Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

NitroSynapsin ameliorates hypersynchronous neural network activity in Alzheimer hiPSC models

Abstract

Beginning at early stages, human Alzheimer’s disease (AD) brains manifest hyperexcitability, contributing to subsequent extensive synapse loss, which has been linked to cognitive dysfunction. No current therapy for AD is disease-modifying. Part of the problem with AD drug discovery is that transgenic mouse models have been poor predictors of potential human treatment. While it is undoubtedly important to test drugs in these animal models, additional evidence for drug efficacy in a human context might improve our chances of success. Accordingly, in order to test drugs in a human context, we have developed a platform of physiological assays using patch-clamp electrophysiology, calcium imaging, and multielectrode array (MEA) experiments on human (h)iPSC-derived 2D cortical neuronal cultures and 3D cerebral organoids. We compare hiPSCs bearing familial AD mutations vs. their wild-type (WT) isogenic controls in order to characterize the aberrant electrical activity in such a human context. Here, we show that these AD neuronal cultures and organoids manifest increased spontaneous action potentials, slow oscillatory events (~1 Hz), and hypersynchronous network activity. Importantly, the dual-allosteric NMDAR antagonist NitroSynapsin, but not the FDA-approved drug memantine, abrogated this hyperactivity. We propose a novel model of synaptic plasticity in which aberrant neural networks are rebalanced by NitroSynapsin. We propose that hiPSC models may be useful for screening drugs to treat hyperexcitability and related synaptic damage in AD.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: AD neurons manifest increased spontaneous action potentials and glutamate-evoked currents compared with WT neurons.
Fig. 2: AD neurons manifest enhanced intracellular calcium levels and spontaneous transients compared with WT isogenic neurons.
Fig. 3: NitroSynapsin inhibits spontaneous calcium activity and 0.2–1 Hz events in AD neurons.
Fig. 4: NitroSynapsin decreases network burst frequency, synchrony, and firing rate in AD neurons in a concentration-dependent manner.
Fig. 5: AD cerebral organoids show hypersynchronous burst activity compared with WT.

Code availability

Custom MATLAB (MathWorks) code used for oscillatory spectral power analysis is available online for public use.

References

  1. 1.

    Palop JJ, Mucke L. Epilepsy and cognitive impairments in Alzheimer disease. Arch Neurol. 2009;66:435–40.

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Palop JJ, Mucke L. Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat Rev Neurosci. 2016;17:777–92.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Tu S, Okamoto S, Lipton SA, Xu H. Oligomeric Aβ-induced synaptic dysfunction in Alzheimer’s disease. Mol Neurodegener. 2014;9:48.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  4. 4.

    Abramov E, Dolev I, Fogel H, Ciccotosto GD, Ruff E, Slutsky I. Amyloid-β as a positive endogenous regulator of release probability at hippocampal synapses. Nat Neurosci. 2009;12:1567–76.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Talantova M, Sanz-Blasco S, Zhang X, Xia P, Akhtar MW, Okamoto S, et al. Aβ induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc Natl Acad Sci USA. 2013;110:E2518–27.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Quiroz YT, Budson AE, Celone K, Ruiz A, Newmark R, Castrillon G, et al. Hippocampal hyperactivation in presymptomatic familial Alzheimer’s disease. Ann Neurol. 2010;68:865–75.

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Nygaard HB, Kaufman AC, Sekine-Konno T, Huh LL, Going H, Feldman SJ, et al. Brivaracetam, but not ethosuximide, reverses memory impairments in an Alzheimer’s disease mouse model. Alzheimers Res Ther. 2015;7:25.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  8. 8.

    Verret L, Mann EO, Hang GB, Barth AM, Cobos I, Ho K, et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell. 2012;149:708–21.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Vossel KA, Beagle AJ, Rabinovici GD, Shu H, Lee SE, Naasan G, et al. Seizures and epileptiform activity in the early stages of Alzheimer disease. JAMA Neurol. 2013;70:1158–66.

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y, Herrera C, et al. Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature. 2012;482:216–20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Drummond E, Wisniewski T. Alzheimer’s disease: experimental models and reality. Acta Neuropathol. 2017;133:155–75.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Ghatak S, Dolatabadi N, Trudler D, Zhang X, Wu Y, Mohata M, et al. Mechanisms of hyperexcitability in Alzheimer’s disease hiPSC-derived neurons and cerebral organoids vs. isogenic control. eLife. 2019;8:e50333.

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Zhang H, Watrous AJ, Patel A, Jacobs J. Theta and alpha oscillations are traveling waves in the human neocortex. Neuron. 2018;98:1269–81.e4.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Liu X, Wang S, Zhang X, Wang Z, Tian X, He Y. Abnormal amplitude of low-frequency fluctuations of intrinsic brain activity in Alzheimer’s disease. J Alzheimers Dis. 2014;40:387–97.

    PubMed  Article  Google Scholar 

  15. 15.

