Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In vivo imaging of dopamine D1 receptor and activated microglia in attention-deficit/hyperactivity disorder: a positron emission tomography study

Abstract

Alterations in the cortical dopamine system and microglial activation have been implicated in the pathophysiology of attention-deficit/hyperactivity disorder (ADHD), one of neurodevelopmental disorders that can be conventionally treated with a dopamine enhancer (methylphenidate) albeit unsatisfactorily. Here, we investigated the contributions of the dopamine D1 receptor (D1R) and activated microglia and their interactions to the clinical severities in ADHD individuals using positron emission tomography (PET). Twenty-four psychotropic-naïve ADHD individuals and 24 age- and sex-matched typically developing (TD) subjects underwent PET measurements with [11C]SCH23390 for the D1R and [11C](R)PK11195 for activated microglia as well as assessments of clinical symptoms and cognitive functions. The ADHD individuals showed decreased D1R in the anterior cingulate cortex (ACC) and increased activated microglia in the dorsolateral prefrontal cortex (DLPFC) and orbitofrontal cortex (OFC) compared with the TD subjects. The decreased D1R in the ACC was associated with severe hyperactivity in the participants with ADHD. Microglial activation in the DLPFC were associated with deficits in processing speed and attentional ability, and that in the OFC was correlated with lower processing speed in the ADHD individuals. Furthermore, positive correlations between the D1R and activated microglia in both the DLPFC and the OFC were found to be significantly specific to the ADHD group and not to the TD group. The current findings suggest that microglial activation and the D1R reduction as well as their aberrant interactions underpin the neurophysiological mechanism of ADHD and indicate these biomolecular changes as a novel therapeutic target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Regional binding potential (BPND) values of [11C]SCH23390 and [11C](R)PK11195.
Fig. 2: Regional correlations between [11C]SCH23390 binding potential (BPND) values and [11C](R)PK11195 BPND values.
Fig. 3: Regional correlations between the binding potential (BPND) values of each PET tracer and clinical variables of the individuals with ADHD.

Similar content being viewed by others

References

  1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 4th ed, text revision. Washington DC: American Psychiatric Association Publishing; 2000.

  2. Guilherme P, Maurício SL, Bernardo LH, Joseph B, Luis AR. The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry. 2007;164:942–8.

    Google Scholar 

  3. Cortese S, Adamo N, Giovane CD, Mohr-Jensen C, Hayes AJ, Carucci S, et al. Comparative efficacy and tolerability of medications for attention-deficit hyperactivity disorder in children, adolescents, and adults: a systematic review and network meta-analysis. Lancet Psychiatry. 2018;5:727–38.

    PubMed  PubMed Central  Google Scholar 

  4. Hennissen L, Bakker MJ, Banaschewski T, Carucci S, Coghill D, Danckaerts M, et al. Cardiovascular effects of stimulant and non-stimulant medication for children and adolescents with ADHD: a systematic review and meta-analysis of trials of methylphenidate, amphetamines and atomoxetine. CNS Drugs. 2017;31:199–215.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Liang EF, Lim SZ, Tam WW, Ho CS, Zhang MW, Mclntyre RS, et al. The effect of methylphenidate and atomoxetine on heart rate and systolic blood pressure in young people and adults with attention-deficit hyperactivity disorder (ADHD): systematic review, meta-analysis, and meta-regression. Int J Environ Res Public Health. 2018;15:1789.

    PubMed Central  Google Scholar 

  6. Waxmonsky JG, Pelham WE 3rd, Campa A, Waschbusch DA, Li T, Marshall R, et al. A randomized controlled trial of interventions for growth suppression in children with attention-deficit/hyperactivity disorder treated with central nervous system stimulants. J Am Acad Child Adolesc Psychiatry. 2019. https://doi.org/10.1016/j.jaac.2019.08.472.

