Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Insulin receptor substrate in brain-enriched exosomes in subjects with major depression: on the path of creation of biosignatures of central insulin resistance

Abstract

Insulin signaling is critical for neuroplasticity, cerebral metabolism as well as for systemic energy metabolism. In rodent studies, impaired brain insulin signaling with resultant insulin resistance (IR) modulates synaptic plasticity and the corresponding behavioral functions. Despite discoveries of central actions of insulin, in vivo molecular mechanisms of brain IR until recently have proven difficult to study in the human brain. In the current study, we leveraged recent technological advances in molecular biology and herein report an increased number of exosomes enriched for L1CAM, a marker predominantly expressed in the brain, in subjects with major depressive disorder (MDD) as compared with age- and sex-matched healthy controls (HC). We also report increased concentration of the insulin receptor substrate-1 (IRS-1) in L1CAM+ exosomes in subjects with MDD as compared with age- and sex-matched HC. We found a relationship between expression of IRS-1 in L1CAM+ exosomes and systemic IR as assessed by homeostatic model assessment of IR in HC, but not in subjects with MDD. The increased IRS-1 levels in L1CAM+ exosomes were greater in subjects with MDD and were associated with suicidality and anhedonia. Finally, our data suggested sex differences in serine-312 phosphorylation of IRS-1 in L1CAM+ exosomes in subjects with MDD. These findings provide a starting point for creating mechanistic framework of brain IR in further development of personalized medicine strategies to effectively treat MDD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Increased number of L1CAM+ exosomes in subjects with MDD as compared with controls.
Fig. 2: Increased in vivo IRS-1 protein expression in L1CAM+ exosomes in subjects with MDD as compared with age- and sex-matched controls.
Fig. 3: Sex-specific differences in phosphorylation of IRS-1 in L1CAM+ exosomes of subjects with MDD.

Similar content being viewed by others

References

  1. Arnold SE, Arvanitakis Z, Macauley-Rambach SL, Koenig AM, Wang HY, Ahima RS, et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat Rev Neurol. 2018;14:168–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Biessels GJ, Reagan LP. Hippocampal insulin resistance and cognitive dysfunction. Nat Rev Neurosci. 2015;16:660–71.

    Article  CAS  PubMed  Google Scholar 

  3. Grillo CA, Piroli GG, Lawrence RC, Wrighten SA, Green AJ, Wilson SP, et al. Hippocampal insulin resistance impairs spatial learning and synaptic plasticity. Diabetes. 2015;64:3927–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ferrario CR, Reagan LP. Insulin-mediated synaptic plasticity in the CNS: Anatomical, functional and temporal contexts. Neuropharmacology. 2018;136:182–91.

    Article  CAS  PubMed  Google Scholar 

  5. Nasca C, Rasgon N, McEwen B. An emerging epigenetic framework of systemic and central mechanisms underlying stress-related disorders. Neuropsychopharmacology. 2019;44:235–6.

    Article  PubMed  Google Scholar 

  6. Watson K, Nasca C, Aasly L, McEwen B, Rasgon N. Insulin resistance, an unmasked culprit in depressive disorders: promises for interventions. Neuropharmacology. 2018;136(Pt B):327–34.

    Article  CAS  PubMed  Google Scholar 

  7. Reaven GM. Pathophysiology of insulin resistance in human disease. Physiol Rev. 1995;75:473–86.

    Article  CAS  PubMed  Google Scholar 

  8. Kenna H, Hoeft F, Kelley R, Wroolie T, DeMuth B, Reiss A, et al. Fasting plasma insulin and the default mode network in women at risk for Alzheimer’s disease. Neurobiol Aging. 2013;34:641–9.

    Article  CAS  PubMed  Google Scholar 

  9. Rasgon NL, Kenna HA, Wroolie TE, Kelley R, Silverman D, Brooks J, et al. Insulin resistance and hippocampal volume in women at risk for Alzheimer’s disease. Neurobiol Aging. 2011;32:1942–8.

    Article  CAS  PubMed  Google Scholar 

  10. Wroolie TE, Kenna HA, Singh MK, Rasgon NL. Association between insulin resistance and cognition in patients with depressive disorders: exploratory analyses into age-specific effects. J Psychiatr Res. 2015;60:65–72.

    Article  PubMed  Google Scholar 

  11. Nasca C, Watson-Lin K, Bigio B, Robakis TK, Myoraku A, Wroolie TE, et al. Childhood trauma and insulin resistance in patients suffering from depressive disorders. Exp Neurol. 2019;315:15–20.

    Article  CAS  PubMed  Google Scholar 

  12. Lin KW, Wroolie TE, Robakis T, Rasgon NL. Adjuvant pioglitazone for unremitted depression: clinical correlates of treatment response. Psychiatry Res. 2015;230:846–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rasgon NL, Kenna HA, Williams KE, Powers B, Wroolie T, Schatzberg AF. Rosiglitazone add-on in treatment of depressed patients with insulin resistance: a pilot study. Scientific World J. 2010;10:321–8.

