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Abstract
Active-duty Army personnel can be exposed to traumatic warzone events and are at increased risk for developing post-
traumatic stress disorder (PTSD) compared with the general population. PTSD is associated with high individual and societal
costs, but identification of predictive markers to determine deployment readiness and risk mitigation strategies is not well
understood. This prospective longitudinal naturalistic cohort study—the Fort Campbell Cohort study—examined the value
of using a large multidimensional dataset collected from soldiers prior to deployment to Afghanistan for predicting post-
deployment PTSD status. The dataset consisted of polygenic, epigenetic, metabolomic, endocrine, inflammatory and routine
clinical lab markers, computerized neurocognitive testing, and symptom self-reports. The analysis was computed on active-
duty Army personnel (N= 473) of the 101st Airborne at Fort Campbell, Kentucky. Machine-learning models predicted
provisional PTSD diagnosis 90–180 days post deployment (random forest: AUC= 0.78, 95% CI= 0.67–0.89, sensitivity=
0.78, specificity= 0.71; SVM: AUC= 0.88, 95% CI= 0.78–0.98, sensitivity= 0.89, specificity= 0.79) and longitudinal
PTSD symptom trajectories identified with latent growth mixture modeling (random forest: AUC= 0.85, 95% CI=
0.75–0.96, sensitivity= 0.88, specificity= 0.69; SVM: AUC= 0.87, 95% CI= 0.79–0.96, sensitivity= 0.80, specificity=
0.85). Among the highest-ranked predictive features were pre-deployment sleep quality, anxiety, depression, sustained
attention, and cognitive flexibility. Blood-based biomarkers including metabolites, epigenomic, immune, inflammatory, and
liver function markers complemented the most important predictors. The clinical prediction of post-deployment symptom
trajectories and provisional PTSD diagnosis based on pre-deployment data achieved high discriminatory power. The
predictive models may be used to determine deployment readiness and to determine novel pre-deployment interventions to
mitigate the risk for deployment-related PTSD.

Introduction

Soldiers are at risk for developing post-traumatic stress
disorder (PTSD) and the lifetime prevalence of probable
PTSD of 8% [1] is elevated compared with the general

population (6.1%) [2]. Deployment-related PTSD risk dif-
fers from single event trauma in civilians in that active-duty
military personnel are repeatedly exposed to situations in
which their own life is threatened and, at times, they are
required to kill enemy combatants. A better understanding
of the population-specific risk factors is of great importance
to mitigate modifiable risk of deployment-related PTSD that
can result in burdens to the individual and society. These
burdens include the suffering associated with symptoms of
PTSD and its common comorbidities including depression,
alcohol and drug abuse, chronic pain, and sleep disturbance.
Frequent comorbidities of PTSD include metabolic syn-
drome, cardiometabolic, traumatic brain injury, and neuro-
logic disease. All of these can cause disruption in
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relationships and work-related functions [3, 4]. In con-
sequence, mental health needs of veterans contribute to high
care usage at medical centers of the Veterans Health
Administration [5, 6].

Mitigating risk for deployment-related PTSD is a com-
plex task. A first step toward targeted PTSD prevention is
to examine pre-deployment risk factors. Despite earlier
skepticism [7], recent research suggests that pre-
deployment risk factors can be identified and potentially
mitigated [8]. Previous studies found that alterations in
inflammation and metabolomics [9], as well as epigeneti-
cally altered networks [10], and a polygenic risk score
(PRS) [11], are associated with the development of
deployment-related PTSD. In addition, neurocognitive
dysfunction [12, 13] and deployment-related data and self-
reported symptoms [14], such as pre-deployment night-
mares or mental health status [15] have been identified as
predictive markers for the development of PTSD in soldiers
who were either first time deployed or had been deployed
before [16]. Based on these promising findings, we
developed the rationale to examine the predictive value of
all these multiple factors together in a single multivariable
prognostic model of PTSD symptoms. Data-driven
approaches for classification are a particularly valuable
approach to combine highly multivariate data [17]. Ran-
dom forest (RF) ensembles of decision trees is a data-
driven machine learning (ML) approach that uses an
algorithm to recursively search for an optimal model given
the data. Compared with traditional statistics, where model
selection is based on theoretical assumptions, ML is more
flexible as numerous models are fit to describe the data and
the model parameters are empirically determined. The
application of methodological safeguards such as boot-
strapping or cross-validation prevents the selection of a
data-bound model that does not generalize to other samples
(“overfitting”) [18]. In addition, a portion of the sample
may be hold out to evaluate the model on separate data not
used to select the model. This further corroborates the
confidence in the accuracy of the results of the predictive
model.