  7. Lensing MB, Zeiner P, Sandvik L, Opjordsmoen S. Four-year outcome in psychopharmacologically treated adults with attention-deficit/hyperactivity disorder: a questionnaire survey. J Clin Psychiatry. 2013;74:e87–93.

    PubMed  Google Scholar 

  8. Edvinsson D, Ekselius L. Long-term tolerability and safety of pharmacological treatment of adult attention-deficit/hyperactivity disorder: a 6-year prospective naturalistic study. J Clin Psychopharmacol. 2018;38:370–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gamo NJ, Wang M, Arnsten AF. Methylphenidate and atomoxetine enhance prefrontal function through alpha2-adrenergic and dopamine D1 receptors. J Am Acad Child Adolesc Psychiatry. 2010;49:1011–23.

    PubMed  PubMed Central  Google Scholar 

  10. Gronier B. In vivo electrophysiological effects of methylphenidate in the prefrontal cortex: involvement of dopamine D1 and alpha 2 adrenergic receptors. Eur Neuropsychopharmacol. 2011;21:192–204.

    CAS  PubMed  Google Scholar 

  11. Cummins ED, Griffin SB, Duty CM, Peterson DJ, Burgess KC, Brown RW. The role of dopamine D(1) and D(2) receptors in adolescent methylphenidate conditioned place preference: sex differences and brain-derived neurotrophic factor. Dev Neurosci. 2014;36:277–86.

    CAS  PubMed  Google Scholar 

  12. Venkataraman S, Claussen C, Dafny N. D1 and D2 specific dopamine antagonist modulate the caudate nucleus neuronal responses to chronic methylphenidate exposure. J Neural Transm (Vienna). 2017;124:159–70.

    CAS  Google Scholar 

  13. Gizer IR, Ficks C, Waldman ID. Candidate gene studies of ADHD: a meta-analytic review. Hum Genet. 2009;126:51–90.

    CAS  PubMed  Google Scholar 

  14. Wu J, Xiao H, Sun H, Zou L, Zhu LQ. Role of dopamine receptors in ADHD: a systematic meta-analysis. Mol Neurobiol. 2012;45:605–20.

    CAS  PubMed  Google Scholar 

  15. Misener VL, Luca P, Azeke O, Crosbie J, Waldman I, Tannock R, et al. Linkage of the dopamine receptor D1 gene to attention-deficit/hyperactivity disorder. Mol Psychiatry. 2004;9:500–9.

    CAS  PubMed  Google Scholar 

  16. Bobb AJ, Addington AM, Sidransky E, Gornick MC, Lerch JP, Greenstein DK, et al. Support for association between ADHD and two candidate genes: NET1 and DRD1. Am J Med Genet B Neuropsychiatry. 2005;134b:67–72.

    Google Scholar 

  17. Willcutt EG, Doyle AE, Nigg JT, Faraone SV, Pennington BF. Validity of the executive function theory of attention-deficit/hyperactivity disorder: a meta-analytic review. Biol Psychiatry. 2005;57:1336–46.

    PubMed  Google Scholar 

  18. McNab F, Varrone A, Farde L, Jucaite A, Bystritsky P, Forssberg H, et al. Changes in cortical dopamine D1 receptor binding associated with cognitive training. Science. 2009;323:800–2.

    CAS  PubMed  Google Scholar 

  19. Plichta MM, Scheres A. Ventral-striatal responsiveness during reward anticipation in ADHD and its relation to trait impulsivity in the healthy population: a meta-analytic review of the fMRI literature. Neurosci Biobehav Rev. 2014;38:125–34.

    PubMed  Google Scholar 

  20. Robertson CL, Ishibashi K, Mandelkern MA, Brown AK, Ghahremani DG, Sabb F, et al. Striatal D1- and D2-type dopamine receptors are linked to motor response inhibition in human subjects. J Neurosci. 2015;35:5990–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Cox SM, Frank MJ, Larcher K, Fellows LK, Clark CA, Leyton M, et al. Striatal D1 and D2 signaling differentially predict learning from positive and negative outcomes. Neuroimage. 2015;109:95–101.