    Ferrazzoli D, Albanese M, Sica F, Romigi A, Sancesario G, Marciani MG, et al. Electroencephalography and dementia: a literature review and future perspectives. CNS Neurol Disord Drug Targets. 2013;12:512–9.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Lam AD, Deck G, Goldman A, Eskandar EN, Noebels J, Cole AJ. Silent hippocampal seizures and spikes identified by foramen ovale electrodes in Alzheimer’s disease. Nat Med. 2017;23:678–80.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Li S, Jin M, Koeglsperger T, Shepardson NE, Shankar GM, Selkoe DJ. Soluble Aβ oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. J Neurosci. 2011;31:6627–38.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Lipton SA. Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat Rev Drug Discov. 2006;5:160–70.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Chen H-SV, Pellegrini JW, Aggarwal SK, Lei SZ, Warach S, Jensen FE, et al. Open-channel block of N-methyl-d-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity. J Neurosci. 1992;12:4427–36.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Chen H-SV, Lipton SA. Mechanism of memantine block of NMDA-activated channels in rat retinal ganglion cells: uncompetitive antagonism. J Physiol. 1997;499:27–46.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Wang Y, Eu J, Washburn M, Gong T, Chen H-SV, James WL, et al. The pharmacology of aminoadamantane nitrates. Curr Alzheimer Res. 2006;3:201–4.

    PubMed  Article  Google Scholar 

  22. 22.

    Paquet D, Kwart D, Chen A, Sproul A, Jacob S, Teo S, et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature. 2016;533:125–9.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Woodruff G, Young JE, Martinez FJ, Buen F, Gore A, Kinaga J, et al. The presenilin-1 ΔE9 mutation results in reduced γ-secretase activity, but not total loss of PS1 function, in isogenic human stem cells. Cell Rep. 2013;5:974–85.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Winship IR, Plaa N, Murphy TH. Rapid astrocyte calcium signals correlate with neuronal activity and onset of the hemodynamic response in vivo. J Neurosci. 2007;27:6268–72.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P, Snyder SH. Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol. 2001;3:193–7.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Takahashi H, Xia P, Cui J, Talantova M, Bodhinathan K, Li W, et al. Pharmacologically targeted NMDA receptor antagonism by NitroMemantine for cerebrovascular disease. Sci Rep. 2015;5:14781.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Uehara T, Nakamura T, Yao D, Shi ZQ, Gu Z, Ma Y, et al. S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature. 2006;441:513–7.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Tu S, Akhtar MW, Escorihuela RM, Amador-Arjona A, Swarup V, Parker J, et al. NitroSynapsin therapy for a mouse MEF2C haploinsufficiency model of human autism. Nat Commun. 2017;8:1488.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  29. 29.

    Pirttimaki TM, Codadu NK, Awni A, Pratik P, Nagel DA, Hill EJ, et al. α7 Nicotinic receptor-mediated astrocytic gliotransmitter release: Aβ effects in a preclinical Alzheimer’s mouse model. PLoS One. 2013;8:e81828.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. 30.

    Okamoto S, Pouladi MA, Talantova M, Yao D, Xia P, Ehrnhoefer DE, et al. Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat Med. 2009;15:1407–13.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Hanson JE, Pare JF, Deng L, Smith Y, Zhou Q. Altered GluN2B NMDA receptor function and synaptic plasticity during early pathology in the PS2APP mouse model of Alzheimer’s disease. Neurobiol Dis. 2015;74:254–62.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Xia P, Chen HS, Zhang D, Lipton SA. Memantine preferentially blocks extrasynaptic over synaptic NMDA receptor currents in hippocampal autapses. J Neurosci. 2010;30:11246–50.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Limon A, Reyes-Ruiz JM, Miledi R. Loss of functional GABAA receptors in the Alzheimer diseased brain. Proc Natl Acad Sci USA. 2012;109:10071–6.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Zott B, Simon MM, Hong W, Unger F, Chen-Engerer HJ, Frosch MP, et al. A vicious cycle of β amyloid-dependent neuronal hyperactivation. Science. 2019;365:559–65.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Li S, Hong S, Shepardson NE, Walsh DM, Shankar GM, Selkoe D. Soluble oligomers of amyloid β protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron. 2009;62:788–801.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Schiavo G, Benfenati F, Poulain B, Rossetto O, Polverino de Laureto P, DasGupta BR, et al. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature. 1992;359:832–5.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Whitcomb DJ, Hogg EL, Regan P, Piers T, Narayan P, Whitehead G, et al. Intracellular oligomeric amyloid-β rapidly regulates GluA1 subunit of AMPA receptor in the hippocampus. Sci Rep. 2015;5:10934.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Hettinger JC, Lee H, Bu G, Holtzman DM, Cirrito JR. AMPA-ergic regulation of amyloid-β levels in an Alzheimer’s disease mouse model. Mol Neurodegener. 2018;13:22.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  39. 39.

    Krishnan GP, Gonzalez OC, Bazhenov M. Origin of slow spontaneous resting-state neuronal fluctuations in brain networks. Proc Natl Acad Sci USA. 2018;115:6858–63.