The current state of research using ML in PTSD resi-
lience research is summarized in two recent review articles
[19, 20]. In military context, a few major studies identifying
risk factors using ML for predicting suicide [21], psychiatric
disorders [22], and PTSD in military personnel [14, 23, 24]
have been conducted. Advanced computational methodol-
ogy has demonstrated that nonlinear and highly interacting
combinations of heterogeneous risk factors are most pre-
dictive [23], despite the fact that such complex probabilistic
information is difficult to grasp. In addition, modeling
PTSD symptom development as distinct trajectories allows
accounting for variability in the temporal evolution of

symptoms [25]. Recognition that prediction of pre-
deployment risk may be more complicated than a simplis-
tic linear relationship of a limited number of variables with
a cross-sectional risk estimate is further corroborated by
recent findings of differential risk profiles associated with
epigenetically altered networks [7, 10, 26, 27].

This prospective longitudinal study aims to determine
whether a comprehensive set of diverse pre-selected biolo-
gical, clinical, and neurocognitive variables ascertained
prior to deployment is informative for predicting PTSD
symptom development over the course of 90–180 days after
returning from a 10-month tour of duty. In addition, we
investigate whether these variables predict provisional
PTSD diagnosis within 90–180 days after return. Our large
multidimensional dataset consists of multi-omic blood
markers including genome-wide association study (GWAS)
information for a PRS, epigenomic, metabolomic, endo-
crine, inflammatory, and routine clinical blood tests, and
computerized neurocognitive testing and symptom self-
reporting measures obtained from a prospective, natur-
alistic, and longitudinal study cohort. This approach has the
potential to discover novel pre-deployment risk factors for
PTSD, to discriminate between different symptom trajec-
tories, and may eventually contribute to the subtyping of
prognostic biomarkers.

The objective is to build an accurate classification algo-
rithm for predicting membership in PTSD symptom tra-
jectories across three phases of the deployment cycle, and
for predicting those who screen positive for a provisional
PTSD diagnosis. RF was chosen for the data-driven mul-
tivariable predictive modeling [28]. For comparison, the
results are benchmarked with support vector machine
classifiers (SVM) [29] that have been successful for binary
class prediction even on small clinical samples, such as
cancer classification with N= 38 and 50 predictors [30]. RF
is widely used to analyze large datasets such as GWAS and
metabolomic data and can handle correlated predictors and
nonlinear interactions and require no parametric assump-
tions about the underlying probability distributions. Being
based on the aggregation of numerous simple decision trees
[31] constructed from bootstrapped resamples [32] of the
data, RF is a statistically relatively well understood ML
method [33]. In addition, RF yields reliable rankings of the
risk factors in order of importance for prediction [34].

We hypothesized that it is feasible to identify informative
pre-deployment predictors in our dataset that will dis-
criminate active-duty military personnel who are likely to
be on an increasing PTSD symptom trajectory at post
deployment from those who are not. To support clinical
decision-making, we also aimed to discriminate between
those who will develop PTSD symptoms above a cutoff
score for provisional diagnosis versus those who will not
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develop clinically relevant PTSD symptom levels at
90–180 days after deployment.

Materials and methods

Participants

This naturalistic prospective cohort study comprised N=
473 active-duty Army personnel of the 101st Airborne at
Fort Campbell, Kentucky, assessed before and after being
deployed to Afghanistan in February 2014 (index deploy-
ment). GWAS data of 1600 participants were available to
calculate a PRS to use for this study. Participants were
either first time deployed (n= 272) or had previously been
deployed before once (n= 102), twice (n= 52), or more
than two times (n= 47). The first phase of recruitment
occurred during a 2-week period immediately prior to
deployment in February 2014. The second phase occurred
3 days after returning from a 10-month tour of duty. The
third phase occurred 90–180 days post deployment. The
inclusion and exclusion criteria are presented in the sup-
plementary methods. The Fort Campbell Cohort (FCC)
study was designed to identify PTSD risk factors and was
conducted in accord with ethical principles for the conduct
of human research as specified in the Declaration of Hel-
sinki [35]. The Institutional Review Board of NYU
Grossman School of Medicine, approved the study, as well
as the Human Research Protection Office of the United
States Army at Fort Detrick, Maryland and Army Command
of the 101st Airborne at Fort Campbell, Kentucky. All
participants signed the informed consent. Reporting guide-
lines for cohort studies [36] and recommendations for ML
[37] were followed as applicable.