    CAS  PubMed  Google Scholar 

  22. de Boer L, Axelsson J, Chowdhury R, Riklund K, Dolan R, Nyberg L, et al. Dorsal striatal dopamine D1 receptor availability predicts an instrumental bias in action learning. Proc Natl Acad Sci USA. 2019;116:261–70.

    PubMed  Google Scholar 

  23. Satoh H, Suzuki H, Saitow F. Downregulation of dopamine D1-like receptor pathways of GABAergic interneurons in the anterior cingulate cortex of spontaneously hypertensive rats. Neuroscience. 2018;394:267–85.

    CAS  PubMed  Google Scholar 

  24. Drtilkova I, Sery O, Theiner P, Uhrova A, Zackova M, Blastikova B, et al. Clinical and molecular-genetic markers of ADHD in children. Neuro Endocrinol Lett. 2008;29:320–7.

    CAS  PubMed  Google Scholar 

  25. Smith TF, Anastopoulos AD, Garrett ME, Arias-Vasquez A, Franke B, Oades RD, et al. Angiogenic, neurotrophic, and inflammatory system SNPs moderate the association between birth weight and ADHD symptom severity. Am J Med Genet B Neuropsychiatr Genet. 2014;165b:691–704.

    PubMed  Google Scholar 

  26. Donfrancesco R, Nativio P, Di Benedetto A, Villa MP, Andriola E, Melegari MG, et al. Anti-Yo antibodies in children with ADHD: first results about serum cytokines. J Atten Disord. 2016. https://doi.org/10.1177/1087054716643387.

  27. Oades RD, Dauvermann MR, Schimmelmann BG, Schwarz MJ, Myint AM. Attention-deficit hyperactivity disorder (ADHD) and glial integrity: S100B, cytokines and kynurenine metabolism-effects of medication. Behav Brain Funct. 2010;6:29.

    PubMed  PubMed Central  Google Scholar 

  28. Hariri M, Djazayery A, Djalali M, Saedisomeolia A, Rahimi A, Abdolahian E. Effect of n-3 supplementation on hyperactivity, oxidative stress and inflammatory mediators in children with attention-deficit-hyperactivity disorder. Malays J Nutr. 2012;18:329–35.

    CAS  PubMed  Google Scholar 

  29. Oades RD, Myint AM, Dauvermann MR, Schimmelmann BG, Schwarz MJ. Attention-deficit hyperactivity disorder (ADHD) and glial integrity: an exploration of associations of cytokines and kynurenine metabolites with symptoms and attention. Behav Brain Funct. 2010;6:32.

    PubMed  PubMed Central  Google Scholar 

  30. Mittleman BB, Castellanos FX, Jacobsen LK, Rapoport JL, Swedo SE, Shearer GM. Cerebrospinal fluid cytokines in pediatric neuropsychiatric disease. J Immunol. 1997;159:2994–9.

    CAS  PubMed  Google Scholar 

  31. Cherry JD, Olschowka JA, O’Banion MK. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation. 2014;11:98.

    PubMed  PubMed Central  Google Scholar 

  32. Sadasivan S, Pond BB, Pani AK, Qu C, Jiao Y, Smeyne RJ. Methylphenidate exposure induces dopamine neuron loss and activation of microglia in the basal ganglia of mice. PLoS ONE. 2012;7:e33693.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Carias E, Hamilton J, Robison LS, Delis F, Eiden R, Quattrin T, et al. Chronic oral methylphenidate treatment increases microglial activation in rats. J Neural Transm (Vienna). 2018;125:1867–75.

    CAS  Google Scholar 

  34. Ramon-Duaso C, Gener T, Consegal M, Fernandez-Aviles C, Gallego JJ, Castarlenas L, et al. Methylphenidate attenuates the cognitive and mood alterations observed in Mbnl2 knockout mice and reduces microglia overexpression. Cereb Cortex. 2019;29:2978–97.

