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Abstract
The common molecular mechanisms underlying psychiatric disorders are not well understood. Prior attempts to assess the
pathological mechanisms responsible for psychiatric disorders have been limited by biased selection of comparable
disorders, datasets/cohort availability, and challenges with data normalization. Here, using DisGeNET, a gene-disease
associations database, we sought to expand such investigations in terms of number and types of diseases. In a top-down
manner, we analyzed an unbiased cluster of 36 psychiatric disorders and comorbid conditions at biological pathway, cell-
type, drug-target, and chromosome levels and deployed density index, a novel metric to quantify similarities (close to 1) and
dissimilarities (close to 0) between these disorders at each level. At pathway level, we show that cognition and
neurotransmission drive the similarity and are involved across all disorders, whereas immune-system and signal-response
coupling (cell surface receptors, signal transduction, gene expression, and metabolic process) drives the dissimilarity and are
involved with specific disorders. The analysis at the drug-target level supports the involvement of neurotransmission-related
changes across these disorders. At cell-type level, dendrite-targeting interneurons, across all layers, are most involved.
Finally, by matching the clustering pattern at each level of analysis, we showed that the similarity between the disorders is
influenced most at the chromosomal level and to some extent at the cellular level. Together, these findings provide first
insights into distinct cellular and molecular pathologies, druggable mechanisms associated with several psychiatric disorders
and comorbid conditions and demonstrate that similarities between these disorders originate at the chromosome level and
disperse in a bottom-up manner at cellular and pathway levels.

Introduction

Psychiatry encompasses a vast number of disorders and
comorbidities. While these disorders have their own unique
traits, common molecular mechanisms may be involved in
their underlying pathology [1]. Identifying such common
elements would enhance our understanding of numerous
disorders simultaneously and identify common therapeutics
against them.

Prior efforts to identify such common mechanisms were
informative yet incomplete. Most studies [2, 3], in an
attempt to make the data more manageable, compared the
transcriptomic profiles of a few diseases at a time, limiting
their ability to reveal patterns across a wide range of con-
ditions and comorbidity. The diseases included in these
studies were selected based on disease severity, known
associations, or data/cohort availability [4, 5], thus pre-
venting the exploration of novel relationships (e.g.,
depression and epilepsy [6]). Furthermore, normalization
often presents a challenge in these studies [7, 8], and efforts
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to unionize diverse datasets can compromise results and
limit the conclusions drawn from them.

Another approach to this comprehensive analysis is to
draw on publicly available gene-disease databases. These
resources have greatly expanded in number and detail in the
past several years; thus, enhancing the simultaneous com-
parison of several diseases. One such resource is DisGeNET
[9, 10], a knowledge management platform cataloging

genes associated with human diseases. Utilizing diverse
resources, comprised of human, animal, and computational
data, DisGeNET identifies gene-disease associations
(GDAs) and curates signature gene-lists associated with
each disease (Fig. 1A). Presently, DisGeNET catalogs
disease-associated gene-sets for 24,166 diseases, featuring
628,685 GDAs across 17,549 genes [9]. As these gene-lists
are not reliant upon expression profile, it precludes the

Fig. 1 Disease-associated gene-sets fall into three distinct clusters.
A Workflow used to derive the “psychiatric cluster” in an unbiased
top-down manner. Curated gene-sets form different sources cataloged
in DisGeNET’s were filtered by gene-set size, compared via a Jaccard
similarity matrix and sorted into global clusters of similar disease
using principal component analysis. Then, a primary cluster enriched
in psychiatric, immune, metabolic, and neurodegenerative disorders
was further broken down based on gene-set similarity, ultimately
yielding the “psychiatric cluster” of 36 diseases that was used for
subsequent analysis of pathways, drugs, cell-types, and chromosomes.
B A PCA based clustering of 763 curated disorders. Note that cluster 1
falls at the center of the plot indicating a low internal correlation
between the disorders in this cluster. C Hierarchical clustering of