Procedure

This prospective longitudinal study comprised three phases,
from which all participants who had available scores of the
PTSD Checklist for DSM-5 (PCL-5) [38] at Phase 1 and
Phase 3 were included (see flow chart in Supplementary
Fig. 1).

Data collection

In contrast to many other prospective longitudinal studies of
stress-exposed cohorts, this study assessed participants prior
to stressor exposure during the index deployment and
included gender, age, race and education, and military ser-
vice information along with comprehensive whole blood,
plasma, serum, and buffy-coat biomarkers as well as clinical
self-report and neurocognitive functioning measures. We
included 105 candidate predictors based on prior theory. A

complete overview with basic descriptive statistics is pre-
sented in Supplementary Table 1.

Clinical assessment: psychological symptoms and
functioning

We collected self-reports of symptoms and functioning,
using the PCL-5 [38], the Patient Health Questionnaire
(PHQ-8) to measure symptoms of depression [39], Gen-
eralized Anxiety Disorder (GAD-7) [40] and the Alcohol
Use Identification Test to measure alcohol abuse [41]. The
Ohio Traumatic Brain Injury Assessment was used to
ascertain traumatic brain injury [42], the Pittsburgh Sleep
Quality Index for capturing current sleep quality [43], and
the Concussion Symptoms Inventory to assess lifetime con-
cussion (symptoms for the month in which concussive
symptoms were the worst) and current post-concussive
symptoms during the past month [44]. In addition, the
Deployment Risk and Resilience Inventory-2 (DRRI-2) was
assessed for determining warzone exposure [45].

Cognitive assessment: attention, emotion
regulation, and executive function

We used a computerized neurocognitive assessment tool
(WebNeuro) to assess cognitive and emotional functioning,
including information processing, working memory, emo-
tion regulation, and psychomotor functioning. We included
measures of sustained attention, inhibitory control, cogni-
tive flexibility, and processing speed in our predictive
models [46].

Blood draw: multi-omics including routine clinical
labs

Multi-omics data were included based on previous findings
from The PTSD Systems Biology Consortium [24, 47]. We
assessed LabCorp Clinical Laboratory Improvement
Amendments-certified lab tests for complete blood count
(CBC). In addition, we assessed lipid panel, inflammatory
markers and liver functioning tests, metabolomics and
methylation marks as well as a PRS for PTSD [11].

Statistical analysis

Latent growth mixture modeling (LGMM)

All participants in the sample (N= 473) who completed the
PCL-5 for both Phase 1 and 3 were included in latent
growth mixture modeling (LGMM) using also available
Phase 2 scores. LGMM was fit in Mplus version 7 [25]. To
determine how many distinct latent classes best described
the trajectories of PTSD symptom severity in FCC samples,
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a series of LGMM models were constructed. The best-
fitting model was identified using recommendation from the
literature [48].

Predictive models

The dependent variable for classification was the assign-
ment to exactly one LGMM class. A second RF and SVM
model was developed to predict two groups, those who met
and those who did not meet the PCL-5 cutoff score for a
provisional PTSD diagnosis at Phase 3, which occurred
90–180 days post deployment. A PCL-5 total score of ≥31
was defined as the cutoff for screening positive for a pro-
visional diagnosis of PTSD in active-duty military person-
nel [49, 50]. The specifier “provisional” in DSM-5 was used
according to the definition in the DSM-5 [51] and from the
National Center for PTSD [38]. PCL-5 shows “good diag-
nostic utility for predicting a CAPS-5 PTSD diagnosis” and
“good structural validity, and sensitivity to clinical change
comparable to that of a structured interview” [52]. It shows
good reliability, convergent, concurrent, discriminant, and
structural validity [52].