    PubMed  Google Scholar 

  35. Mohammadpour N, Jazayeri S, Tehrani-Doost M, Djalali M, Hosseini M, Effatpanah M, et al. Effect of vitamin D supplementation as adjunctive therapy to methylphenidate on ADHD symptoms: a randomized, double blind, placebo-controlled trial. Nutr Neurosci. 2018;21:202–9.

    CAS  PubMed  Google Scholar 

  36. Saedisomeolia A, Samadi M, Gholami F, Seyedi M, Effatpanah M, Hashemi R, et al. Vitamin D’s molecular action mechanism in attention-deficit/ hyperactivity disorder: a review of evidence. CNS Neurol Disord Drug Targets. 2018;17:280–90.

    CAS  PubMed  Google Scholar 

  37. Cortese S, Kelly C, Chabernaud C, Proal E, Martino AD, Milham MP, et al. Toward systems neuroscience of ADHD: a meta-analysis of 55 fMRI studies. Am J Psychiatry. 2012;169:1038–55.

    PubMed  Google Scholar 

  38. Hart H, Radua J, Nakao T, Mataix-Cols D, Rubia K. Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention-deficit/hyperactivity disorder: exploring task-specific, stimulant medication, and age effects. JAMA Psychiatry. 2013;70:185–98.

    PubMed  Google Scholar 

  39. Mastroeni D, Grover A, Leonard B, Joyce JN, Coleman PD, Kozik B, et al. Microglial responses to dopamine in a cell culture model of Parkinson’s disease. Neurobiol Aging. 2009;30:1805–17.

    CAS  PubMed  Google Scholar 

  40. Dominguez-Meijide A, Rodriguez-Perez AI, Diaz-Ruiz C, Guerra MJ, Labandeira-Garcia JL. Dopamine modulates astroglial and microglial activity via glial renin-angiotensin system in cultures. Brain Behav Immun. 2017;62:277–90.

    CAS  PubMed  Google Scholar 

  41. Kopec AM, Smith CJ, Ayre NR, Sweat SC, Bilbo SD. Microglial dopamine receptor elimination defines sex-specific nucleus accumbens development and social behavior in adolescent rats. Nat Commun. 2018;9:3769.

    PubMed  PubMed Central  Google Scholar 

  42. Ji B, Higa K, Soontornniyomkij V, Miyanohara A, Zhou X. A novel animal model for neuroinflammation and white matter degeneration. PeerJ. 2017;5:e3905.

    PubMed  PubMed Central  Google Scholar 

  43. Wang T, Nowrangi D, Yu L, Lu T, Tang J, Han B, et al. Activation of dopamine D1 receptor decreased NLRP3-mediated inflammation in intracerebral hemorrhage mice. J Neuroinflammation. 2018;15:2.

    PubMed  PubMed Central  Google Scholar 

  44. Hillmer AT, Sandiego CM, Hannestad J, Angarita GA, Kumar A, McGovern EM, et al. In vivo imaging of translocator protein, a marker of activated microglia, in alcohol dependence. Mol Psychiatry. 2017;22:1759–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Brody AL, Hubert R, Enoki R, Garcia LY, Mamoun MS, Okita K, et al. Effect of cigarette smoking on a marker for neuroinflammation: a [11C]DAA1106 positron emission tomography study. Neuropsychopharmacology. 2017;42:1630–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Epstein J, Johnson DE, Conners CK. Conners adult ADHD diagnostic interview for DSM-IV. New York: Multi-Health Systems; 1999.

    Google Scholar 

  47. First M, Gibbon M, Spitzer RL, Williams JBW, Benjamin LS. Structured clinical interview for DSM-IV Axis II personality disorders, (SCID-II). Washington DC: American Psychiatric Association Publishing; 1997.

    Google Scholar 

  48. First M, Spitzer RL, Robert L, Gibbon M, Williams JBW. Structured clinical interview for DSM-IV-TR Axis I disorders, research version, patient edition. (SCID-I/P). New York: New York State Psychiatric Institute; 2002.

