Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adult-born neurons from the dorsal, intermediate, and ventral regions of the longitudinal axis of the hippocampus exhibit differential sensitivity to glucocorticoids

Abstract

Hippocampal neurogenesis has been shown to play roles in learning, memory, and stress responses. These diverse roles may be related to a functional segregation of the hippocampus along its longitudinal axis. Indeed, the dorsal hippocampus (dHi) plays a predominant role in spatial learning and memory, while the ventral hippocampus (vHi) is predominantly involved in the regulation of anxiety, a behaviour impacted by stress. Recent studies suggest that the area between them, the intermediate hippocampus (iHi) may also be functionally independent. In parallel, it has been reported that chronic stress reduces neurogenesis preferentially in the vHi rather the dHi. We thus aimed to determine whether such stress-induced changes in neurogenesis could be related to differential intrinsic sensitivity of neural progenitor cells (NPCs) from the dHi, iHi, or vHi to the stress hormone, corticosterone, or the glucocorticoid receptor (GR) agonist, dexamethasone. Long-term exposure of rat NPCs to corticosterone or dexamethasone decreased neuronal differentiation in the vHi but not the dHi, while iHi cultures showed an intermediate response. A similar gradient-like response on neuronal differentiation and maturation was observed with dexamethasone treatment. This gradient-like effect was also observed on GR nuclear translocation in response to corticosterone or dexamethasone. Long-term exposure to corticosterone or dexamethasone treatment also tended to induce a greater downregulation of GR-associated genes in vHi-derived neurons compared to those from the dHi and iHi. These data suggest that increased intrinsic sensitivity of vHi NPC-derived neurons to chronic glucocorticoid exposure may underlie the increased vulnerability of the vHi to chronic stress-induced reductions in neurogenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Corticosterone reduced cell proliferation in NPC cultures irrespective of the hippocampal sub-region they are derived from.
Fig. 2: Effects of short-term corticosterone (4 DIV) exposure on NPC differentiation into immature neurons (DCX+) and their maturation.
Fig. 3: Effects of longer-term corticosterone (7 DIV) exposure on NPCs differentiation into neurons (βIII-tubulin+) and their maturation.
Fig. 4: Effects of long-term dexamethasone exposure on NPC differentiation into neurons (βIII-tubulin+) and their maturation.
Fig. 5: Effects of long-term dexamethasone exposure on nuclear GR expression.

Similar content being viewed by others

References

  1. Kempermann G, Wiskott L, Gage FH. Functional significance of adult neurogenesis. Curr Opin Neurobiol. 2004;14:186–91.

    Article  CAS  PubMed  Google Scholar 

  2. Ming GL, Song H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron. 2011;70:687–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Christie BR, Cameron HA. Neurogenesis in the adult hippocampus. Hippocampus. 2006;16:199–207.

    Article  CAS  PubMed  Google Scholar 

  4. Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature. 1997;386:493–5.

    Article  CAS  PubMed  Google Scholar 

  5. Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci. 2000;20:9104–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schloesser RJ, Lehmann M, Martinowich K, Manji HK, Herkenham M. Environmental enrichment requires adult neurogenesis to facilitate the recovery from psychosocial stress. Mol Psychiatry. 2010;15:1152–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Simon M, Czeh B, Fuchs E. Age-dependent susceptibility of adult hippocampal cell proliferation to chronic psychosocial stress. Brain Res. 2005;1049:244–8.

    Article  CAS  PubMed  Google Scholar 

  8. Surget A, Tanti A, Leonardo ED, Laugeray A, Rainer Q, Touma C, et al. Antidepressants recruit new neurons to improve stress response regulation. Mol Psychiatry. 2011;16:1177–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vivar C, van Praag H. Running changes the brain: the long and the short of it. Physiology. 2017;32:410–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dranovsky A, Hen R. Hippocampal neurogenesis: regulation by stress and antidepressants. Biol Psychiatry. 2006;59:1136–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jayatissa MN, Bisgaard C, Tingstrom A, Papp M, Wiborg O. Hippocampal cytogenesis correlates to escitalopram-mediated recovery in a chronic mild stress rat model of depression. Neuropsychopharmacology. 2006;31:2395–404.

    Article  CAS  PubMed  Google Scholar 

  12. Jayatissa MN, Henningsen K, West MJ, Wiborg O. Decreased cell proliferation in the dentate gyrus does not associate with development of anhedonic-like symptoms in rats. Brain Res. 2009;1290:133–41.