We evaluated the training performance in terms of con-
fusion matrix, sensitivity, and specificity, and selected the
“best” model in terms of area under the receiver operating
characteristic curve (AUC). All steps of data inspection and
preprocessing, including imputation and analysis, were
performed using R version 3.5.1 in Rstudio 1.1.456. Cate-
gorical variables were converted to binary numerical values
(“dummy coding”), and missing values were imputed using
bagged decision trees [18]. Twelve variables with values of
near-zero variance and six variables with more than 45%
missing data were removed in order to increase the accuracy
of the bagged CART tree imputation. In total, 15% of the
data were missing. Training and test sets were imputed
separately to avoid information leakage [53]. The dependent
variable was removed from the dataset prior to imputation
for the same reason. The total sample was randomly split
into a 75% partition as a training set to build the model and
a 25% test set to evaluate the predictive power of the final
model in unseen cases (Table 1). The size of the test set was
adequately powered to detect an above-chance AUC > 78
with alpha= 0.05 and 90% power [54]. To balance the
dependent variable across data partitions, stratified random
sampling was applied [53]. The bootstrap method was used
to guard against overfitting while fine-tuning the model [55]
and the process was 25 times repeated to obtain robust
training error estimates. For RF models (ranger R package),
we used 1000 trees per forest to obtain robust permutation-
based variable rank scores [34]. The parameter “minimum
node size” was fixed at 1 and the number of randomly
selected predictors per split and the type of splitting rule
were fine-tuned by examining 100 random combinations.

For SVM models, the model parameters sigma and cost
were fine-tuned with a random search of 100 different
combinations, with all other parameters set to default values
(kernlab R package). The code is freely available upon
request but for research purposes only. Supplementary
Fig. 2 provides a basic schematic representation of the
predictive analytics approach.

Predictor importance ranking

Variables included in the final models were ranked with
respect to their ability to predict both PTSD symptom tra-
jectory membership across the three phases and PTSD case
status at Phase 3 using a permutation procedure along with
p values (see Supplementary material for details) [28, 34].

Results

Descriptive statistics on the sample characteristics at Phase
1 are presented in Table 2 (see Supplementary Table 2 for
sample characteristics at Phase 3).

The predictive model based on pre-deployment neuro-
cognitive, psychometric self-report, and biomarker infor-
mation from a total of 473 participants showed high
discriminatory power to distinguish PTSD symptom
severity trajectories for 90–180 days post deployment
(Fig. 1; Supplementary Tables 3 and 4 display the results of
the LGMM). Using the RF algorithm, the averaged out-of-
bag result on the training dataset was AUC= 0.79 (SD=
0.07). On the internal test set, the performance was con-
firmed, with the 95% CI of the AUC of 0.75–0.96 (AUC=
0.85, sensitivity= 0.80; specificity= 0.69; see Fig. 2). The
discriminatory power further increased using SVM models
(Fig. 2).

Table 1 Classification task and observed positive and negative events
for each outcome. The term “positive events” refers to the outcome-of-
interest, i.e., to those participants in the sample who are on an
“increasing” PTSD symptom trajectory or who meet the cutoff for
provisional PTSD diagnosis (PCL-5 score ≥31). “Negative events” are
those participants who are on a “resilient” trajectory or who do not
meet the cutoff. Depicted are the sample size for each outcome for the
training set, the test set and the total sample.

Classification task Training
set (75%)

Test
set (25%)

Total
(N= 473)

PTSD symptom trajectories

“Increasing” n= 33 n= 10 n= 43

“Resilient” n= 323 n= 107 n= 430

PCL-5 cutoff score

Provisional PTSD n= 27 n= 9 n= 36

No PTSD n= 328 n= 109 n= 437
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The RF algorithm was also able to predict provisional
PTSD diagnosis at Phase 3 based on pre-deployment data
(AUC= 0.78 for the internal test set, with 95% CI of
0.67–0.89; sensitivity= 0.78; specificity= 0.71; see Fig. 2).

The averaged out-of-bag result for provisional PTSD diag-
nosis on the training dataset was AUC= 0.78 (SD= 0.08).