    Google Scholar 

  49. Suzuki K, Sugihara G, Ouchi Y, Nakamura K, Futatsubashi M, Takebayashi K, et al. Microglial activation in young adults with autism spectrum disorder. JAMA Psychiatry. 2013;70:49–58.

    Google Scholar 

  50. Conners CK, Erhart D, Sparrow E. Conners adult ADHD rating scales. New York: Multi-Health Systems; 1999.

    Google Scholar 

  51. Wechsler D. Wechsler adult intelligence scale 3rd edition, (WAIS-III). Netherland: Lisse: Swets & Zeitlinger; 1997.

  52. Chamberlain SR, Robbins TW, Winder-Rhodes S, Muller U, Sahakian BJ, Blackwell D, et al. Translational approaches to frontostriatal dysfunction in attention-deficit/hyperactivity disorder using a computerized neuropsychological battery. Biol Psychiatry. 2011;69:1192–203.

    PubMed  Google Scholar 

  53. Gau SS, Huang WL. Rapid visual information processing as a cognitive endophenotype of attention deficit hyperactivity disorder. Psychol Med. 2014;44:435–46.

    PubMed  Google Scholar 

  54. Watanabe M, Shimizu K, Omura T, Takahashi M, Kosugi T, Yoshikawa E, et al. A new high-resolution PET scanner dedicated to brain research. IEEE Trans Nucl Sci. 2002;49:634–9.

    Google Scholar 

  55. Hirvonen J, Nagren K, Kajander J, Hietala J. Measurement of cortical dopamine d1 receptor binding with 11C[SCH23390]: a test-retest analysis. J Cereb Blood Flow Metab. 2001;21:1146–50.

    CAS  PubMed  Google Scholar 

  56. Yokokura M, Mori N, Yagi S, Yoshikawa E, Kikuchi M, Yoshihara Y, et al. In vivo changes in microglial activation and amyloid deposits in brain regions with hypometabolism in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2011;38:343–51.

    CAS  PubMed  Google Scholar 

  57. Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage 1996;4(3 Pt 1):153–8.

    CAS  PubMed  Google Scholar 

  58. Yokokura M, Terada T, Bunai T, Nakaizumi K, Takebayashi K, Iwata Y, et al. Depiction of microglial activation in aging and dementia: positron emission tomography with [11C]DPA713 versus [11C](R)PK11195. J Cereb Blood Flow Metab. 2017;37:877–89.

    CAS  PubMed  Google Scholar 

  59. Ouchi Y, Nobezawa S, Okada H, Yoshikawa E, Futatsubashi M, Kaneko M. Altered glucose metabolism in the hippocampal head in memory impairment. Neurology. 1998;51:136–42.

    CAS  PubMed  Google Scholar 

  60. Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat. 2001;29:1165–88.

    Google Scholar 

  61. Mostert JC, Shumskaya E, Mennes M, Onnink AMH, Hoogman M, Kan CC, et al. Characterising resting-state functional connectivity in a large sample of adults with ADHD. Prog Neuropsychopharmacol Biol Psychiatry. 2016;67:82–91.

    PubMed  PubMed Central  Google Scholar 

  62. Zhan C, Liu Y, Wu K, Gao Y, Li X. Structural and functional abnormalities in children with attention-deficit/hyperactivity disorder: a focus on subgenual anterior cingulate cortex. Brain Connect. 2017;7:106–14.

    PubMed  PubMed Central  Google Scholar 

  63. Rieckmann A, Karlsson S, Fischer H, Backman L. Caudate dopamine D1 receptor density is associated with individual differences in frontoparietal connectivity during working memory. J Neurosci. 2011;31:14284–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Helbing C, Tischmeyer W, Angenstein F. Late effect of dopamine D1/5 receptor activation on stimulus-induced BOLD responses in the hippocampus and its target regions depends on the history of previous stimulations. Neuroimage. 2017;152:119–29.