Cluster 2 disorders. An initial cutting of three (left dashed line) reveals
three branches shown in red, blue, and green. The green branch (aka
the psychiatric cluster) was considered for all subsequent analysis.
Further cutting the green branch (right dashed line) reveals four sub-
groups composed of 36 disorders labeled on the right. See Supple-
mentary Fig. 1 for further details. CTD Comparative Toxicogenomics
Database, ClinGen The Clinical Genome Resource, CGI The Cancer
Genome Interpreter, PsyGeNET Psychiatric disorders Gene associa-
tion NETwork, RGD Rat Genome Database, MGD Mouse
Genome Database, LHGDN Literature-derived Human Gene-Disease
Network, HPO Human Phenotype Ontology, GWAS Gene-Wide
Association Study.
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limitations that have compromised prior efforts to compare
psychiatric disorders. Furthermore, the sheer number of
GDAs makes this an ideal platform to compare numerous
related and diverse diseases in an unbiased manner.

Here, we use curated, evidence-supported and clinically
relevant disease-associated gene-sets from DisGeNET to
identify unbiased clusters of similar diseases; then, with
special emphasis on a cluster enriched with psychiatric
disorders and associated comorbidities, we performed
a series of in silico analyses to understand the biological
complexity of these disorders at pathways, cell-types, drug-
targets, and chromosomes levels. To distill the information
and compare the disorders at each level, we propose a novel
metric called density index. Improving the understanding of
the psychiatric disease landscape, this top-down approach is
critical to identifying highly related disorders in an unbiased
manner, revealing common and unique mechanisms
underlying disease pathology and pointing to the biological
level of complexity which drives the similarities and dis-
similarities between disorders.

Methods

Disease-specific curated gene-lists were downloaded from
DisGeNET (https://www.disgenet.org/downloads). Detailed
methods for finding disease–disease similarity, filtering for
psychiatric cluster disorders, gene ontology (GO) analysis,
density index, cell-type and drug-target enrichment, chro-
mosome overrepresentation, and Rand index (RI) are
available in the online supplements.

Results

Disease profiles fall into three distinct clusters

To look for molecularly similar diseases, we calculated a
pairwise similarity matrix for 763 disease-associated gene-
sets from DisGeNET (Fig. 1A). A principal component
analysis over this matrix segregated the disease profiles into
three distinct clusters (Fig. 1B; Supplementary Table 1).
Positioned at the center, Cluster 1 showed fluidic bound-
aries with the other clusters and contained 422 profiles.
Most diseases in this cluster were congenital, syndrome,
familial, sex-linked, and autosomal in origin, but few psy-
chiatric disorders (including schizophrenia) and cancer were
also observed. A majority of disease in this cluster fell
below the (0, 0) coordinates, suggesting uncorrelated dis-
ease of low overlapping gene-sets (Supplementary Table 1).
Cluster 2 and Cluster 3 were orthogonal to each other and
each contained highly correlated diseases. Cluster 2 con-
tained 192 profiles and was primarily composed of diseases

related to psychiatric disorders, inflammation, metabolism,
and neurodegeneration. Cluster 3 contained 149 profiles and
was primarily composed of various types of cancer.

Overall, the separation of disease profiles into three
clusters suggests that converging mechanisms are involved
in the presentation of diseases within each cluster. Given
our group’s focus on psychiatric disorders, the remainder of
this paper will focus specifically on Cluster 2.

Hierarchical clustering reveals a distinct subgroup of
psychiatric disorders

Hierarchical clustering of Cluster 2 disease profiles revealed
three distinct branches, (Fig. 1C; Supplementary Fig. 1).
Branch 1 (Fig. 1C, red) was the largest and contained a
range of diseases primarily related to metabolism, vascular
disorders, mood, and neurodegenerative disorders. Sub-
groups within this cluster recapitulate known associations
between diseases. For example, diabetes-related disorders
largely cluster together, as do vascular- and
neurodegeneration-related disorders. Branch 2 (Fig. 1C,
blue) was primarily composed of immune-system disorders
including autoimmune diseases, multiple sclerosis, allergic
reaction, and fever. Branch 3 (Fig. 1C, green) was primarily
composed of neuropsychiatric disorders, including depres-
sion, addiction, bipolar, anxiety, and learning disorders. It
also contained epilepsy, cardiovascular disorders, and pain,
which are comorbid with psychiatric disorders [11–14].
Overall, these Cluster 2 branches show that shared
mechanisms in branches are stronger than the original
clusters, and the known mutual similarity of branch-
revealed associations gives confidence to selectively
investigate new connections between disorders and their
underlying mechanisms.

