Abstract
Bipolar disorder is a highly heritable illness, associated with alterations of brain structure. As such, identification of genes influencing inter-individual differences in brain morphology may help elucidate the underlying pathophysiology of bipolar disorder (BP). To identify quantitative trait loci (QTL) that contribute to phenotypic variance of brain structure, structural neuroimages were acquired from family members (n = 527) of extended pedigrees heavily loaded for bipolar disorder ascertained from genetically isolated populations in Latin America. Genome-wide linkage and association analysis were conducted on the subset of heritable brain traits that showed significant evidence of association with bipolar disorder (n = 24) to map QTL influencing regional measures of brain volume and cortical thickness. Two chromosomal regions showed significant evidence of linkage; a QTL on chromosome 1p influencing corpus callosum volume and a region on chromosome 7p linked to cortical volume. Association analysis within the two QTLs identified three SNPs correlated with the brain measures.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout


References
Vos T, Barber RM, Bell B, Bertozzi-Villa A, Biryukov S, Bolliger I, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386:743–800. http://www.ncbi.nlm.nih.gov/pubmed/26063472.
Ferrari AJ, Stockings E, Khoo J-P, Erskine HE, Degenhardt L, Vos T, et al. The prevalence and burden of bipolar disorder: findings from the Global Burden of Disease Study 2013. Bipolar Disord. 2016;18:440–50. http://www.ncbi.nlm.nih.gov/pubmed/27566286.
Hibar DP, Westlye LT, Doan NT, Jahanshad N, Cheung JW, Ching CRK, et al. Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group. Mol Psychiatry. 2018;23:932–42. http://www.ncbi.nlm.nih.gov/pubmed/28461699.
Hibar DP, Westlye LT, Doan NT, Jahanshad N, Cheung JW, Ching CRK, et al. Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group. Mol Psychiatry. 2018;23:932–42. http://www.ncbi.nlm.nih.gov/pubmed/28461699.
Hanford LC, Nazarov A, Hall GB, Sassi RB. Cortical thickness in bipolar disorder: a systematic review. Bipolar Disord. 2016;18:4–18. http://www.ncbi.nlm.nih.gov/pubmed/26851067.
Hibar DP, Westlye LT, van Erp TGM, Rasmussen J, Leonardo CD, Faskowitz J, et al. Subcortical volumetric abnormalities in bipolar disorder. Mol Psychiatry. 2016;21:1710–6. http://www.ncbi.nlm.nih.gov/pubmed/26857596.
Vuoksimaa E, Panizzon MS, Hagler DJ, Hatton SN, Fennema-Notestine C, Rinker D, et al. Heritability of white matter microstructure in late middle age: A twin study of tract-based fractional anisotropy and absolute diffusivity indices. Hum Brain Mapp. 2017;38:2026–36. http://doi.wiley.com/10.1002/hbm.23502.
Peper JS, Brouwer RM, Boomsma DI, Kahn RS, Hulshoff Pol HE. Genetic influences on human brain structure: A review of brain imaging studies in twins. Hum Brain Mapp. 2007;28:464–73. http://www.ncbi.nlm.nih.gov/pubmed/17415783.
Flint J, Timpson N, Munafò M. Assessing the utility of intermediate phenotypes for genetic mapping of psychiatric disease. Trends Neurosci. 2014;37:733–41. http://www.ncbi.nlm.nih.gov/pubmed/25216981.
Glahn DC, Knowles EEM, McKay DR, Sprooten E, Raventós H, Blangero J, et al. Arguments for the sake of endophenotypes: Examining common misconceptions about the use of endophenotypes in psychiatric genetics. Am J Med Genet Part B Neuropsychiatr Genet. 2014;165:122–30. http://www.ncbi.nlm.nih.gov/pubmed/24464604.
Grasby KL, Jahanshad N, Painter JN, Colodro-Conde L, Bralten J, Hibar DP, et al. The genetic architecture of the human cerebral cortex. Science. 2020;367:eaay6690. https://www.biorxiv.org/content/early/2018/09/09/399402.