    CAS  PubMed  Google Scholar 

  65. Girgis RR, Van Snellenberg JX, Glass A, Kegeles LS, Thompson JL, Wall M, et al. A proof-of-concept, randomized controlled trial of DAR-0100A, a dopamine-1 receptor agonist, for cognitive enhancement in schizophrenia. J Psychopharmacol. 2016;30:428–35.

    CAS  PubMed  Google Scholar 

  66. Van Doren J, Arns M, Heinrich H, Vollebregt MA, Strehl U, Loo SK. Sustained effects of neurofeedback in ADHD: a systematic review and meta-analysis. Eur Child Adolesc Psychiatry. 2019;28:293–305.

    PubMed  Google Scholar 

  67. Zilverstand A, Sorger B, Slaats-Willemse D, Kan CC, Goebel R, Buitelaar JK. fMRI neurofeedback training for increasing anterior cingulate cortex activation in adult attention deficit hyperactivity disorder. An exploratory randomized, single-blinded study. PLoS ONE. 2017;12:e0170795.

    PubMed  PubMed Central  Google Scholar 

  68. Zwanzger P, Steinberg C, Rehbein MA, Brockelmann A-K, Dobel C, Zavorotnyy M, et al. Inhibitory repetitive transcranial magnetic stimulation (rTMS) of the dorsolateral prefrontal cortex modulates early affective processing. Neuroimage. 2014;101:193–203.

    PubMed  Google Scholar 

  69. Plewnia C, Schroeder PA, Kunze R, Faehling F, Wolkenstein L. Keep calm and carry on: improved frustration tolerance and processing speed by transcranial direct current stimulation (tDCS). PLoS ONE 2015;10:e0122578.

    PubMed  PubMed Central  Google Scholar 

  70. Sanchez-Lopez A, Vanderhasselt MA, Allaert J, Baeken C, De Raedt R. Neurocognitive mechanisms behind emotional attention: Inverse effects of anodal tDCS over the left and right DLPFC on gaze disengagement from emotional faces. Cogn Affect Behav Neurosci. 2018;18:485–94.

    PubMed  Google Scholar 

  71. Curtin A, Ayaz H, Tang Y, Sun J, Wang J, Tong S. Enhancing neural efficiency of cognitive processing speed via training and neurostimulation: an fNIRS and TMS study. Neuroimage. 2019;198:73–82.

    PubMed  Google Scholar 

  72. Salehinejad MA, Wischnewski M, Nejati V, Vicario CM, Nitsche MA. Transcranial direct current stimulation in attention-deficit hyperactivity disorder: a meta-analysis of neuropsychological deficits. PLoS ONE. 2019;14:e0215095.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Masuda F, Nakajima S, Miyazaki T, Tarumi R, Ogyu K, Wada M, et al. Clinical effectiveness of repetitive transcranial magnetic stimulation treatment in children and adolescents with neurodevelopmental disorders: a systematic review. Autism. 2019;23:1614–29.

    PubMed  Google Scholar 

  74. Fukai M, Bunai T, Hirosawa T, Kikuchi M, Ito S, Minabe Y, et al. Endogenous dopamine release under transcranial direct-current stimulation governs enhanced attention: a study with positron emission tomography. Transl Psychiatry. 2019;9:115–115.

    PubMed  PubMed Central  Google Scholar 

  75. Kim JY, Choi GS, Cho YW, Cho H, Hwang SJ, Ahn SH. Attenuation of spinal cord injury-induced astroglial and microglial activation by repetitive transcranial magnetic stimulation in rats. J Korean Med Sci. 2013;28:295–9.

    PubMed  PubMed Central  Google Scholar 

  76. Pikhovych A, Stolberg NP, Jessica Flitsch L, Walter HL, Graf R, Fink GR, et al. Transcranial direct current stimulation modulates neurogenesis and microglia activation in the mouse brain. Stem Cells Int. 2016;2016:2715196.