Cognition is the most affected biological process
across all psychiatric cluster disorders

The high concentration of psychiatric disorders in Branch 3
(Fig. 1C, green, henceforth referred to as the “psychiatric
cluster”) makes it the ideal place to investigate underlying
mechanisms across psychiatric illnesses; thus, it remained
the focus for subsequent analyses. This branch splits into
four distinct subgroups (Fig. 1C, green, expansion).

GO analysis of gene-sets associated with psychiatric
cluster revealed over 3000 GO pathways (q value < 0.05,
Supplementary Table 2). To better understand the disease
process, the pathways were organized into forty themes
representing different levels of cellular and biological
complexity (Fig. 2, left labels). To facilitate theme-centric
quantitative comparison, we calculated a density index for
each theme (Fig. 2, right). A density close to 1 indicates
themes common across diseases, whereas a density close to
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0 indicates themes unique to a few diseases. Across the
entire psychiatric cluster, cognition shows the highest den-
sity (density ≈ 0.7). Other high-density (density ≈ 0.5)
themes include neurotransmission, largely driven by cate-
cholamine and serotonin, and signaling pathways, driven by
G-protein-coupled receptors. Medium-density (density >
0.25) themes include other neurotransmitters, including
glutamate, GABA, and norepinephrine; ion balance, driven
by transmembrane transport; postsynaptic events and
inflammatory response. Low-density (density < 0.25)
themes include those related to the immune system, meta-
bolism, cell surface receptor signaling, intracellular signal
transduction, and oxidative stress.

While cognition is the most consistently affected process,
comparing themes across subgroups reveals differences
between the mechanisms underlying this phenotype. Sub-
group 1, containing Major depressive disorder and cocaine
addiction, exhibits the highest densities across all the sub-
groups for themes related to adrenergic, catecholamine,
dopamine, GABA, glutamate, norepinephrine, and ser-
otonin-related neurotransmission, possibly involving the

slow G-protein-coupled receptor signaling, which too
showed a high density. Interestingly, as compared to
increased neurotransmission, Subgroup 1 showed reduced
presynaptic events relative to postsynaptic events, sug-
gesting a reduced input functionality.

Consistent with the known comorbidities of psychiatric
illnesses with the autonomic response [13, 15], Subgroup 2,
contained cardiovascular conditions and pain. All themes
(including cognition) in this subgroup showed low density,
suggesting subtle changes governed by unique mechanisms.
Aside from cognition, the highest density themes in this
subgroup are G-protein-coupled receptor signaling, ion
channel activity, inflammatory response, and neuro-
transmission related to nitric oxide and catecholamine. As
indicated by the low theme-density correlations (Supple-
mentary Fig. 2), this subgroup differs most from the other
subgroups, likely due to the peripheral origin (autonomic
response) and greater relative contribution of immune sys-
tem dysfunction than alterations to neurotransmission.

Subgroup 3, containing epilepsy, anxiety, alcohol abuse,
and attention-deficit/hyperactive disorder, showed high

Fig. 2 Pathway analysis of psychiatric cluster disorders. Left:
Heatmap of significant (q < 0.05) and theme (left labels) filtered
pathways associated with all psychiatric cluster disorders (top labels).
The color-intensity (light to dark green) in the heatmap is proportional
to −log10(q value). Right: Densities of each theme across all disorders

and individual subgroups. The red dots represent the highest density
themes crossing the threshold (arbitrary) of 0.5. Note the highest
density of cognition across all disorders. See Supplementary Table 2
for further details.
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theme-density correlation with Subgroup 1. Density asso-
ciated with cognition was particularly similar in both sub-
groups (≈0.8). Besides cognition, the highest density themes
in this subgroup are related to neurotransmission, largely
driven by serotonin and catecholamine. Although lower in
density, inflammatory response, postsynaptic events, and
ion balance showed changes resembling Subgroup 1.
Overall, the similarity between the two subgroups indicates
that alcohol and cocaine abuse have similar downstream
effects and mechanisms widely shared with depression,
anxiety, and epilepsy. The difference separating the two
appears to be in the relative severity of the affected
processes.