Hofer E, Roshchupkin GV, Adams H, Knol M, Lin H, Li S, et al. Genetic determinants of cortical structure (thickness, surface area and volumes) among disease free adults in the CHARGE Consortium. bioRxiv. 2018. https://www.biorxiv.org/content/early/2018/09/09/409649.
Hibar DP, Stein JL, Renteria ME, Arias-Vasquez A, Desrivières S, Jahanshad N, et al. Common genetic variants influence human subcortical brain structures. Nature. 2015;520:224–9. http://www.ncbi.nlm.nih.gov/pubmed/25607358.
Satizabal CL, Adams HHH, Hibar DP, White CC, Knol MJ, Stein JL, et al. Genetic Architecture of Subcortical Brain Structures in 38,851 Individuals. Nat Genet. 2019;51:1624–36. http://www.ncbi.nlm.nih.gov/pubmed/31636452.
Stein JL, Medland SE, Vasquez AA, Hibar DP, Senstad RE, Winkler AM, et al. Identification of common variants associated with human hippocampal and intracranial volumes. Nat Genet. 2012;44:552–61. http://www.ncbi.nlm.nih.gov/pubmed/22504417.
Bis JC, DeCarli C, Smith AV, van der Lijn F, Crivello F, Fornage M, et al. Common variants at 12q14 and 12q24 are associated with hippocampal volume. Nat Genet. 2012;44:545–51. http://www.ncbi.nlm.nih.gov/pubmed/22504421.
Ott J, Kamatani Y, Lathrop M. Family-based designs for genome-wide association studies. Nat Rev Genet. 2011;12:465–74. http://www.ncbi.nlm.nih.gov/pubmed/21629274.
Benyamin B, Visscher PM, McRae AF. Family-based genome-wide association studies. Pharmacogenomics. 2009;10:181–90. http://www.ncbi.nlm.nih.gov/pubmed/19207019.
Knowles EEM, McKay DR, Kent JW, Sprooten E, Carless MA, Curran JE, et al. Pleiotropic locus for emotion recognition and amygdala volume identified using univariate and bivariate linkage. Am J Psychiatry. 2015;172:190–9. http://www.ncbi.nlm.nih.gov/pubmed/25322361.
Dager AD, McKay DR, Kent JW, Curran JE, Knowles E, Sprooten E, et al. Shared genetic factors influence amygdala volumes and risk for alcoholism. Neuropsychopharmacol. 2015;40:412–20. http://www.ncbi.nlm.nih.gov/pubmed/25079289.
Mathias SR, Knowles EEM, Kent JW, McKay DR, Curran JE, de Almeida MAA, et al. Recurrent major depression and right hippocampal volume: a bivariate linkage and association study. Hum Brain Mapp. 2016;37:191–202. http://www.ncbi.nlm.nih.gov/pubmed/26485182.
Seshadri S, DeStefano AL, Au R, Massaro JM, Beiser AS, Kelly-Hayes M, et al. Genetic correlates of brain aging on MRI and cognitive test measures: a genome-wide association and linkage analysis in the Framingham Study. BMC Med Genet. 2007;8:S15. http://www.ncbi.nlm.nih.gov/pubmed/17903297.
Fears SC, Service SK, Kremeyer B, Araya C, Araya X, Bejarano J, et al. Multisystem component phenotypes of bipolar disorder for genetic investigations of extended pedigrees. JAMA Psychiatry. 2014;71:375–87. http://www.ncbi.nlm.nih.gov/pubmed/24522887.
Bedoya G, Montoya P, García J, Soto I, Bourgeois S, Carvajal L, et al. Admixture dynamics in Hispanics: a shift in the nuclear genetic ancestry of a South American population isolate. Proc Natl Acad Sci USA. 2006;103:7234–9. http://www.pnas.org/cgi/doi/10.1073/pnas.0508716103.
Carvajal-Carmona LG, Ophoff R, Service S, Hartiala J, Molina J, Leon P, et al. Genetic demography of Antioquia (Colombia) and the Central Valley of Costa Rica. Hum Genet. 2003;112:534–41. http://www.ncbi.nlm.nih.gov/pubmed/12601469.
