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The current speed of progress in depression research is
simply remarkable. We have therefore been able to create a
second special issue of Molecular Psychiatry, 2020,
focused on depression, with highlights on mechanisms,
genetics, clinical features, co-morbidity, imaging, and
treatment. We are also very proud to present in this issue a
seminal paper by Chottekalapanda et al., which represents
some of the last work conducted by the late Nobel Laureate
Paul Greengard [1]. This brings to four the number of
papers co-authored by Paul Greengard and published in our
two 2020 depression special issues [1–4].
The research content of this special depression issue starts
with Chottekalapanda et al.’s outstanding contribution
aimed at determining whether neuroadaptive processes
induced by antidepressants are modulated by the regulation
of specific gene expression programs [1]. That team iden-
tified a transcriptional program regulated by activator
protein-1 (AP-1) complex, formed by c-Fos and c-Jun that
is selectively activated prior to the onset of the chronic SSRI
response. The AP-1 transcriptional program modulated the
expression of key neuronal remodeling genes, including
S100a10 (p11), linking neuronal plasticity to the anti-
depressant response. Moreover, they found that AP-1
function is required for the antidepressant effect in vivo.
Furthermore, they demonstrated how neurochemical path-
ways of BDNF and FGF2, through the MAPK, PI3K,
and JNK cascades, regulate AP-1 function to mediate the
beneficial effects of the antidepressant response. This newly
identified molecular network provides “a new avenue that

could be used to accelerate or potentiate antidepressant
responses by triggering neuroplasticity.”

A superb paper by Schouten et al. showed that oscilla-
tions of glucocorticoid hormones (GC) preserve a popula-
tion of adult hippocampal neural stem cells in the aging
brain [5]. Moreover, major depressive disorder (MDD) is
characterized by alterations in GC-related rhythms [6, 7].
GC regulate neural stem/precursor cells (NSPC) prolifera-
tion [8, 9]. The adrenals secrete GC in ultradian pulses that
result in a circadian rhythm. GC oscillations control cell
cycle progression and induce specific genome-wide DNA
methylation profiles. Schouten et al. studied primary hip-
pocampal NSPC cultures and showed that GC oscillations
induced lasting changes in the methylation state of a group
of gene promoters associated with cell cycle regulation
and the canonical Wnt signaling pathway. Furthermore, in
a mouse model of accelerated aging, they showed that
disruption of GC oscillations induced lasting changes in
dendritic complexity, spine numbers and morphology of
newborn granule neurons. Their results indicate that
GC oscillations preserve a population of GR-expressing
NSPC during aging, preventing their activation possibly by
epigenetic programming through methylation of specific
gene promoters. These important observations suggest a
novel mechanism mediated by GC that controls NSPC
proliferation and preserves a dormant NSPC pool, possibly
contributing to neuroplasticity reserve in the aging brain.

MDD has a critical interface with addiction and suicide,
which is of immense clinical and research importance [10].
Peciña et al. have reviewed a growing body of research
indicating that the endogenous opioid system is directly
involved in the regulation of mood and is dysregulated in
MDD [11]. Halikere et al. provide evidence that addiction
associated N40D mu-opioid receptor variant modulates
synaptic function in human neurons [12].

Two papers by Amare et al. and Coleman et al. examine
different genetic substrates for MDD, identifying novel
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depression-related loci as well as studying the interface with
trauma [13, 14].

The dissection of MDD clinical phenotypes, including
their interface with other illnesses is a topic of several
articles in this special issue. Belvederi Murri et al. examined
the symptom network structure of depressive symptoms in
late-life in a large European population in the 19 country
Survey of Health, Ageing, and Retirement in Europe
(SHARE) (mean age 74 years, 59% females, n= 8557)
[15]. They showed that the highest values of centrality were
in the symptoms of death wishes, depressed mood, loss of
interest, and pessimism. Another article focused on a spe-
cific feature of MDD, namely changes in appetite. Simmons
et al. aimed at explaining why some individuals lose their
appetite when they become depressed, while others eat
more, and brought together data on neuroimaging, salivary
cortisol, and blood markers of inflammation and metabo-
lism [16]. Depressed participants experiencing decreased
appetite had higher cortisol levels than other subjects, and
their cortisol values correlated inversely with the ventral
striatal response to food cues. In contrast, depressed parti-
cipants experiencing increased appetite exhibited marked
immunometabolic dysregulation, with higher insulin, insu-
lin resistance, leptin, c-reactive protein (CRP), interleukin 1
receptor antagonist (IL-1RA), and IL-6, and lower ghrelin
than subjects in other groups, and the magnitude of their
insulin resistance correlated positively with the insula
response to food cues. Their findings support the existence
of pathophysiologically distinct depression subtypes for
which the direction of appetite change may be an easily
measured behavioral marker.