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Sanchez-Vives MV, Massimini M, Mattia M. Shaping the default activity pattern of the cortical network. Neuron. 2017;94:993–1001.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Petrache AL, Rajulawalla A, Shi A, Wetzel A, Saito T, Saido TC, et al. Aberrant excitatory-inhibitory synaptic mechanisms in entorhinal cortex microcircuits during the pathogenesis of Alzheimer’s disease. Cereb Cortex. 2019;29:1834–50.

    PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Angulo MC, Kozlov AS, Charpak S, Audinat E. Glutamate released from glial cells synchronizes neuronal activity in the hippocampus. J Neurosci. 2004;24:6920–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Fellin T, Pascual O, Gobbo S, Pozzan T, Haydon PG, Carmignoto G. Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron. 2004;43:729–43.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron. 2003;39:409–21.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G, et al. High-level neuronal expression of Aβ1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci. 2000;20:4050–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Palop JJ, Chin J, Roberson ED, Wang J, Thwin MT, Bien-Ly N, et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron. 2007;55:697–711.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL. Natural oligomers of the Alzheimer amyloid-β protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci. 2007;27:2866–75.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Ferreira IL, Bajouco LM, Mota SI, Auberson YP, Oliveira CR, Rego AC. Amyloid β peptide 1-42 disturbs intracellular calcium homeostasis through activation of GluN2B-containing N-methyl-d-aspartate receptors in cortical cultures. Cell Calcium. 2012;51:95–106.

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Matos M, Augusto E, Oliveira CR, Agostinho P. Amyloid-β peptide decreases glutamate uptake in cultured astrocytes: involvement of oxidative stress and mitogen-activated protein kinase cascades. Neuroscience. 2008;156:898–910.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Reisberg B, Doody R, Stoffler A, Schmitt F, Ferris S, Mobius HJ, et al. Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med. 2003;348:1333–41.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Choi Y-B, Tenneti L, Le DA, Ortiz J, Bai G, Chen H-SV, et al. Molecular basis of NMDA receptor-coupled ion channel modulation by S-nitrosylation. Nat Neurosci. 2000;3:15–21.

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Molokanova E, Akhtar MW, Sanz-Blasco S, Tu S, Pina-Crespo JC, McKercher SR, et al. Differential effects of synaptic and extrasynaptic NMDA receptors on Aβ-induced nitric oxide production in cerebrocortical neurons. J Neurosci. 2014;34:5023–8.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  53. 53.

    Nakamura T, Lipton SA. Protein S-nitrosylation as a therapeutic target for neurodegenerative Diseases. Trends Pharm Sci. 2016;37:73–84.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Hall AM, Roberson ED. Mouse models of Alzheimer’s disease. Brain Res Bull. 2012;88:3–12.

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Lehman EJ, Kulnane LS, Gao Y, Petriello MC, Pimpis KM, Younkin L, et al. Genetic background regulates β-amyloid precursor protein processing and β-amyloid deposition in the mouse. Hum Mol Genet. 2003;12:2949–56.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

hiPSCs containing the PS1 ΔE9 mutation and the PS1M146V, APPswe mutations were the kind gifts of L. Goldstein (UC San Diego) and M. Tessier-Lavigne (Rockefeller University and Stanford University), respectively. We thank Scott McKercher for editing the manuscript and Kathryn Spencer for assisting in confocal imaging.

Funding

This work was supported in part by NIH grants DP1 DA041722, R01 AG056259, and RF1 AG057409 to SAL. BV was supported by NIH grant R01 GM134363 and the Research Training Grant in Alzheimer’s Disease to the Shiley-Marcos Alzheimer’s Disease Research Center (ADRC) at UCSD.

Author information

Affiliations

Authors

Contributions

SG, MT, and SAL designed the experiments, performed data analysis, and wrote the manuscript. SG and MT performed electrophysiology, calcium imaging, and data analysis. RG and BV performed 1/f analysis on calcium imaging data. ND, SG, DT, AS, and RA prepared hiPSCs, performed molecular/biochemical experiments, and helped with data analysis. SG and YW prepared cerebral organoids and performed immunostaining. EM, HS, and TN performed and analyzed the transgenic AD mouse experiments.

Corresponding author

Correspondence to Stuart A. Lipton.

Ethics declarations

Conflict of interest

The authors declare that SAL is an inventor on worldwide patents for the use of memantine and NitroSynapsin for neurodegenerative and neurodevelopmental disorders. Per Harvard University guidelines, SAL participates in a royalty-sharing agreement with his former institution Boston Children’s Hospital/Harvard Medical School, which licensed the drug memantine (Namenda®) to Forest Laboratories, Inc./Actavis/Allergan, Inc. NitroSynapsin is licensed to EuMentis Therapeutics, Inc. The other authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghatak, S., Dolatabadi, N., Gao, R. et al. NitroSynapsin ameliorates hypersynchronous neural network activity in Alzheimer hiPSC models. Mol Psychiatry (2020). https://doi.org/10.1038/s41380-020-0776-7

Download citation

Further reading

Search

Quick links