Similar to the lifetime prevalence of probable PTSD of
8% in US Veterans [1], 7.6% of the participants screened
positive for provisional PTSD diagnosis (PCL-5 cutoff ≥ 31)
[49, 50]. A notable 92.4% reported no or only few PTSD
symptoms at Phase 3. Due to the resulting class imbalance in
the outcome, we present additional evaluation metrics in the
Supplementary Tables 5–11 and Supplementary Figs. 3 and
4 including precision–recall curves. One-sided DeLong’s
test showed that both RF models were significantly better in
discriminating between the outcomes-of-interest compared
with a non-informative model, which assigns all participants
to the majority class (LGMM trajectories as the outcome:
Z= 6.6476, p= 1.489e−11; provisional PTSD diagnosis as
outcome: Z= 4.9214, p= 4.297e−07). Figure 2c shows the
comparison between the AUC, including 95% CI, of the RF
and SVM models with different “population-based” and
“personal” benchmark models [56].

In addition, there were significant differences in warzone
exposure during index deployment (section D “Combat
Experiences” of the DRRI-2). The participants on the
“increasing” trajectory experienced significantly more
traumatic events during combat (t(248)= 2.85, p= 0.005;
“increasing” trajectory; mean= 28.89 ± 10.84; “resilient”
trajectory; mean= 23.90 ± 7.01). The same was true for

Table 2 Sample characteristics at Phase 1 of those participants included into the analysis.

Phase 1

“Increasing”
trajectory (N= 43)

“Resilient” trajectory
(N= 430)

Provisional PTSD
(N= 36)

No PTSD
(N= 437)

Age 27.16 (5.99) 25.66 (5.92) 26.67 (6.15) 25.73 (5.92)

Gender (% females) 11.6% (N= 5) 5.3% (N= 23) 13.9% (N= 5) 5.3% (N= 23)

PCL-5 score 14.12 (16.66) 2.63 (5.37) 13.83 (17.17) 2.84 (5.83)

PHQ-8 score 4.5 (5.13) 1.31 (2.49) 4.54 (5.33) 1.36 (2.55)

GAD-7 score 5.55 (5.42) 1.65 (2.64) 5.4 (5.57) 1.72 (2.75)

AUDIT score 2.43 (3.28) 2.23 (2.50) 2.58 (3.57) 2.22 (2.48)

PSQI score 8.46 (3.79) 4.88 (2.9) 8 (3.63) 4.97 (3.01)

DRRI-2 score 51.7 (22.5) 35.94 (16.5) 50.86 (23.73) 36.52 (16.86)

TBI status: improbable 63.4% (N= 26) 84.6% (N= 356) 61.8% (N= 21) 84.3% (N= 361)

TBI status: possible 12.1% (N= 5) 5.7% (N= 24) 14.7% (N= 5) 5.6% (N= 24)

TBI status: mild 14.6% (N= 6) 8.1% (N= 34) 11.8% (N= 4) 8.4% (N= 36)

TBI status: moderate 9.8% (N= 4) 1% (N= 4) 11.8% (N= 4) 0.9% (N= 4)

TBI status: severe 0% (N= 0) 0.7% (N= 3) 0% (N= 0) 0.7% (N= 3)

CSI current 15.44 (12.22) 5.73 (8.92) 16.15 (12.82) 6.01 (9.02)

CSI lifetime 27.94 (18.72) 12.35 (15.2) 25.69 (15.21) 13.45 (16.7)

Number of previous
deployments

1.09 (1.54) 0.76 (1.11) 0.81 (1.31) 0.79 (1.15)

PCL-5 PTSD Checklist for DSM-5, PHQ-8 Patient Health Questionnaire, GAD-7 Generalized Anxiety Disorder; AUDIT Alcohol Use
Identification Test, PSQI Pittsburgh Sleep Quality Index, DRRI-2 Deployment Risk and Resilience Inventory-2, TBI traumatic brain injury, CSI
Concussion Symptoms Inventory (current (past month) and lifetime (month in which symptoms were their “worst”)).