Mulugeta et al. studied the association between major
depressive disorder and multiple disease outcomes in the UK
Biobank (n= 337,536) [17]. They performed hypothesis-free
phenome-wide association analyses between MDD genetic
risk score (GRS) and 925 disease outcomes. MDD was
associated with several inflammatory and hemorrhagic gas-
trointestinal diseases, and intestinal E. coli infections. MDD
was also associated with disorders of lipid metabolism and
ischemic heart disease. Their results indicated a causal link
between MDD and a broad range of diseases, suggesting a
notable burden of co-morbidity. The authors concluded that
“early detection and management of MDD is important, and
treatment strategies should be selected to also minimize
the risk of related co-morbidities.” Further information on the
shared mechanisms between coronary heart disease and
depression in the UK Biobank (n= 367,703) was explored by
Khandaker et al. [18]. They showed that family history of
heart disease was associated with a 20% increase in depres-
sion risk; however, a genetic risk score that is strongly
associated with CHD risk was not associated with depression.
Their data indicate that comorbidity between depression and
CHD arises largely from shared environmental factors.

In a systematic review and meta-analysis of cohort stu-
dies, Wang et al. examined the interface of depression and
anxiety in relation to cancer incidence and mortality [19].
Their analyses suggest that depression and anxiety may
have an etiologic role and prognostic impact on cancer,
although there is potential reverse causality.

Several papers in this issue examine imaging in MDD,
either to unravel the underlying disease processes or to
identify imaging biomarkers of treatment response. Let us
first look at the studies focused on elucidating brain cir-
cuitry alterations in MDD. Arterial spin labeling (ASL) was
used by Cooper et al. to measure cerebral blood flow (CBF;
perfusion) in order to discover and replicate alterations in
CBF in MDD [20]. Their analyses revealed reduced relative
CBF (rCBF) in the right parahippocampus, thalamus, fusi-
form, and middle temporal gyri, as well as the left and right
insula, for those with MDD. They also revealed increased
rCBF in MDD in both the left and the right inferior parietal
lobule, including the supramarginal and angular gyri.
According to the authors, “these results (1) provide reliable
evidence for ASL in detecting differences in perfusion for
multiple brain regions thought to be important in MDD, and
(2) highlight the potential role of using perfusion as a bio-
signature of MDD.” Further data on imaging in MDD was
provided by a coordinated analysis across 20 international
cohorts in the ENIGMA MDD working group. In that
paper, van Velzen et al. showed that in a coordinated and
harmonized multisite diffusion tensor imaging study there
were subtle, but widespread differences in white matter
microstructure in adult MDD, which may suggest structural
disconnectivity [21].