Subgroup 4, containing bipolar disorder, mostly exhibits
medium-density theme indices showing similar correlations
across subgroups. Neurotransmission associated with
adrenergic, catecholamine, and dopamine was most affec-
ted in this subgroup. Interestingly, the density of carbohy-
drate metabolic process is uniquely high in this group,
suggesting that metabolic processes may play a larger role
in bipolar disorder over other psychiatric disorders. Indeed,
there are evidences for dysregulated metabolic processes in
manic states [16, 17].

Overall, the unsupervised clustering of the highly
comorbid psychiatric disorders suggests that neuro-
transmission, mostly associated with monoamines and
governed by G-couple protein receptors, is the key shared
process across psychiatric diseases that contributes to cog-
nitive dysfunction. In contrast, pathways associated with
cell surface receptors, signal transductions, and metabolic
process are unique to a few disorders.

Druggable mechanisms support the involvement of
neurotransmission across psychiatric cluster
disorders

Therapeutic or disease-inducing drugs with known mode of
action (MOA) can expand our understanding of the
underlying disease pathology [18]. By comparing the psy-
chiatric disease-associated gene-sets with those of known
drugs from the connectivity map [19], a database cataloging
transcriptomic response of several cell lines against known
drugs, we identified 132 relevant drugs, belonging to 64
different MOAs (Supplementary Table 3).

The most frequent MOAs across the entire psychiatric
cluster involved dopamine receptors (15/64), adrenergic
receptors (14/64), glucocorticoid receptors (8/64), and
ATPases activity (6/64). Interestingly, these MOAs
remained most frequent across each subgroup, considered
individually (Supplementary Fig. 3). Within each subgroup,
Subgroup 1 showed the most with 44 MOAs, whereas
Subgroup 4 showed the least with 13 MOAs. Subgroup 3
and Subgroup 4 showed 20 and 24 different MOAs,

respectively. Looking at specific drugs, those with the
strongest density were helveticoside (targeting ATPases),
thioridazine (targeting dopamine receptors), clioquinol
(targeting opioid receptors), and anisomycin (targeting
DNA synthesis). Overall, the drug-target analysis supports
the pathway analysis findings that most psychiatric dis-
orders feature dysregulated neurotransmission and the
diverse MOAs points towards the heterogeneous nature of
psychiatric disease origins [20].

Interneurons are most affected cell-types across
psychiatric cluster disorders

Alterations in various layer-specific subtypes of neurons
and glia is an important factor driving disease mechanisms
and could differentially contribute to disease pathology
[21, 22]. Using human-specific markers from two inde-
pendent studies, without and with layer specificity, taken
from anterior cingulate cortex [23] and middle temporal
gyrus [24], respectively, we assessed the enrichment of
neuronal and non-neuronal cell-types in the psychiatric
cluster (Fig. 3). Based on cell-specific markers (Fig. 3, top),
Subgroup 1 diseases were enriched in somatostatin (SST)
and corticotrophin-releasing hormone (CRH) positive
interneurons in a non-overlapping manner. Mental depres-
sion and cocaine addiction were enriched in SST-positive
interneurons, whereas unipolar depression and major
depression were enriched in CRH-positive interneurons.
Subgroup 2 diseases were enriched with more diverse cell-
types and consistent with their role in inflammatory dis-
eases, were also enriched in neuroglia and oligoden-
drocytes. However, CRH and vasoactive intestinal
polypeptide (VIP) co-expressing CRH neurons were most
abundant in this cluster. Subgroup 3, consistent with the
high theme-centric correlation with Subgroup 1, was also
enriched in SST and CRH-positive interneurons. In Sub-
group 4, endogenous, neurotic, and syndromic form of
depression, similar to mental depression observed in Sub-
group 1, were enriched in SST interneurons, whereas those
with bipolar disorder were enriched in Parvalbumin (PV)-
positive and CRH-positive interneurons.