    Article  CAS  PubMed  Google Scholar 

  13. Lehmann ML, Brachman RA, Martinowich K, Schloesser RJ, Herkenham M. Glucocorticoids orchestrate divergent effects on mood through adult neurogenesis. J Neurosci. 2013;33:2961–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mitra R, Sundlass K, Parker KJ, Schatzberg AF, Lyons DM. Social stress-related behavior affects hippocampal cell proliferation in mice. Physiol Behav. 2006;89:123–7.

    Article  CAS  PubMed  Google Scholar 

  15. Schoenfeld TJ, Gould EStress. stress hormones, and adult neurogenesis. Exp Neurol. 2012;233:12–21.

    Article  CAS  PubMed  Google Scholar 

  16. David DJ, Samuels BA, Rainer Q, Wang JW, Marsteller D, Mendez I, et al. Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron. 2009;62:479–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brummelte S, Galea LA. Chronic high corticosterone reduces neurogenesis in the dentate gyrus of adult male and female rats. Neuroscience. 2010;168:680–90.

    Article  CAS  PubMed  Google Scholar 

  18. Ekstrand J, Hellsten J, Wennstrom M, Tingstrom A. Differential inhibition of neurogenesis and angiogenesis by corticosterone in rats stimulated with electroconvulsive seizures. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:1466–72.

    Article  CAS  PubMed  Google Scholar 

  19. Culig L, Surget A, Bourdey M, Khemissi W, Le Guisquet AM, Vogel E, et al. Increasing adult hippocampal neurogenesis in mice after exposure to unpredictable chronic mild stress may counteract some of the effects of stress. Neuropharmacology. 2017;126:179–89.

    Article  CAS  PubMed  Google Scholar 

  20. Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature. 2011;476:458–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bannerman DM, Rawlins JN, McHugh SB, Deacon RM, Yee BK, Bast T, et al. Regional dissociations within the hippocampus–memory and anxiety. Neurosci Biobehav Rev. 2004;28:273–83.

    Article  CAS  PubMed  Google Scholar 

  22. Fanselow MS, Dong HW. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron. 2010;65:7–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Levone BR, Cryan JF, O’Leary OF. Role of adult hippocampal neurogenesis in stress resilience. Neurobiol Stress. 2015;1:147–55.

    Article  PubMed  Google Scholar 

  24. O’Leary OF, Cryan JF. A ventral view on antidepressant action: roles for adult hippocampal neurogenesis along the dorsoventral axis. Trends Pharm Sci. 2014;35:675–87.

    Article  PubMed  CAS  Google Scholar 

  25. Tanti A, Belzung C. Neurogenesis along the septo-temporal axis of the hippocampus: are depression and the action of antidepressants region-specific? Neuroscience. 2013;252:234–52.

    Article  CAS  PubMed  Google Scholar 

  26. Winocur G, Wojtowicz JM, Sekeres M, Snyder JS, Wang S. Inhibition of neurogenesis interferes with hippocampus-dependent memory function. Hippocampus. 2006;16:296–304.

    Article  PubMed  Google Scholar 

  27. Wu MV, Hen R. Functional dissociation of adult-born neurons along the dorsoventral axis of the dentate gyrus. Hippocampus. 2014;24:751–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ambrogini P, Cuppini R, Cuppini C, Ciaroni S, Cecchini T, Ferri P, et al. Spatial learning affects immature granule cell survival in adult rat dentate gyrus. Neurosci Lett. 2000;286:21–4.

    Article  CAS  PubMed  Google Scholar 

  29. Dalla C, Papachristos EB, Whetstone AS, Shors TJ. Female rats learn trace memories better than male rats and consequently retain a greater proportion of new neurons in their hippocampi. Proc Natl Acad Sci USA. 2009;106:2927–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. O’Leary OF, O’Connor RM, Cryan JF. Lithium-induced effects on adult hippocampal neurogenesis are topographically segregated along the dorso-ventral axis of stressed mice. Neuropharmacology. 2012;62:247–55.

    Article  PubMed  CAS  Google Scholar 

  31. Tanti A, Rainer Q, Minier F, Surget A, Belzung C. Differential environmental regulation of neurogenesis along the septo-temporal axis of the hippocampus. Neuropharmacology. 2012;63:374–84.

    Article  CAS  PubMed  Google Scholar 

  32. Hawley DF, Leasure JL. Region-specific response of the hippocampus to chronic unpredictable stress. Hippocampus. 2012;22:1338–49.