Fears SC, Schür R, Sjouwerman R, Service SK, Araya C, Araya X, et al. Brain structure-function associations in multi-generational families genetically enriched for bipolar disorder. Brain. 2015;138:2087–102. http://www.ncbi.nlm.nih.gov/pubmed/25943422.
Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry. 1998;59:22–33. http://www.ncbi.nlm.nih.gov/pubmed/9881538.
Palacio CA, García J, Arbeláez MP, Sánchez R, Aguirre B, Garcés IC, et al. Validation of the diagnostic interview for genetic studies (DIGS) in Colombia. Biomedicine. 2004;24:56–62. http://www.ncbi.nlm.nih.gov/pubmed/15239602.
Nurnberger JI, Blehar MC, Kaufmann CA, York-Cooler C, Simpson SG, Harkavy-Friedman J, et al. Diagnostic interview for genetic studies. Rationale, unique features, and training. NIMH Genetics Initiative. Arch Gen Psychiatry. 1994;51:849–59. http://www.ncbi.nlm.nih.gov/pubmed/7944874.
Almasy L, Blangero J. Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet. 1998;62:1198–211.
Pagani L, St Clair PA, Teshiba TM, Service SK, Fears SC, Araya C, et al. Genetic contributions to circadian activity rhythm and sleep pattern phenotypes in pedigrees segregating for severe bipolar disorder. Proc Natl Acad Sci USA. 2016;113:E754–61. http://www.ncbi.nlm.nih.gov/pubmed/26712028.
Heath SC, Snow GL, Thompson EA, Tseng C, Wijsman EM. MCMC segregation and linkage analysis. Genet Epidemiol. 1997;14:1011–6. http://www.ncbi.nlm.nih.gov/pubmed/9433616.
Peterson CB, Bogomolov M, Benjamini Y, Sabatti C. Many phenotypes without many false discoveries: error controlling strategies for multitrait association studies. Genet Epidemiol. 2016;40:45–56. http://www.ncbi.nlm.nih.gov/pubmed/26626037.
Locke AE, Steinberg KM, Chiang CWK, Service SK, Havulinna AS, Stell L, et al. Exome sequencing of Finnish isolates enhances rare-variant association power. Nature. 2019. https://doi.org/10.1038/s41586-019-1457-z.
Simes RJ. An improved Bonferroni procedure for multiple tests of significance. Biometrika. 1986;73:751–4. http://biomet.oxfordjournals.org/cgi/doi/10.1093/biomet/73.3.751.
Benjamini Y, Hochberg Y. Multiple hypotheses testing with weights. Scand J Stat. 1997;24:407–18. http://doi.wiley.com/10.1111/1467-9469.00072.
Benjamini Y, Bogomolov M. Selective inference on multiple families of hypotheses. J R Stat Soc Ser B. 2014;76:297–318. http://doi.wiley.com/10.1111/rssb.12028.
Kang HM, Sul JH, Service SK, Zaitlen NA, Kong S-Y, Freimer NB, et al. Variance component model to account for sample structure in genome-wide association studies. Nat Genet. 2010;42:348–54. http://www.ncbi.nlm.nih.gov/pubmed/20208533.
Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–5. https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bth457.
Ramasamy A, Trabzuni D, Guelfi S, Varghese V, Smith C, Walker R, et al. Genetic variability in the regulation of gene expression in ten regions of the human brain. Nat Neurosci. 2014;17:1418–28.
Flint J, Kendler KS. The genetics of major depression. Neuron. 2014;81:484–503. http://www.ncbi.nlm.nih.gov/pubmed/24507187.
Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat. 2001;29:1165–88. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.124.8492.
Sabatti C, Service S, Freimer N. False discovery rate in linkage and association genome screens for complex disorders. Genetics. 2003;164:829–33. http://www.ncbi.nlm.nih.gov/pubmed/12807801.