Consistent with cell-specific markers, layer-specific
markers also showed excessive enrichment in inter-
neurons, mostly distributed across all layers (Fig. 3, bot-
tom). However, based on cell-specific density index
calculated across all the disorders in psychiatric cluster,
GABAergic interneurons of layer 2/3 show the highest
enrichment (density= 0.52). Associations with other cell-
types were again weaker and less consistent. Within gluta-
matergic neurons, those in layer 3/4 showed the highest
density of enrichment. Astrocytes and oligodendrocytes
were involved with very few diseases with a density index
of ~0.02. Overall, holding true for markers from two
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independent studies, interneurons were the most con-
sistently implicated cell-type across all psychiatric sub-
groups and the most affected interneurons and
glutamatergic neurons belong to superficial layer 2/3 and 3/
4, respectively.

Most chromosomes are associated with psychiatric
cluster disorders

Disease-associated gene-sets can be biased towards specific
chromosomes, abnormalities in which can potentially
explain the psychiatric disorders within each subgroup.
Thus, we looked for chromosomal overrepresentation
within the psychiatric subgroups (Fig. 4). 15/23 chromo-
somes showed overrepresentation across the psychiatric

cluster, the densest of which were chromosome 5, 8, 12, and
20. Chromosome 5, was overrepresented in disorders
associated with addiction (cocaine and alcohol) and autism.
Chromosome 8 showed the most diversity and was asso-
ciated with disorders across three subgroups. Chromosome
12, was overrepresented exclusively in Subgroup 1, repre-
senting mood and depressive disorders. Chromosome 20
was overrepresented in Subgroup 2 and complex partial
status epilepticus in Subgroup 3.

Within each subgroup, Subgroup 1 showed association
with five chromosomes overrepresented across all 8/8 dis-
orders observed here. Interestingly, a split developed, with
chromosomes 8 and 12 being more related to depression
and chromosomes 5 and 14 being more related to cocaine
addiction. Subgroup 2 showed association with five

Fig. 3 Cell-type analysis of psychiatric cluster disorders. Enrich-
ment of different cell-types (top-left labels) and layer-specific cell-
types (bottom-left labels) markers across psychiatric cluster disorders
(top labels). Right: Density of each cell-type (top) and layer-specific
cell-types (bottom) across all disorders. The filled red dots crossing the

threshold (arbitrary) of 0.4, represent high-density cell-types whereas
hollow dot represents a cell-type with zero density. Note the highest
density of SST-positive interneurons and layer 2/3 specific inter-
neurons across all disorders. The color-intensity (light to dark green) in
the heatmap is proportional to −log10(q value).
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chromosomes across 5/11 diseases observed here, with
chromosome 20 being most affected. Subgroup 3 was the
most diverse, being associated with nine chromosomes
across 8/11 disorders observed here. Autism and cognitive
disorder, belonging to this subgroup, were the only dis-
orders overrepresented in X-chromosomes. Subgroup 4 was
the least diverse with only three chromosomes over-
represented across 3/6 disorders observed here. Chromo-
some 21 showed the highest density in this subgroup
associated with bipolar and related disorders.

Chromosomal overrepresentation drives the
similarity between psychiatric cluster disorders

Next, we reasoned that, of the four levels of biological
complexity (pathways, cell-type, drug-target, and chromo-
somes), the one which drives the similarity between dis-
orders, should cluster them in agreement with the
psychiatric cluster (Fig. 1C, green; Supplementary Fig. 4).
Based on RI, a measure of similarity between two clusters
[25], we observed moderate but significant similarity
between psychiatric cluster and chromosome

overrepresentation based clustering of disorders (RI= 0.70,
p value < 3 × 10−03). A weak trend level similarity was also
observed between psychiatric cluster and cell-enrichment
based clustering (RI= 0.65, p value < 0.07). Finally, among
different levels, consistent with the above results, moder-
ated but significant similarity was observed between path-
way- and MOA-based clustering (RI= 0.70, p value < 1 ×
10−04). Thus, the similarity between disorders, to some
extent, can be explained based on chromosomal instability
and cellular correlates of the disorders.

Discussion

The search for common molecular mechanisms across
psychiatric disorders is an important future direction for the
field. Here, we show that disease-specific gene-sets are
not only sufficient to segregate diseases based on their
intrinsic nature and point to similarities between
comorbid conditions, but also to move towards a more
mechanistic understanding of neural connectivity and dis-
ease origins.