    Article  CAS  Google Scholar 

  14. McIntyre RS, Powell AM, Kaidanovich-Beilin O, Soczynska JK, Alsuwaidan M, Woldeyohannes HO, et al. The neuroprotective effects of GLP-1: possible treatments for cognitive deficits in individuals with mood disorders. Behav Brain Res. 2013;237:164–71.

    Article  CAS  PubMed  Google Scholar 

  15. Bonato JM, Bassani TB, Milani H, Vital M, de Oliveira RMW. Pioglitazone reduces mortality, prevents depressive-like behavior, and impacts hippocampal neurogenesis in the 6-OHDA model of Parkinson’s disease in rats. Exp Neurol. 2018;300:188–200.

    Article  CAS  PubMed  Google Scholar 

  16. Rasgon NL, McEwen BS. Insulin resistance-a missing link no more. Mol Psychiatry. 2016;21:1648–52.

    Article  CAS  PubMed  Google Scholar 

  17. Havrankova J, Roth J, Brownstein M. Insulin receptors are widely distributed in the central nervous system of the rat. Nature. 1978;272:827–9.

    Article  CAS  PubMed  Google Scholar 

  18. Duarte AI, Moreira PI, Oliveira CR. Insulin in central nervous system: more than just a peripheral hormone. J Aging Res. 2012;2012:384017.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Samuel VT, Shulman GI. Mechanisms for insulin resistance: common threads and missing links. Cell. 2012;148:852–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. De Felice FG, Lourenco MV, Ferreira ST. How does brain insulin resistance develop in Alzheimer’s disease? Alzheimer’s Dement: J Alzheimer’s Assoc. 2014;10(Suppl 1):S26–32.

    Google Scholar 

  21. Sun XJ, Rothenberg P, Kahn CR, Backer JM, Araki E, Wilden PA, et al. Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature. 1991;352:73–77.

    Article  CAS  PubMed  Google Scholar 

  22. Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem. 2002;277:1531–7.

    Article  CAS  PubMed  Google Scholar 

  23. Moloney AM, Griffin RJ, Timmons S, O’Connor R, Ravid R, O’Neill C. Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol Aging. 2010;31:224–43.

    Article  CAS  PubMed  Google Scholar 

  24. Bingham EM, Hopkins D, Smith D, Pernet A, Hallett W, Reed L, et al. The role of insulin in human brain glucose metabolism: an 18fluoro-deoxyglucose positron emission tomography study. Diabetes. 2002;51:3384–90.

    Article  CAS  PubMed  Google Scholar 

  25. Wortzel I, Dror S, Kenific CM, Lyden D. Exosome-mediated metastasis: communication from a distance. Dev cell. 2019;49:347–60.

    Article  CAS  PubMed  Google Scholar 

  26. Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Saeedi S, Israel S, Nagy C, Turecki G. The emerging role of exosomes in mental disorders. Transl Psychiatry. 2019;9:122.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fiandaca MS, Kapogiannis D, Mapstone M, Boxer A, Eitan E, Schwartz JB, et al. Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case-control study. Alzheimer’s Dement: J Alzheimer’s Assoc. 2015;11:600–7.e601.

    Article  Google Scholar 

  29. Kapogiannis D, Mustapic M, Shardell MD, Berkowitz ST, Diehl TC, Spangler RD, et al. Association of extracellular vesicle biomarkers with Alzheimer disease in the baltimore longitudinal study of aging. JAMA Neurol. 2019;76:1340–51.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mustapic M, Eitan E, Werner JK Jr., Berkowitz ST, Lazaropoulos MP, Tran J, et al. Plasma extracellular vesicles enriched for neuronal origin: a potential window into brain pathologic processes. Front Neurosci. 2017;11:278.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nasca C, Bigio B, Lee FS, Young SP, Kautz MM, Albright A, et al. Acetyl-l-carnitine deficiency in patients with major depressive disorder. Proc Natl Acad Sci USA. 2018;115:8627–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kiraly DD, Horn SR, Van Dam NT, Costi S, Schwartz J, Kim-Schulze S, et al. Altered peripheral immune profiles in treatment-resistant depression: response to ketamine and prediction of treatment outcome. Transl Psychiatry. 2017;7:e1065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. World Health Organization. WHO mean body mass index (BMI). World Health Organization; 2019. https://www.who.int/gho/ncd/risk_factors/bmi_text/en/.

  34. The Blood Code. HOMA-IR: what it is & why you should know yours. 2019. https://www.thebloodcode.com/homa-ir-know/.

  35. Schmid RS, Maness PF. L1 and NCAM adhesion molecules as signaling coreceptors in neuronal migration and process outgrowth. Curr Opin Neurobiol. 2008;18:245–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al. The genotype-tissue expression (GTEx) project. Nat Genet. 2013;45:580–5.

    Article  CAS  Google Scholar 

  37. Takahashi H, Lassmann T, Murata M, Carninci P. 5′ end-centered expression profiling using cap-analysis gene expression and next-generation sequencing. Nat Protoc. 2012;7:542–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347:1260419.

    Article  PubMed  CAS  Google Scholar 

  39. Faure J, Lachenal G, Court M, Hirrlinger J, Chatellard-Causse C, Blot B, et al. Exosomes are released by cultured cortical neurones. Mol Cell Neurosci. 2006;31:642–8.