Four articles in this special issue examine imaging
biomarkers of treatment response. Greenberg et al. studied
reward-related ventral striatal activity and differential
response to sertraline versus placebo in depressed using
functional magnetic resonance imaging while performing a
reward task [22]. They found that ventral striatum (VS)
dynamic response to reward expectancy (expected outcome
value) and prediction error (difference between expected and
actual outcome), likely reflecting serotonergic and dopami-
nergic deficits, was associated with better response to sertra-
line than placebo. Their conclusion was that treatment
measures of reward-related VS activity may serve as objective
neural markers to advance efforts to personalize interventions
by guiding individual-level choice of antidepressant treat-
ment. Utilizing whole-brain functional connectivity analysis
to identify neural signatures of remission following anti-
depressant treatment, and to identify connectomic predictors
of treatment response, Korgaonkar et al. showed that intrinsic
connectomes are a predictive biomarker of remission in major
depressive disorder [23]. Based on their results that team
proposed that increased functional connectivity within and
between large-scale intrinsic brain networks may characterize
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acute recovery with antidepressants in depression. Repple
et al. created connectome matrices via a combination of
T1-weighted magnetic resonance imaging (MRI) and tracto-
graphy methods based on diffusion-weighted imaging sever-
ity of current depression and remission status in 464 MDD
patients and 432 healthy controls [24]. Reduced global frac-
tional anisotropy (FA) was observed specifically in acute
depressed patients compared to fully remitted patients and
healthy controls. Within the MDD patients, FA in a subnet-
work including frontal, temporal, insular, and parietal nodes
was negatively associated with symptom intensity, an effect
remaining when correcting for lifetime disease severity.
Their findings provide new evidence of MDD to be associated
with structural, yet dynamic, state-dependent connectome
alterations, which covary with current disease severity and
remission status after a depressive episode. The effects of
electroconvulsive therapy (ECT), the most effective treatment
for depression, on the dentate gyrus (DG) were studied by
Nuninga et al. through an optimized MRI scan at 7-tesla field
strength, allowing sensitive investigation of hippocampal
subfields [25, 26]. They documented a large and significant
increase in DG volume after ECT, while other hippocampal
subfields were unaffected. Furthermore, an increase in DG
volume was related to a decrease in depression scores, and
baseline DG volume predicted clinical response. These find-
ings suggest that the volume change of the DG is related to
the antidepressant properties of ECT, possibly reflecting
neurogenesis.

Three articles report new directions for antidepressant
therapeutics. Papakostas et al. presented the results of a
promising phase 2, double-blind, placebo-controlled study
of NSI-189 phosphate, a novel neurogenic compound, in
MDD patients [27]. As the endogenous opioid system is
thought to play an important role in the regulation of mood,
Fava et al. studied the buprenorphine/samidorphan combi-
nation as an investigational opioid system modulator for
adjunctive treatment of MDD in two phase 3, randomized,
double-blind, placebo-controlled studies that utilized the
same sequential parallel-comparison design [28]. One of the
studies achieved the primary endpoint, namely change from
baseline in Montgomery–Åsberg Depression Rating Scale
(MADRS)-10 at week 5 versus placebo) and the other study
did not achieve the primary endpoint. However, the pooled
analysis of the two studies demonstrated consistently
greater reduction in the MADRS-10 scores from baseline
versus placebo at multiple timepoints, including end of
treatment. These data provide cautious optimism and sup-
port further controlled trials for this potential new treatment
option for patients with MDD who have an inadequate
response to currently available antidepressants. Fava et al.
also report the results of a double-blind, placebo-controlled,
dose-ranging trial of intravenous (IV) ketamine as adjunctive
therapy in treatment-resistant depression, using four doses of

ketamine and a control [29, 30]. They show that there was
evidence for the efficacy of the two higher doses of IV
ketamine and no clear or consistent evidence for clinically
meaningful efficacy of the two lower doses studied.

Overall, in this issue, immense progress in depression
research is provided by outstanding studies that highlight
advances in our understanding of MDD biology, clinical
features, co-morbidity, genetics, brain imaging (including
imaging biomarkers), and treatment. Building on the
groundbreaking articles from our previous 2020 special
issues on stress and behavior [31–49] and on depression [2–
4, 50–62], we are proud that the stunning progress pre-
sented here found its home in our pages. From inception in
1996, we have aimed at making Molecular Psychiatry
promote the integration of molecular medicine and clinical
psychiatry [63]. It is particularly rewarding to see that goal
achieved so spectacularly in this second 2020 special issue
on MDD, a disorder of gene-environment interactions that
represents a pressing public health challenge, with an ever
increasing impact on society [64–66]. We are privileged to
have in these two 2020 depression special issues four
remarkable papers from Paul Greengard’s teams that pro-
vide substantial new data on the mechanisms of anti-
depressant action [1–4]. Such profound advances in basic
science are needed to facilitate and guide future translational
efforts needed to advance therapeutics [67, 68].
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