Phase 1 Phase2 Phase 3
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Resilient (N = 430, 90.9%)

Fig. 1 Unconditional model for the latent trajectories of the long-
itudinal PTSD symptom development based on PCL-5 scores
through 90–180 days (Phase 1, 2, and 3). The term “unconditional”
means that there are no covariates included in this LGMM model but
only the PCL-5 scores (outcome-of-interest) [25]. A two-class solution
with fixed slope and linear weights was identified as the best-fitting
model with an entropy of 0.98 (see Supplementary Tables 3, 4). We
chose linear rather than quadratic solutions for trajectories because a
minimum of four time points is recommended to fit quadratic
solutions. Those two trajectories can be qualitatively described
as “increasing” trajectory (N= 43, 9.1%) and as “resilient” trajectory
(N= 430, 90.9%).
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those participants with the provisional PTSD diagnosis
(t(248)=−3.23, p= 0.001; provisional PTSD; mean=
30.20 ± 11.76; no PTSD; mean= 23.90 ± 6.97).

Supplementary Table 12 shows the results of the Pear-
son’s χ2-test with Yates’ continuity correction to show that
missing values were not significantly more frequent in more

Fig. 2 Discriminatory power of RF and SVM using different data
types as predictor variables. Receiver operating characteristic curve
(ROC) for the prediction of the provisional PTSD diagnosis post
deployment (a) and of PTSD symptom trajectories (b) using genetic,
metabolomic, methylation, inflammation, neuropsychological, and
clinical data collected prior to deployment. Depicted is the optimal
ROC thresholds for sensitivity and specificity as determined by min
((1− sensitivities)2+ (1− specificities)2), which yields the threshold
closest to the top-left corner of the ROC curve [73]. DeLong’s test for
two correlated ROC curves [74] shows no significant difference
between the RF and SVM models for predicting LGMM trajectories
(Z= 0.403, p= 0.3435), but significant differences for provisional

PTSD diagnosis (Z= 1.7587, p= 0.03932). The bar plot (c) displays
the comparison of the predictive models with different benchmark
models. All four models (SVM and RF models predicting provisional
PTSD diagnosis and SVM and RF models predicting PTSD symptom
trajectories) have significantly higher discriminatory power than a non-
informative model that predicts all participants as “PTSD negative,”
i.e., is low or subthreshold PTSD symptoms (see Supplementary
Table 7). All four models are significantly better than a benchmark
model using a subject-specific baseline score as predicted outcome
[56], i.e., using the individual pre-deployment PTSD status as indi-
cated by the PCL-5 (see Supplementary Table 14).
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severe PTSD cases. Supplementary Figure 5 represents the
results of a different train-test split to show that the results
are robust and Supplementary Fig. 6 displays the model to
predict PTSD development using only the PCL-5 subitems
and total score at Phase 1.

Ranking the risk variables for predictive value

Predictive performance was best when multiple hetero-
geneous sources of information were integrated into a
comprehensive model (Fig. 2c). Figure 3 displays the top 15
predictor variables ranked using permutation-based variable
importance approach [34].

The pairwise correlation of the top 15 features is shown
in Supplementary Fig. 7. Significant univariate mean group
differences for both outcomes are presented in Supple-
mentary Table 13. Supplementary Figures 8 and 9 dis-
play further variable importance metrics. Supplementary

Figure 10 visualizes the variable importance for classifying
those who fulfill the criteria for depression according to
PHQ-8 and for depression and PTSD. Supplementary Fig-
ure 11 displays the most important features for the SVM
model for predicting provisional PTSD diagnosis. Supple-
mentary Figure 12 presents the results of a regularized RF
using all subitems of the self-report instruments. Supple-
mentary Figure 13 displays the heatmap for the correlation
matrix of the subitems of the psychometric instruments.

Discussion

Among active-duty military personnel deployed to Afgha-
nistan, we found that pre-deployment risk factors predicted
PTSD symptom trajectories and provisional PTSD diagnosis
90–180 days after returning from the deployment. Our
results provide evidence that pre-deployment PTSD risk can