    Article  CAS  PubMed  Google Scholar 

  40. Lachenal G, Pernet-Gallay K, Chivet M, Hemming FJ, Belly A, Bodon G, et al. Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol Cell Neurosci. 2011;46:409–18.

    Article  CAS  PubMed  Google Scholar 

  41. Shi M, Liu C, Cook TJ, Bullock KM, Zhao Y, Ginghina C, et al. Plasma exosomal alpha-synuclein is likely CNS-derived and increased in Parkinson’s disease. Acta Neuropathol. 2014;128:639–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 2018;560:382–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Budnik V, Ruiz-Canada C, Wendler F. Extracellular vesicles round off communication in the nervous system. Nat Rev Neurosci. 2016;17:160–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nasca C, Bigio B, Zelli D, de Angelis P, Lau T, Okamoto M, et al. Role of the astroglial glutamate exchanger xCT in ventral hippocampus in resilience to stress. Neuron. 2017;96:402–13.e405.

    Article  CAS  PubMed  Google Scholar 

  45. Lau T, Bigio B, Zelli D, McEwen BS, Nasca C. Stress-induced structural plasticity of medial amygdala stellate neurons and rapid prevention by a candidate antidepressant. Mol Psychiatry. 2017;22:227–34.

    Article  CAS  PubMed  Google Scholar 

  46. Nasca C, Xenos D, Barone Y, Caruso A, Scaccianoce S, Matrisciano F, et al. L-acetylcarnitine causes rapid antidepressant effects through the epigenetic induction of mGlu2 receptors. Proc Natl Acad Sci USA. 2013;110:4804–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cuccurazzu B, Bortolotto V, Valente MM, Ubezio F, Koverech A, Canonico PL, et al. Upregulation of mGlu2 receptors via NF-kappaB p65 acetylation is involved in the Proneurogenic and antidepressant effects of acetyl-L-carnitine. Neuropsychopharmacology. 2013;38:2220–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang W, Lu Y, Xue Z, Li C, Wang C, Zhao X, et al. Rapid-acting antidepressant-like effects of acetyl-l-carnitine mediated by PI3K/AKT/BDNF/VGF signaling pathway in mice. Neuroscience. 2015;285:281–91.

    Article  CAS  PubMed  Google Scholar 

  49. Bigio B, Mathe AA, Sousa VC, Zelli D, Svenningsson P, McEwen BS, et al. Epigenetics and energetics in ventral hippocampus mediate rapid antidepressant action: Implications for treatment resistance. Proc Natl Acad Sci USA. 2016;113:7906–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Grillo CA, Piroli GG, Kaigler KF, Wilson SP, Wilson MA, Reagan LP. Downregulation of hypothalamic insulin receptor expression elicits depressive-like behaviors in rats. Behav Brain Res. 2011;222:230–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Grillo CA, Tamashiro KL, Piroli GG, Melhorn S, Gass JT, Newsom RJ, et al. Lentivirus-mediated downregulation of hypothalamic insulin receptor expression. Physiol Behav. 2007;92:691–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Draznin B. Molecular mechanisms of insulin resistance: serine phosphorylation of insulin receptor substrate-1 and increased expression of p85α. Diabetes. 2006;55:2392.

    Article  CAS  PubMed  Google Scholar 

  53. Kessler RC, Bromet EJ. The epidemiology of depression across cultures. Annu Rev Public Health. 2013;34:119–38.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kessler RC. Epidemiology of women and depression. J Affect Disord. 2003;74:5–13.

    Article  PubMed  Google Scholar 

  55. Carvalho CR, Carvalheira JB, Lima MH, Zimmerman SF, Caperuto LC, Amanso A, et al. Novel signal transduction pathway for luteinizing hormone and its interaction with insulin: activation of Janus kinase/signal transducer and activator of transcription and phosphoinositol 3-kinase/Akt pathways. Endocrinology. 2003;144:638–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Robertson Therapeutic Development Foundation to CN, 1R21 MH093948-01A1 (SPO #50260) to NR, a grant from the Hearst Foundation to NR and CN, and, by a grant from the Hope for Depression Foundation (HDRF) to BMC and CN. All data and code will be made available upon request to the corresponding author.

Author information

Authors and Affiliations

Authors

Contributions

CN, NR, and BB conceived statistical analyses, figures, and tables as well as interpreted the data. CN wrote the manuscript. NR contributed to the writing. CN, BB, BMC, and NR conceived and designed the study. KW contributed to the statistical analyses. CN, PdA, and JD designed and performed the molecular experiments. NR, JK, JM, and FL supervised the recruitment in the respective study sites. All authors discussed and provide inputs to the research.

Corresponding authors

Correspondence to Carla Nasca or Natalie Rasgon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasca, C., Dobbin, J., Bigio, B. et al. Insulin receptor substrate in brain-enriched exosomes in subjects with major depression: on the path of creation of biosignatures of central insulin resistance. Mol Psychiatry 26, 5140–5149 (2021). https://doi.org/10.1038/s41380-020-0804-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-0804-7

This article is cited by

Search

Quick links