Fig. 4 Chromosome overrepresentation analysis of psychiatric
cluster disorders. Overrepresentation of different chromosomes
across psychiatric cluster disorders (top labels). The filled red dots

crossing the threshold (arbitrary) of 0.1, represent high-density chro-
mosomes whereas hollow dots represent chromosomes with zero
density.
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Starting with 763 disease-associated gene-sets, we
uncovered three distinct disease clusters, demonstrating
fundamental differences between psychiatric/metabolic-
type disorders and cancer. Focusing on a cluster enriched in
psychiatric diseases, we compared implicated pathways,
drug-targets, cell-types and chromosomes. The most com-
monly dysregulated processes across all disorders involved
neurotransmission, neuromodulation, and synaptic signal-
ing. Whereas the most uniquely dysregulated processes
across few disorders involved immune system response,
signal-response coupling involving cell surface-based sig-
naling and intracellular signal transduction and down-
stream response involving gene expression and metabolic
process. Independently, the ubiquitous role of neuro-
transmission was also observed in drug-target based ana-
lysis. Furthermore, we showed that the similarity between
psychiatric disorders is significantly driven by alterations at
the chromosome, and to a lesser extent by the cell-types.
This suggests that similarity between disorders disperses in
a bottom-up fashion (Fig. 5) i.e., following subcellular
chromosomal abnormality, the similarity persists at cellular
level where it is affected most by neurotransmission and
modulation, and disperses at pathway levels possibly
through different outside stimulus as suggested by low
density of signal-response coupling. Notably, the observed
chromosomal overrepresentation was consistent with large
bodies of literature on abnormalities of chromosome 5 in
substance abuse [26, 27], chromosome 8 and 12 in lifetime
major depression [28, 29] and anxiety-disorder [30] and
chromosome 20 in epilepsy [31, 32]. Further support for
similarity at chromosome level comes from a genome wide
linkage study suggesting shared effects on five major psy-
chiatric disorders [4], four of which are also reported in this
study.

The gene-set based approach used here has several
advantages over previous work using whole transcriptome
approaches [2, 3], observing (only) similarities between a
few disorders. First, unbiased clustering at a global level
(Fig. 1B) uncovers shared biological origin of several dis-
orders. For instance, with exception of diseases populating
the overlapping boundaries of the three clusters, Cluster 1,
populated by diseases of familial, sex-linked and autosomal
origin, may broadly represent mendelian disorders and
patterns that reflect inheritance; Cluster 2, populated by
psychiatric disorders and comorbid conditions, may repre-
sent complex disorders; and Cluster 3, exclusively popu-
lated by cancer, may represent disorders of environmental
origin. In this regard, assignment of schizophrenia, a major
psychiatric disorder, to Cluster 1 is interesting. On one
hand, it recognizes schizophrenia as a disorder with an
inheritance element. On the other, it highlights the subtle
differences between schizophrenia and psychiatric cluster
disorders, possibly reflecting its high heterogeneity with
known variations associated with developmental process
[33], psychosocial stress [34], personality trait [35], time-
point of onset [36], gender differences [37, 38], emotional
experiences [39], and various behavioral component con-
structs [40], among others. While one would expect schi-
zophrenia to fall in the psychiatric cluster, the fact that it did
not is very intriguing and further supports the ability of this
unbiased approach to lend novel insights into the field.

Second, this approach allows for exploration of a disease
and its comorbidities independently at multiple biological
levels. For instance, the comorbidity of cardiovascular
disorder and pain (Subgroup 2, Fig. 1C) with psychiatric
illnesses is well-studied in clinical and epidemiological set-
up [13, 15, 41, 42] but not in postmortem molecular studies,
where (1) such comorbidity data are usually not available or

Fig. 5 General model of
psychiatric cluster disorders.
Overall, the present analyses
suggest that psychiatric
disorders are impacted at
physiologic levels of biological
complexities, with changes at
the chromosome level
emanating up to cell-type, drug-
target, and pathway levels.
Collectively these alterations
generate various phenotypes,
largely related to cognition,
which contribute to disease. The
present subgroups show
similarities and differences
across all of these levels, with
Subgroup 1 and Subgroup
3 showing the most similarities,
and Subgroup 2 showing the
most differences.