Gurung R, Prata DP. What is the impact of genome-wide supported risk variants for schizophrenia and bipolar disorder on brain structure and function? A systematic review. Psychol Med. 2015;45:2461–80. http://www.ncbi.nlm.nih.gov/pubmed/25858580.
Rose EJ, Donohoe G. Brain vs behavior: an effect size comparison of neuroimaging and cognitive studies of genetic risk for schizophrenia. Schizophr Bull. 2013;39:518–26. http://www.ncbi.nlm.nih.gov/pubmed/22499782.
Tort O, Tanco S, Rocha C, Bièche I, Seixas C, Bosc C, et al. The cytosolic carboxypeptidases CCP2 and CCP3 catalyze posttranslational removal of acidic amino acids. Mol Biol Cell. 2014;25:3017–27. http://www.ncbi.nlm.nih.gov/pubmed/25103237.
Greenwood TA, Akiskal HS, Akiskal KK, Bipolar Genome Study, Kelsoe JR. Genome-wide association study of temperament in bipolar disorder reveals significant associations with three novel Loci. Biol Psychiatry. 2012;72:303–10. http://linkinghub.elsevier.com/retrieve/pii/S0006322312000583.
Lee JJ, Wedow R, Okbay A, Kong E, Maghzian O, Zacher M, et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat Genet. 2018;50:1112–21. http://www.nature.com/articles/s41588-018-0147-3.
Okbay A, Beauchamp JP, Fontana MA, Lee JJ, Pers TH, Rietveld CA, et al. Genome-wide association study identifies 74 loci associated with educational attainment. Nature. 2016;533:539–42. http://www.nature.com/articles/nature17671.
Lam M, Trampush JW, Yu J, Knowles E, Davies G, Liewald DC, et al. Large-scale cognitive GWAS meta-analysis reveals tissue-specific neural expression and potential nootropic drug targets. Cell Rep. 2017;21:2597–613. http://linkinghub.elsevier.com/retrieve/pii/S2211124717316480.
Hill WD, Marioni RE, Maghzian O, Ritchie SJ, Hagenaars SP, McIntosh AM, et al. A combined analysis of genetically correlated traits identifies 187 loci and a role for neurogenesis and myelination in intelligence. Mol Psychiatry. 2018;24:169–81. http://www.nature.com/articles/s41380-017-0001-5.
Autism Spectrum Disorders Working Group of The Psychiatric Genomics Consortium. Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia. Mol Autism. 2017;8:21. http://molecularautism.biomedcentral.com/articles/10.1186/s13229-017-0137-9.
Li Z, Chen J, Yu H, He L, Xu Y, Zhang D, et al. Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia. Nat Genet [Internet]. 2017;49:1576–83. http://www.nature.com/doifinder/10.1038/ng.3973.
Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7. http://www.nature.com/articles/nature13595.
Elliott LT, Sharp K, Alfaro-almagro F, Shi S, Miller KL, Douaud G, et al. Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature. 2018;562:210–6.
Paulus MP, Thompson WK. The challenges and opportunities of small effects: the new normal in academic psychiatry. JAMA Psychiatry. 2019;76:353–4.
Acknowledgements
We wish to thank our late colleagues Lori Altshuler MD and George Bartzokis MD for their valuable input and guidance on this work.
Funding
This research was supported by National Institute of Health Grants R01MH075007, R01MH095454, P30NS062691; (NBF), K23MH074644-01; (CEB) R01HG006695; (CS), and K08MH086786 (SCF), the Joanne and George Miller Family Endowed Term Chair (CEB), and Colciencias and Codi-University of Antioquia (CL-J).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
About this article
Cite this article
Fears, S.C., Service, S.K., Kremeyer, B. et al. Genome-wide mapping of brain phenotypes in extended pedigrees with strong genetic loading for bipolar disorder. Mol Psychiatry 26, 5229–5238 (2021). https://doi.org/10.1038/s41380-020-0805-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41380-020-0805-6
This article is cited by
-
Genetic substrates of bipolar disorder risk in Latino families
Molecular Psychiatry (2023)