–7.

    Article  PubMed  Google Scholar 

  140. Noor A, Dupuis L, Mittal K, Lionel AC, Marshall CR, Scherer SW, et al. 15q11.2 duplication encompassing only the UBE3A gene is associated with developmental delay and neuropsychiatric phenotypes. Hum Mutat. 2015;36:689–93.

    Article  CAS  PubMed  Google Scholar 

  141. Ingason A, Kirov G, Giegling I, Hansen T, Isles AR, Jakobsen KD, et al. Maternally derived microduplications at 15q11-q13: implication of imprinted genes in psychotic illness. Am J Psychiatry. 2011;168:408–17.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Li Z, Chen J, Xu Y, Yi Q, Ji W, Wang P, et al. Genome-wide analysis of the role of copy number variation in schizophrenia risk in Chinese. Biol Psychiatry. 2016;80:331–7.

    Article  PubMed  Google Scholar 

  143. Greer PL, Hanayama R, Bloodgood BL, Mardinly AR, Lipton DM, Flavell SW, et al. The Angelman syndrome protein Ube3A regulates synapse development by ubiquitinating arc. Cell. 2010;140:704–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sato M, Stryker MP. Genomic imprinting of experience-dependent cortical plasticity by the ubiquitin ligase gene Ube3a. Proc Natl Acad Sci U S A. 2010;107:5611–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ebert DH, Greenberg ME. Activity-dependent neuronal signalling and autism spectrum disorder. Nature. 2013;493:327–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Valluy J, Bicker S, Aksoy-Aksel A, Lackinger M, Sumer S, Fiore R, et al. A coding-independent function of an alternative Ube3a transcript during neuronal development. Nat Neurosci. 2015;18:666–73.

    Article  CAS  PubMed  Google Scholar 

  147. Siva K, Covello G, Denti MA. Exon-skipping antisense oligonucleotides to correct missplicing in neurogenetic diseases. Nucleic Acid Ther. 2014;24:69–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Liu H, Pizzano S, Li R, Zhao W, Veling MW, Hu Y, et al. isoTarget: a genetic method for analyzing the functional diversity of splicing isoforms in vivo. Cell Rep. 2020;33:108361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreev BV, et al. Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nat Med. 2007;13:1102–7.

    Article  CAS  PubMed  Google Scholar 

  150. Marti-Solano M, Crilly SE, Malinverni D, Munk C, Harris M, Pearce A, et al. Combinatorial expression of GPCR isoforms affects signalling and drug responses. Nature. 2020;587:650–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Straub RE, Lipska BK, Egan MF, Goldberg TE, Callicott JH, Mayhew MB, et al. Allelic variation in GAD1 (GAD67) is associated with schizophrenia and influences cortical function and gene expression. Mol Psychiatry. 2007;12:854–69.

    Article  CAS  PubMed  Google Scholar 

  152. Mukai J, Liu H, Burt RA, Swor DE, Lai WS, Karayiorgou M, et al. Evidence that the gene encoding ZDHHC8 contributes to the risk of schizophrenia. Nat Genet. 2004;36:725–31.

    Article  CAS  PubMed  Google Scholar 

  153. Kao WT, Wang Y, Kleinman JE, Lipska BK, Hyde TM, Weinberger DR, et al. Common genetic variation in Neuregulin 3 (NRG3) influences risk for schizophrenia and impacts NRG3 expression in human brain. Proc Natl Acad Sci U S A. 2010;107:15619–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Paterson C, Wang Y, Hyde TM, Weinberger DR, Kleinman JE, Law AJ. Temporal, diagnostic, and tissue-specific regulation of NRG3 isoform expression in human brain development and affective disorders. Am J Psychiatry. 2017;174:256–65.

    Article  PubMed  Google Scholar 

  155. Silberberg G, Darvasi A, Pinkas-Kramarski R, Navon R. The involvement of ErbB4 with schizophrenia: association and expression studies. Am J Med Genet B Neuropsychiatr Genet. 2006;141B:142–8.

    Article  CAS  PubMed  Google Scholar 

  156. Wong J, Rothmond DA, Webster MJ, Weickert CS. Increases in two truncated TrkB isoforms in the prefrontal cortex of people with schizophrenia. Schizophr Bull. 2013;39:130–40.

    Article  PubMed  Google Scholar 

  157. Weickert CS, Ligons DL, Romanczyk T, Ungaro G, Hyde TM, Herman MM, et al. Reductions in neurotrophin receptor mRNAs in the prefrontal cortex of patients with schizophrenia. Mol Psychiatry. 2005;10:637–50.

    Article  CAS  PubMed  Google Scholar 

  158. Thompson Ray M, Weickert CS, Wyatt E, Webster MJ. Decreased BDNF, trkB-TK+ and GAD67 mRNA expression in the hippocampus of individuals with schizophrenia and mood disorders. J Psychiatry Neurosci. 2011;36:195–203.

    Article  PubMed  Google Scholar 

  159. Reinhart V, Bove SE, Volfson D, Lewis DA, Kleiman RJ, Lanz TA. Evaluation of TrkB and BDNF transcripts in prefrontal cortex, hippocampus, and striatum from subjects with schizophrenia, bipolar disorder, and major depressive disorder. Neurobiol Dis. 2015;77:220–7.

    Article  CAS  PubMed  Google Scholar 

  160. Wong J, Hyde TM, Cassano HL, Deep-Soboslay A, Kleinman JE, Weickert CS. Promoter specific alterations of brain-derived neurotrophic factor mRNA in schizophrenia. Neuroscience. 2010;169:1071–84.

    Article  CAS  PubMed  Google Scholar 

  161. Kunii Y, Hyde TM, Ye T, Li C, Kolachana B, Dickinson D, et al. Revisiting DARPP-32 in postmortem human brain: changes in schizophrenia and bipolar disorder and genetic associations with t-DARPP-32 expression. Mol Psychiatry. 2014;19:192–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (81722019 and 81971259 to ML, 31872778 to ZH). ZH was also supported by Xiangya Hospital Start-up Research Grants, The innovative team program 2019RS1010 from Department of Science & Technology of Hunan Province, The innovation-driven team project 2020CX016 from Central South University, 111 Grant (B13036), and Hunan 100 Talents Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhonghua Hu or Ming Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, CY., Xiao, X., Zhang, Z. et al. An alternative splicing hypothesis for neuropathology of schizophrenia: evidence from studies on historical candidate genes and multi-omics data. Mol Psychiatry 27, 95–112 (2022). https://doi.org/10.1038/s41380-021-01037-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01037-w

This article is cited by

Search

Quick links