4860 M. A. Smail et al.



(2) the high collinearity between the comorbid conditions
and disease state makes it difficult to segregate the two
conditions for independent assessment. The present study
circumvents these issues and supports the existence of such
comorbidities from independent gene-sets. Note that being
peripherally derived (autonomic response), the independent
contribution of Subgroup 2 towards cognition is less;
however, its presence within the psychiatric cluster suggests
that a reduced set of cellular/biological process, involving
G-protein-coupled receptor signaling and catecholamines
neurotransmission (Fig. 2), may be common between
autonomic alterations and psychiatric disorders.

A general model of psychiatric cluster disorders

Cognition was the most affected process across all psy-
chiatric cluster disorders, and its known pathophysiological
association with neurotransmission can be seen at both the
pathway (Fig. 2) and drug-target levels (Supplementary
Fig. 3). Within different neurotransmitters, although at
different densities, all subgroups showed the highest density
of catecholamines. Among other neurotransmitters,
serotonin-related pathways were densest in the highly cor-
related Subgroups 1 and 3, representing mood and addic-
tion, respectively, but not in Subgroups 2 and 4,
representing neuroinflammation and bipolar disorder,
respectively. Overall suggesting that, while neurotransmis-
sion is a common mechanism between these disorders, the
differences may emerge due to dissimilar neurotransmitter
systems.

This raises the question on how things are governed at
the cell-type level, which as suggested by our results, also
drives similarity between the disorders to some extent.
Notably, at the cell-type level almost all disorders were
enriched with dendrite-targeting SST and VIP interneurons
suggesting that these disorders are largely related to context
(all inputs except the one of interest) dependent integration
of information input to pyramidal neurons, a function lar-
gely associated with these interneurons [43]. VIP inter-
neurons, by disinhibiting the SST interneurons, also
influence the impact of most noxious or negative informa-
tion input [44]. In this regard, their highest enrichment in
Subgroup 2 suggests their influence on ache, allodynia,
and tachyarrhythmia, which are all comorbid disorders
involving a noxious stimulus of pain. Finally, consistent
with the role of corticotropin-releasing hormone in stress,
we also observed the enrichment of CRH-positive inter-
neurons which are mostly co-expressed with SST or VIP
interneurons [23]. One notable exception here is the
enrichment of PV-positive interneurons in ache and bipolar-
disorders. Note that PV-interneurons, unlike SST and VIP
interneurons, largely target axon-initial segments and gov-
ern adaptation of output from pyramidal neurons [45]. As

such, their enrichment in bipolar-disorders aligns with its
previously observed similarity with schizophrenia, a dis-
order associated with abnormal output [2, 3].

The information input coming to these cell-types are
potentially long-ranged, as suggested by higher enrichment
of distantly produced monoamines, or short-ranged, as
suggested by overall enrichment of local glutamatergic-
transmission. Further support for long-distance input comes
from the enriched VIP interneurons which are influenced by
long-distance serotonergic and cholinergic afferents [44].
Finally, enrichment of neuronal markers across all layers
also suggests broad-spectrum behavioral, cognitive,
and autonomic input from different brain areas [46]. How-
ever, layer 3/4, receiving thalamocortical input [47],
showed high density for excitatory neurons; whereas layer
2/3, responsible for inhibiting layer-1 re-entrant connections
[48] from adjacent areas, showed high density for SST
interneurons.

Overall, the cell and layer-specific enrichment suggests
that disorders in the studied psychiatric cluster disorders are
influenced by lack of adaptation to input coming from
diverse contexts. Given the common presence of this phe-
notype, this inflexibility represents an intriguing process at
the root of psychiatric disease that should be the focus of
future mechanistic and therapeutic studies.

Limitations and future direction

This top-down analysis was conducted using unbiased
disease-associated gene-sets. However, the gene-sets used
do not include direction (upregulation or downregulation).
The conclusions we drew for cellular-associates are under
the assumptions that the gene-sets used in the study are
universal signatures of these disorders regardless of brain
region. As such, future mechanistic studies should consider
these variables. Future studies should also incorporate other
central-nervous-system disorders to generate a broad com-
putational framework of microcircuit dysfunction. A novel
signature-based classification of psychiatric disorders based
upon such a framework would be a valuable extension of
these results and may point to more precise, therapeutically
relevant mechanisms.
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