    Article  PubMed  Google Scholar 

  33. Perera TD, Dwork AJ, Keegan KA, Thirumangalakudi L, Lipira CM, Joyce N, et al. Necessity of hippocampal neurogenesis for the therapeutic action of antidepressants in adult nonhuman primates. PLoS ONE. 2011;6:e17600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bast T. Toward an integrative perspective on hippocampal function: from the rapid encoding of experience to adaptive behavior. Rev Neurosci. 2007;18:253–81.

    Article  PubMed  Google Scholar 

  35. Bast T, Wilson IA, Witter MP, Morris RG. From rapid place learning to behavioral performance: a key role for the intermediate hippocampus. PLoS Biol. 2009;7:e1000089.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Strange BA, Witter MP, Lein ES, Moser EI. Functional organization of the hippocampal longitudinal axis. Nat Rev Neurosci. 2014;15:655–69.

    Article  CAS  PubMed  Google Scholar 

  37. Thompson CL, Pathak SD, Jeromin A, Ng LL, MacPherson CR, Mortrud MT, et al. Genomic anatomy of the hippocampus. Neuron. 2008;60:1010–21.

    Article  CAS  PubMed  Google Scholar 

  38. Cembrowski MS, Wang L, Sugino K, Shields BC, Spruston N. Hipposeq: a comprehensive RNA-seq database of gene expression in hippocampal principal neurons. Elife. 2016;5:e14997.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ge R, Torres I, Brown JJ, Gregory E, McLellan E, Downar JH, et al. Functional disconnectivity of the hippocampal network and neural correlates of memory impairment in treatment-resistant depression. J Affect Disord. 2019;253:248–56.

    Article  PubMed  Google Scholar 

  40. Zhou QG, Lee D, Ro EJ, Suh H. Regional-specific effect of fluoxetine on rapidly dividing progenitors along the dorsoventral axis of the hippocampus. Sci Rep. 2016;6:35572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175–91.

    Article  PubMed  Google Scholar 

  42. Anacker C, Zunszain PA, Cattaneo A, Carvalho LA, Garabedian MJ, Thuret S, et al. Antidepressants increase human hippocampal neurogenesis by activating the glucocorticoid receptor. Mol Psychiatry. 2011;16:738–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Saaltink DJ, Vreugdenhil E. Stress, glucocorticoid receptors, and adult neurogenesis: a balance between excitation and inhibition? Cell Mol Life Sci. 2014;71:2499–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Falconer EM, Galea LA. Sex differences in cell proliferation, cell death and defensive behavior following acute predator odor stress in adult rats. Brain Res. 2003;975:22–36.

    Article  CAS  PubMed  Google Scholar 

  45. Heine VM, Maslam S, Zareno J, Joels M, Lucassen PJ. Suppressed proliferation and apoptotic changes in the rat dentate gyrus after acute and chronic stress are reversible. Eur J Neurosci. 2004;19:131–44.

    Article  PubMed  Google Scholar 

  46. Anacker C, Cattaneo A, Luoni A, Musaelyan K, Zunszain PA, Milanesi E, et al. Glucocorticoid-related molecular signaling pathways regulating hippocampal neurogenesis. Neuropsychopharmacology. 2013;38:872–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Boku S, Nakagawa S, Masuda T, Nishikawa H, Kato A, Kitaichi Y, et al. Glucocorticoids and lithium reciprocally regulate the proliferation of adult dentate gyrus-derived neural precursor cells through GSK-3beta and beta-catenin/TCF pathway. Neuropsychopharmacology. 2009;34:805–15.

    Article  CAS  PubMed  Google Scholar 

  48. Kim SJ, Lee KJ, Shin YC, Choi SH, Do E, Kim S, et al. Stress-induced decrease of granule cell proliferation in adult rat hippocampus: assessment of granule cell proliferation using high doses of bromodeoxyuridine before and after restraint stress. Mol Cells. 2005;19:74–80.

    CAS  PubMed  Google Scholar 

  49. Hawley DF, Morch K, Christie BR, Leasure JL. Differential response of hippocampal subregions to stress and learning. PLoS ONE. 2012;7:e53126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Morley-Fletcher S, Mairesse J, Soumier A, Banasr M, Fagioli F, Gabriel C, et al. Chronic agomelatine treatment corrects behavioral, cellular, and biochemical abnormalities induced by prenatal stress in rats. Psychopharmacology. 2011;217:301–13.