Fig. 3 Display of the top 15 predictor variables for predicting
LGMM trajectories (green bars) and for predicting provisional
PTSD diagnosis (blue bars). In permutation-based ranking [34], the
importance of a feature is measured by calculating the increase in
the model’s prediction error after reshuffling the distribution of the
feature values. The y-axis presents the importance ranking, with
the top features being the most important ones. The x-axis denotes the
classification error scaled to range 0 to 100. It is not recommended to

interpret the absolute importance value, but only the rank order
between features [75]. All features shown in Fig. 3 contributed sig-
nificantly (p < 0.01) to the respective predictive model [34]. Statistical
significance is indicated by the bias-correcting PIMP algorithm, which
tests the importance of each predictor under the distribution of “null
importance” values derived for every variable from 100 permutations
of the response variable [34].
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be predicted based on the combination of biomarkers, self-
reports, and neurocognitive functioning. Using this infor-
mation, the overall best prediction model (SVM) dis-
criminates post-deployment LGMM trajectories and
provisional PTSD diagnosis with high sensitivity and spe-
cificity (Fig. 2). Both RF and SVM models performed sig-
nificantly better than a non-informative benchmark model
that assigns all participants the same constant prediction of
the majority class, i.e., “no PTSD,” (Supplementary Table 7)
and a benchmark model using the subjects individual pre-
deployment PTSD status based on the pre-deployment PCL-
5 score as a person-specific baseline prediction for each
subject (Supplementary Tables 14–17). Overall, the SVM
model performed significantly better than all benchmark
models (Fig. 2c and Supplementary Tables 14–17). The test-
set size was powered to reliably detect an AUC of the size of
the AUC of the RF and SVM model. As a limitation, it
should be noted that for models with an AUC < 0.75
(Fig. 2c), the power of the test set is limited. While the 95%
CI indicates substantial overlap, the width of the CI depends
on the sample size and a larger test set would be needed to
prevent Type-II errors (i.e., falsely assuming there is no
difference in performance) when comparing these models.
While future research may determine whether differences in
pre-deployment PTSD symptom status, biomarkers, self-
reports, and neurocognitive functioning are sufficiently
predictive in isolation, we report evidence that the combi-
nation of this data is best predictive overall (Fig. 2).

The main result that the combination of pre-deployment
factors provides predictive information about post-
deployment PTSD risk is consistent with the diversity of
prognostic factors previously reported in the PTSD litera-
ture [4, 9, 10, 57]. However, previous studies are often
cross-sectional, making it difficult to differentiate risk fac-
tors from consequences of developing PTSD [58] or do not
include comprehensive biomarker information [14].

Beyond the FCC study, only a few large prospective
longitudinal studies analyzed risk factors for PTSD in
military personnel, such as the Dutch Prospective Research
in Stress-related Military Operations (PRISMO) study
[59, 60], the UK Air Force cohort of King’s Centre for
Military Health Research [14], and the US Marine Resi-
liency Studies (MRS, MRS-II) [61].

Recently, a multi-omics panel of 28 biomarkers was
derived from more than 300 biomarkers as candidate
diagnostic biomarkers for PTSD [24]. Among the top 10
predictors of this study [24] are four biomarkers
(cg01208318, cg17137457, lactate, citrate) that are also in
the top 15 of our study (Fig. 3). In the current study, we
show the predictive relevance of the biomarkers when
combined with self-reported clinical symptoms and neuro-
cognitive functioning (Fig. 2).

Biomarkers

Peripheral inflammatory and immune markers in the blood,
such as monocytes, basophil, and C-reactive protein (CRP),
were found to be important predictors. This fits with pre-
vious cross-sectional findings of altered mitochondrial
function [47] and the finding in the MRS cohort that higher
plasma levels of CRP prior to deployment predicted the
development of deployment-related PTSD [62]. Similar to
the monocytes and basophil in our sample, the PRISMO
study demonstrated that leukocyte sensitivity to gluco-
corticoids (high dexamethasone-sensitivity of T-cell pro-
liferation) prior to deployment was associated with post-
deployment PTSD, but only in those without comorbid
depression symptoms [60].

There is mounting evidence about the crosstalk of
inflammatory responses of the immune system and mito-
chondrial function and metabolic markers of mitochondrial
dysfunction may be associated with PTSD [9]. We found
that mitochondrial metabolites including lactate, citrate,
eicosanoids, and glutamine were highly ranked predictive
features. In line with previous studies, we also found that
citrate was decreased in PTSD subjects [47].