    PubMed  PubMed Central  Google Scholar 

  77. Ramaswamy V, Walsh JG, Sinclair DB, Johnson E, Tang-Wai R, Wheatley BM, et al. Inflammasome induction in Rasmussen’s encephalitis: cortical and associated white matter pathogenesis. J Neuroinflammation. 2013;10:152.

    PubMed  PubMed Central  Google Scholar 

  78. Rubin LH, Sacktor N, Creighton J, Du Y, Endres CJ, Pomper MG, et al. Microglial activation is inversely associated with cognition in individuals living with HIV on effective antiretroviral therapy. Aids. 2018;32:1661–7.

    PubMed  Google Scholar 

  79. He Z, Deng W, Li M, Chen Z, Liang L, Wang Q, et al. Aberrant intrinsic brain activity and cognitive deficit in first-episode treatment-naive patients with schizophrenia. Psychol Med. 2013;43:769–80.

    CAS  PubMed  Google Scholar 

  80. Nakao T, Radua J, Rubia K, Mataix-Cols D. Gray matter volume abnormalities in ADHD: voxel-based meta-analysis exploring the effects of age and stimulant medication. Am J Psychiatry. 2011;168:1154–63.

    PubMed  Google Scholar 

  81. Via E, Radua J, Cardoner N, Happé F, Mataix-Cols D. Meta-analysis of gray matter abnormalities in autism spectrum disorder: should Asperger disorder be subsumed under a broader umbrella of autistic spectrum disorder? Arch Gen Psychiatry. 2011;68:409–18.

    PubMed  Google Scholar 

  82. Bora E, Pantelis C. Meta-analysis of social cognition in attention-deficit/hyperactivity disorder (ADHD): comparison with healthy controls and autistic spectrum disorder. Psychol Med. 2016;46:699–716.

    CAS  PubMed  Google Scholar 

  83. Karalunas SL, Hawkey E, Gustafsson H, Miller M, Langhorst M, Cordova M, et al. Overlapping and distinct cognitive impairments in attention-deficit/hyperactivity and autism spectrum disorder without intellectual disability. J Abnorm Child Psychol. 2018;46:1705–16.

    PubMed  PubMed Central  Google Scholar 

  84. Owen DR, Gunn RN, Rabiner EA, Bennacef I, Fujita M, Kreisl WC, et al. Mixed-affinity binding in humans with 18-kDa translocator protein ligands. J Nucl Med. 2011;52:24–32.

    CAS  PubMed  Google Scholar 

  85. Volkow ND, Wang GJ, Newcorn JH, Kollins SH, Wigal TL, Telang F, et al. Motivation deficit in ADHD is associated with dysfunction of the dopamine reward pathway. Mol Psychiatry. 2011;16:1147–54.

    CAS  PubMed  Google Scholar 

  86. Badgaiyan RD, Sinha S, Sajjad M, Wack DS. Attenuated tonic and enhanced phasic release of dopamine in attention deficit hyperactivity disorder. PLoS ONE. 2015;10:e0137326–e0137326.

    PubMed  PubMed Central  Google Scholar 

  87. Laruelle M. Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab. 2000;20:423–51.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We express our gratitude to all the study participants and the staff of the Hamamatsu Photonics Medical Foundation, the Global Strategic Challenge Center of Hamamatsu Photonics K.K., and the Department of Psychiatry, Hamamatsu University School of Medicine for their assistance with data collection. This work was supported by JSPS KAKENHI Grant Numbers JP16H06402 (Willdynamics) and 19K08014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuomi Ouchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yokokura, M., Takebasashi, K., Takao, A. et al. In vivo imaging of dopamine D1 receptor and activated microglia in attention-deficit/hyperactivity disorder: a positron emission tomography study. Mol Psychiatry 26, 4958–4967 (2021). https://doi.org/10.1038/s41380-020-0784-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-0784-7

This article is cited by

Search

Quick links