    Article  CAS  PubMed  Google Scholar 

  51. Zuena AR, Mairesse J, Casolini P, Cinque C, Alema GS, Morley-Fletcher S, et al. Prenatal restraint stress generates two distinct behavioral and neurochemical profiles in male and female rats. PLoS ONE. 2008;3:e2170.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Pinto V, Costa JC, Morgado P, Mota C, Miranda A, Bravo FV, et al. Differential impact of chronic stress along the hippocampal dorsal-ventral axis. Brain Struct Funct. 2015;220:1205–12.

    Article  CAS  PubMed  Google Scholar 

  53. Garcia A, Steiner B, Kronenberg G, Bick-Sander A, Kempermann G. Age-dependent expression of glucocorticoid- and mineralocorticoid receptors on neural precursor cell populations in the adult murine hippocampus. Aging Cell. 2004;3:363–71.

    Article  CAS  PubMed  Google Scholar 

  54. Wong EY, Herbert J. Roles of mineralocorticoid and glucocorticoid receptors in the regulation of progenitor proliferation in the adult hippocampus. Eur J Neurosci. 2005;22:785–92.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Egeland M, Zunszain PA, Pariante CM. Molecular mechanisms in the regulation of adult neurogenesis during stress. Nat Rev Neurosci. 2015;16:189–200.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang TY, Keown CL, Wen X, Li J, Vousden DA, Anacker C, et al. Environmental enrichment increases transcriptional and epigenetic differentiation between mouse dorsal and ventral dentate gyrus. Nat Commun. 2018;9:298.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Piatti VC, Davies-Sala MG, Esposito MS, Mongiat LA, Trinchero MF, Schinder AF. The timing for neuronal maturation in the adult hippocampus is modulated by local network activity. J Neurosci. 2011;31:7715–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Snyder JS, Ferrante SC, Cameron HA. Late maturation of adult-born neurons in the temporal dentate gyrus. PLoS ONE. 2012;7:e48757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li G, Fang L, Fernandez G, Pleasure SJ. The ventral hippocampus is the embryonic origin for adult neural stem cells in the dentate gyrus. Neuron. 2013;78:658–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Anacker C, Cattaneo A, Musaelyan K, Zunszain PA, Horowitz M, Molteni R, et al. Role for the kinase SGK1 in stress, depression, and glucocorticoid effects on hippocampal neurogenesis. Proc Natl Acad Sci USA. 2013;110:8708–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Banerjee SB, Rajendran R, Dias BG, Ladiwala U, Tole S, Vaidya VA. Recruitment of the Sonic hedgehog signalling cascade in electroconvulsive seizure-mediated regulation of adult rat hippocampal neurogenesis. Eur J Neurosci. 2005;22:1570–80.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Han YG, Spassky N, Romaguera-Ros M, Garcia-Verdugo JM, Aguilar A, Schneider-Maunoury S, et al. Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells. Nat Neurosci. 2008;11:277–84.

    Article  CAS  PubMed  Google Scholar 

  63. Cembrowski MS, Bachman JL, Wang L, Sugino K, Shields BC, Spruston N. Spatial gene-expression gradients underlie prominent heterogeneity of CA1 pyramidal neurons. Neuron. 2016;89:351–68.

    Article  CAS  PubMed  Google Scholar 

  64. Bienkowski MS, Bowman I, Song MY, Gou L, Ard T, Cotter K, et al. Integration of gene expression and brain-wide connectivity reveals the multiscale organization of mouse hippocampal networks. Nat Neurosci. 2018;21:1628–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vogel JW, La Joie R, Grothe MJ, Diaz-Papkovich A, Doyle A, Vachon-Presseau E, et al. A molecular gradient along the longitudinal axis of the human hippocampus informs large-scale behavioral systems. Nat Commun. 2020;11:960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

BRL was supported by the National Council for Scientific and Technological Development-CNPq of Brazil (Grant number 249007/2013-4). OFO and YMN are funded Investigators and JFC a principal investigator of the APC Microbiome Institute, which is a research centre funded by Science Foundation Ireland (SFI), through the Irish Government’s National Development Plan (Grant number 12/RC/2273). We thank Dr. Ciaran O’Leime, MSc Tara Foley, MSc Suzanne Crotty and the UCC Biological Services Unit staff for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivia F. O’ Leary.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levone, B.R., Codagnone, M.G., Moloney, G.M. et al. Adult-born neurons from the dorsal, intermediate, and ventral regions of the longitudinal axis of the hippocampus exhibit differential sensitivity to glucocorticoids. Mol Psychiatry 26, 3240–3252 (2021). https://doi.org/10.1038/s41380-020-0848-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-0848-8

This article is cited by

Search

Quick links