Moreover, epigenomic mechanisms may explain gene by
environment interactions in PTSD that contribute to
increased risk or resilience. We found that mitochondria-
related DNA methylation (cg17137457) of the CPT1B gene
contributes to the prediction of provisional PTSD. CPT1B is
overexpressed in the amygdala in a rodent PTSD-model and
also in the blood of humans with PTSD where it is acting on
fatty acid metabolism [63]. In addition, we found a pre-
dictive relevance of a lipid panel including LDL cholesterol,
which may suggest an association of PTSD risk with
metabolic dysregulation as previously reported [9].

Contrary to our expectation, our PRS was not among the
most relevant predictors. Previous GWAS studies found
mixed results [64, 65] but recently new loci have been
suggested [66] and further research is necessary.

Finally, previous studies [67, 68] suggested that the pre-
deployment cortisol awakening response [68] and hair
cortisol [67] predict post-deployment PTSD symptoms. In
our sample, we did not identify pre-deployment plasma
cortisol levels among the most important predictors. Further
research is needed to examine if the prediction can be fur-
ther improved by assessing hair cortisol or the cortisol
awakening response instead of plasma cortisol levels.

Neurocognitive function

Computerized neurocognitive measures of cognitive flex-
ibility and sustained attention were predictors for PTSD,
which fits prior findings [12, 13] that indicated cognitive
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flexibility [69] and sustained attention [70] as relevant pre-
deployment predictors of deployment-related PTSD.

Psychometric assessment

Similar to the Millennium Cohort Study [15], we found that
self-reported anxiety (GAD-7) and depressive symptoms
(PHQ-8) are highly ranked predictors of deployment-related
PTSD. A recent study using ML emphasizes the importance
of self-reported symptoms for classifying PTSD caseness
[14]. In line with the PRISMO study [59], we also found
that self-reported sleep quality prior to deployment ranked
high among the predictors of post deployment. This is well-
aligned with results of a longitudinal study (N= 561) of
Danish soldiers deployed in Afghanistan in 2006 [23] in
which psychometric together with sociodemographic
information was strongly predictive in classifying PTSD
symptom trajectories using SVM (AUC= 0.84; 95% CI=
0.81–0.87) [23].

Strength and limitations

This naturalistic, prospective longitudinal cohort study has
high external and internal validity since the study was
designed around a cohort that experienced combat zone-
deployment as a shared potential stressor [71]. Our study
design resembles other naturalistic cohort studies that
investigate shared stress exposures and heterogeneous tra-
jectories of psychopathology [23]. This study provides a
comprehensive set of biological, clinical, and cognitive
predictors to investigate multivariate risk prior to deploy-
ment. A limitation is the inclusion of only those individuals
for whom PCL-5 scores were available at Phases 1 and 3. In
addition, provisional PTSD diagnosis needs to be verified
using the SCID or CAPS. Furthermore, external validation
in independent datasets is necessary to assess the general-
izability of the model. The possibility of potential unknown
confounders should be acknowledged as in any naturalistic
cohort study. The reported associations among the pre-
dictors and the PTSD symptom trajectories and provisional
diagnoses should not be interpreted causally. The candidate
predictors require experimental manipulations to test for
causal determination of risk.

Clinical implications

The assessment of active-duty Army personnel at pre-
deployment and after deployment using biological and
behavioral measurement enables us to identify pre-
deployment risk factors for the development of deployment-
related PTSD. The identified risk factors can be used to
inform deployment readiness, e.g., using self-report measures

along with inexpensive blood testing for CBC or CRP, and to
target preventive interventions for improving the resilience of
military personnel. Pre-deployment self-reported information
including differences in stress symptoms, sleep problems,
anxiety, and depressive symptoms are predictors that are low
cost, easily ascertained, and indicate modifiable factors.

Conclusions

The biological, clinical, and neurocognitive assessment of
military personnel before deployment raises the possibility
of predicting post-deployment PTSD risk to inform future
research on risk factors and to inform the planning of tar-
geted prevention of deployment-related PTSD. Our mod-
eling approach acknowledges the complex nature of current
theories of PTSD [72] spanning from various molecular
(e.g., genetic, metabolomic, immunologic, and neurobiolo-
gical) levels of explanation to multiple high-level systems
of causal pathways, including cognitive domains and social
environments. This approach is promising for future work
on individualized risk prediction and prevention.
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